Properties

Label 1452.2.i.n.1237.1
Level $1452$
Weight $2$
Character 1452.1237
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,1,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 1237.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 1452.1237
Dual form 1452.2.i.n.493.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{3} +(-0.309017 + 0.951057i) q^{5} +(1.61803 - 1.17557i) q^{7} +(0.309017 + 0.951057i) q^{9} +(0.927051 + 2.85317i) q^{13} +(-0.809017 + 0.587785i) q^{15} +(2.16312 - 6.65740i) q^{17} +(3.23607 + 2.35114i) q^{19} +2.00000 q^{21} -2.00000 q^{23} +(3.23607 + 2.35114i) q^{25} +(-0.309017 + 0.951057i) q^{27} +(2.42705 - 1.76336i) q^{29} +(0.618034 + 1.90211i) q^{35} +(-7.28115 + 5.29007i) q^{37} +(-0.927051 + 2.85317i) q^{39} +(7.28115 + 5.29007i) q^{41} +2.00000 q^{43} -1.00000 q^{45} +(9.70820 + 7.05342i) q^{47} +(-0.927051 + 2.85317i) q^{49} +(5.66312 - 4.11450i) q^{51} +(-4.01722 - 12.3637i) q^{53} +(1.23607 + 3.80423i) q^{57} +(4.85410 - 3.52671i) q^{59} +(0.618034 - 1.90211i) q^{61} +(1.61803 + 1.17557i) q^{63} -3.00000 q^{65} -14.0000 q^{67} +(-1.61803 - 1.17557i) q^{69} +(-1.85410 + 5.70634i) q^{71} +(4.85410 - 3.52671i) q^{73} +(1.23607 + 3.80423i) q^{75} +(4.94427 + 15.2169i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(2.47214 - 7.60845i) q^{83} +(5.66312 + 4.11450i) q^{85} +3.00000 q^{87} +1.00000 q^{89} +(4.85410 + 3.52671i) q^{91} +(-3.23607 + 2.35114i) q^{95} +(2.16312 + 6.65740i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + q^{5} + 2 q^{7} - q^{9} - 3 q^{13} - q^{15} - 7 q^{17} + 4 q^{19} + 8 q^{21} - 8 q^{23} + 4 q^{25} + q^{27} + 3 q^{29} - 2 q^{35} - 9 q^{37} + 3 q^{39} + 9 q^{41} + 8 q^{43} - 4 q^{45}+ \cdots - 7 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i −0.996074 0.0885298i \(-0.971783\pi\)
0.857877 + 0.513855i \(0.171783\pi\)
\(6\) 0 0
\(7\) 1.61803 1.17557i 0.611559 0.444324i −0.238404 0.971166i \(-0.576624\pi\)
0.849963 + 0.526842i \(0.176624\pi\)
\(8\) 0 0
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0.927051 + 2.85317i 0.257118 + 0.791327i 0.993405 + 0.114658i \(0.0365772\pi\)
−0.736287 + 0.676669i \(0.763423\pi\)
\(14\) 0 0
\(15\) −0.809017 + 0.587785i −0.208887 + 0.151765i
\(16\) 0 0
\(17\) 2.16312 6.65740i 0.524633 1.61466i −0.240406 0.970672i \(-0.577281\pi\)
0.765040 0.643983i \(-0.222719\pi\)
\(18\) 0 0
\(19\) 3.23607 + 2.35114i 0.742405 + 0.539389i 0.893463 0.449136i \(-0.148268\pi\)
−0.151058 + 0.988525i \(0.548268\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 3.23607 + 2.35114i 0.647214 + 0.470228i
\(26\) 0 0
\(27\) −0.309017 + 0.951057i −0.0594703 + 0.183031i
\(28\) 0 0
\(29\) 2.42705 1.76336i 0.450692 0.327447i −0.339177 0.940723i \(-0.610149\pi\)
0.789869 + 0.613276i \(0.210149\pi\)
\(30\) 0 0
\(31\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.618034 + 1.90211i 0.104467 + 0.321516i
\(36\) 0 0
\(37\) −7.28115 + 5.29007i −1.19701 + 0.869682i −0.993988 0.109492i \(-0.965078\pi\)
−0.203026 + 0.979173i \(0.565078\pi\)
\(38\) 0 0
\(39\) −0.927051 + 2.85317i −0.148447 + 0.456873i
\(40\) 0 0
\(41\) 7.28115 + 5.29007i 1.13713 + 0.826170i 0.986716 0.162454i \(-0.0519410\pi\)
0.150409 + 0.988624i \(0.451941\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 9.70820 + 7.05342i 1.41609 + 1.02885i 0.992402 + 0.123038i \(0.0392637\pi\)
0.423685 + 0.905810i \(0.360736\pi\)
\(48\) 0 0
\(49\) −0.927051 + 2.85317i −0.132436 + 0.407596i
\(50\) 0 0
\(51\) 5.66312 4.11450i 0.792995 0.576145i
\(52\) 0 0
\(53\) −4.01722 12.3637i −0.551808 1.69829i −0.704228 0.709974i \(-0.748707\pi\)
0.152420 0.988316i \(-0.451293\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.23607 + 3.80423i 0.163721 + 0.503882i
\(58\) 0 0
\(59\) 4.85410 3.52671i 0.631950 0.459139i −0.225125 0.974330i \(-0.572279\pi\)
0.857075 + 0.515191i \(0.172279\pi\)
\(60\) 0 0
\(61\) 0.618034 1.90211i 0.0791311 0.243541i −0.903663 0.428244i \(-0.859132\pi\)
0.982794 + 0.184703i \(0.0591324\pi\)
\(62\) 0 0
\(63\) 1.61803 + 1.17557i 0.203853 + 0.148108i
\(64\) 0 0
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) −14.0000 −1.71037 −0.855186 0.518321i \(-0.826557\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(68\) 0 0
\(69\) −1.61803 1.17557i −0.194788 0.141522i
\(70\) 0 0
\(71\) −1.85410 + 5.70634i −0.220041 + 0.677218i 0.778716 + 0.627377i \(0.215871\pi\)
−0.998757 + 0.0498409i \(0.984129\pi\)
\(72\) 0 0
\(73\) 4.85410 3.52671i 0.568130 0.412770i −0.266296 0.963891i \(-0.585800\pi\)
0.834425 + 0.551121i \(0.185800\pi\)
\(74\) 0 0
\(75\) 1.23607 + 3.80423i 0.142729 + 0.439274i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.94427 + 15.2169i 0.556274 + 1.71204i 0.692555 + 0.721365i \(0.256485\pi\)
−0.136281 + 0.990670i \(0.543515\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 0 0
\(83\) 2.47214 7.60845i 0.271352 0.835136i −0.718809 0.695207i \(-0.755313\pi\)
0.990162 0.139929i \(-0.0446874\pi\)
\(84\) 0 0
\(85\) 5.66312 + 4.11450i 0.614251 + 0.446280i
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 4.85410 + 3.52671i 0.508848 + 0.369700i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.23607 + 2.35114i −0.332014 + 0.241222i
\(96\) 0 0
\(97\) 2.16312 + 6.65740i 0.219631 + 0.675956i 0.998792 + 0.0491321i \(0.0156455\pi\)
−0.779161 + 0.626824i \(0.784354\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.618034 1.90211i −0.0614967 0.189267i 0.915588 0.402117i \(-0.131726\pi\)
−0.977085 + 0.212850i \(0.931726\pi\)
\(102\) 0 0
\(103\) 4.85410 3.52671i 0.478289 0.347497i −0.322374 0.946612i \(-0.604481\pi\)
0.800663 + 0.599115i \(0.204481\pi\)
\(104\) 0 0
\(105\) −0.618034 + 1.90211i −0.0603139 + 0.185627i
\(106\) 0 0
\(107\) −11.3262 8.22899i −1.09495 0.795527i −0.114721 0.993398i \(-0.536597\pi\)
−0.980228 + 0.197871i \(0.936597\pi\)
\(108\) 0 0
\(109\) 3.00000 0.287348 0.143674 0.989625i \(-0.454108\pi\)
0.143674 + 0.989625i \(0.454108\pi\)
\(110\) 0 0
\(111\) −9.00000 −0.854242
\(112\) 0 0
\(113\) 15.3713 + 11.1679i 1.44601 + 1.05059i 0.986743 + 0.162293i \(0.0518889\pi\)
0.459270 + 0.888297i \(0.348111\pi\)
\(114\) 0 0
\(115\) 0.618034 1.90211i 0.0576320 0.177373i
\(116\) 0 0
\(117\) −2.42705 + 1.76336i −0.224381 + 0.163022i
\(118\) 0 0
\(119\) −4.32624 13.3148i −0.396586 1.22056i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 2.78115 + 8.55951i 0.250768 + 0.771785i
\(124\) 0 0
\(125\) −7.28115 + 5.29007i −0.651246 + 0.473158i
\(126\) 0 0
\(127\) −3.70820 + 11.4127i −0.329050 + 1.01271i 0.640529 + 0.767934i \(0.278715\pi\)
−0.969579 + 0.244778i \(0.921285\pi\)
\(128\) 0 0
\(129\) 1.61803 + 1.17557i 0.142460 + 0.103503i
\(130\) 0 0
\(131\) −22.0000 −1.92215 −0.961074 0.276289i \(-0.910895\pi\)
−0.961074 + 0.276289i \(0.910895\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) −0.809017 0.587785i −0.0696291 0.0505885i
\(136\) 0 0
\(137\) −3.09017 + 9.51057i −0.264011 + 0.812542i 0.727909 + 0.685674i \(0.240493\pi\)
−0.991920 + 0.126868i \(0.959507\pi\)
\(138\) 0 0
\(139\) 11.3262 8.22899i 0.960679 0.697974i 0.00737063 0.999973i \(-0.497654\pi\)
0.953308 + 0.301999i \(0.0976538\pi\)
\(140\) 0 0
\(141\) 3.70820 + 11.4127i 0.312287 + 0.961121i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0.927051 + 2.85317i 0.0769874 + 0.236943i
\(146\) 0 0
\(147\) −2.42705 + 1.76336i −0.200180 + 0.145439i
\(148\) 0 0
\(149\) 4.01722 12.3637i 0.329104 1.01288i −0.640451 0.767999i \(-0.721252\pi\)
0.969554 0.244877i \(-0.0787476\pi\)
\(150\) 0 0
\(151\) −6.47214 4.70228i −0.526695 0.382666i 0.292425 0.956288i \(-0.405538\pi\)
−0.819120 + 0.573622i \(0.805538\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.3262 8.22899i −0.903932 0.656745i 0.0355408 0.999368i \(-0.488685\pi\)
−0.939473 + 0.342623i \(0.888685\pi\)
\(158\) 0 0
\(159\) 4.01722 12.3637i 0.318586 0.980508i
\(160\) 0 0
\(161\) −3.23607 + 2.35114i −0.255038 + 0.185296i
\(162\) 0 0
\(163\) −0.618034 1.90211i −0.0484082 0.148985i 0.923931 0.382560i \(-0.124958\pi\)
−0.972339 + 0.233575i \(0.924958\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.56231 17.1190i −0.430424 1.32471i −0.897704 0.440600i \(-0.854766\pi\)
0.467280 0.884110i \(-0.345234\pi\)
\(168\) 0 0
\(169\) 3.23607 2.35114i 0.248928 0.180857i
\(170\) 0 0
\(171\) −1.23607 + 3.80423i −0.0945245 + 0.290916i
\(172\) 0 0
\(173\) 11.3262 + 8.22899i 0.861118 + 0.625639i 0.928189 0.372109i \(-0.121365\pi\)
−0.0670709 + 0.997748i \(0.521365\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) −6.47214 4.70228i −0.483750 0.351465i 0.319026 0.947746i \(-0.396644\pi\)
−0.802776 + 0.596281i \(0.796644\pi\)
\(180\) 0 0
\(181\) 4.01722 12.3637i 0.298598 0.918989i −0.683392 0.730052i \(-0.739496\pi\)
0.981989 0.188937i \(-0.0605042\pi\)
\(182\) 0 0
\(183\) 1.61803 1.17557i 0.119609 0.0869007i
\(184\) 0 0
\(185\) −2.78115 8.55951i −0.204474 0.629308i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.618034 + 1.90211i 0.0449554 + 0.138358i
\(190\) 0 0
\(191\) 9.70820 7.05342i 0.702461 0.510368i −0.178272 0.983981i \(-0.557051\pi\)
0.880733 + 0.473614i \(0.157051\pi\)
\(192\) 0 0
\(193\) 1.54508 4.75528i 0.111218 0.342293i −0.879922 0.475119i \(-0.842405\pi\)
0.991139 + 0.132826i \(0.0424051\pi\)
\(194\) 0 0
\(195\) −2.42705 1.76336i −0.173805 0.126277i
\(196\) 0 0
\(197\) −7.00000 −0.498729 −0.249365 0.968410i \(-0.580222\pi\)
−0.249365 + 0.968410i \(0.580222\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) −11.3262 8.22899i −0.798891 0.580428i
\(202\) 0 0
\(203\) 1.85410 5.70634i 0.130132 0.400506i
\(204\) 0 0
\(205\) −7.28115 + 5.29007i −0.508538 + 0.369474i
\(206\) 0 0
\(207\) −0.618034 1.90211i −0.0429563 0.132206i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −4.32624 13.3148i −0.297831 0.916628i −0.982256 0.187545i \(-0.939947\pi\)
0.684425 0.729083i \(-0.260053\pi\)
\(212\) 0 0
\(213\) −4.85410 + 3.52671i −0.332598 + 0.241646i
\(214\) 0 0
\(215\) −0.618034 + 1.90211i −0.0421496 + 0.129723i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 21.0000 1.41261
\(222\) 0 0
\(223\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(224\) 0 0
\(225\) −1.23607 + 3.80423i −0.0824045 + 0.253615i
\(226\) 0 0
\(227\) −14.5623 + 10.5801i −0.966534 + 0.702228i −0.954659 0.297701i \(-0.903780\pi\)
−0.0118751 + 0.999929i \(0.503780\pi\)
\(228\) 0 0
\(229\) 8.96149 + 27.5806i 0.592192 + 1.82258i 0.568234 + 0.822867i \(0.307627\pi\)
0.0239580 + 0.999713i \(0.492373\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.72542 23.7764i −0.506109 1.55764i −0.798897 0.601467i \(-0.794583\pi\)
0.292788 0.956177i \(-0.405417\pi\)
\(234\) 0 0
\(235\) −9.70820 + 7.05342i −0.633293 + 0.460115i
\(236\) 0 0
\(237\) −4.94427 + 15.2169i −0.321165 + 0.988444i
\(238\) 0 0
\(239\) −12.9443 9.40456i −0.837295 0.608331i 0.0843185 0.996439i \(-0.473129\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −2.42705 1.76336i −0.155059 0.112657i
\(246\) 0 0
\(247\) −3.70820 + 11.4127i −0.235947 + 0.726171i
\(248\) 0 0
\(249\) 6.47214 4.70228i 0.410155 0.297995i
\(250\) 0 0
\(251\) −3.09017 9.51057i −0.195050 0.600302i −0.999976 0.00692663i \(-0.997795\pi\)
0.804926 0.593375i \(-0.202205\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 2.16312 + 6.65740i 0.135460 + 0.416902i
\(256\) 0 0
\(257\) 5.66312 4.11450i 0.353256 0.256655i −0.396978 0.917828i \(-0.629941\pi\)
0.750234 + 0.661173i \(0.229941\pi\)
\(258\) 0 0
\(259\) −5.56231 + 17.1190i −0.345625 + 1.06372i
\(260\) 0 0
\(261\) 2.42705 + 1.76336i 0.150231 + 0.109149i
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 13.0000 0.798584
\(266\) 0 0
\(267\) 0.809017 + 0.587785i 0.0495110 + 0.0359719i
\(268\) 0 0
\(269\) −0.309017 + 0.951057i −0.0188411 + 0.0579869i −0.960035 0.279880i \(-0.909705\pi\)
0.941194 + 0.337867i \(0.109705\pi\)
\(270\) 0 0
\(271\) −17.7984 + 12.9313i −1.08117 + 0.785519i −0.977887 0.209133i \(-0.932936\pi\)
−0.103287 + 0.994652i \(0.532936\pi\)
\(272\) 0 0
\(273\) 1.85410 + 5.70634i 0.112215 + 0.345363i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.25329 16.1680i −0.315640 0.971439i −0.975490 0.220042i \(-0.929381\pi\)
0.659851 0.751397i \(-0.270619\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.79837 20.9232i 0.405557 1.24818i −0.514872 0.857267i \(-0.672161\pi\)
0.920429 0.390909i \(-0.127839\pi\)
\(282\) 0 0
\(283\) −11.3262 8.22899i −0.673275 0.489163i 0.197845 0.980233i \(-0.436606\pi\)
−0.871120 + 0.491070i \(0.836606\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) 18.0000 1.06251
\(288\) 0 0
\(289\) −25.8885 18.8091i −1.52286 1.10642i
\(290\) 0 0
\(291\) −2.16312 + 6.65740i −0.126804 + 0.390263i
\(292\) 0 0
\(293\) −13.7533 + 9.99235i −0.803476 + 0.583759i −0.911932 0.410342i \(-0.865409\pi\)
0.108456 + 0.994101i \(0.465409\pi\)
\(294\) 0 0
\(295\) 1.85410 + 5.70634i 0.107950 + 0.332236i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.85410 5.70634i −0.107225 0.330006i
\(300\) 0 0
\(301\) 3.23607 2.35114i 0.186524 0.135518i
\(302\) 0 0
\(303\) 0.618034 1.90211i 0.0355051 0.109274i
\(304\) 0 0
\(305\) 1.61803 + 1.17557i 0.0926484 + 0.0673130i
\(306\) 0 0
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) −22.6525 16.4580i −1.28450 0.933247i −0.284825 0.958580i \(-0.591935\pi\)
−0.999679 + 0.0253327i \(0.991935\pi\)
\(312\) 0 0
\(313\) −0.309017 + 0.951057i −0.0174667 + 0.0537569i −0.959410 0.282015i \(-0.908997\pi\)
0.941943 + 0.335772i \(0.108997\pi\)
\(314\) 0 0
\(315\) −1.61803 + 1.17557i −0.0911659 + 0.0662359i
\(316\) 0 0
\(317\) −1.85410 5.70634i −0.104137 0.320500i 0.885390 0.464849i \(-0.153891\pi\)
−0.989527 + 0.144349i \(0.953891\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.32624 13.3148i −0.241467 0.743159i
\(322\) 0 0
\(323\) 22.6525 16.4580i 1.26042 0.915747i
\(324\) 0 0
\(325\) −3.70820 + 11.4127i −0.205694 + 0.633061i
\(326\) 0 0
\(327\) 2.42705 + 1.76336i 0.134216 + 0.0975138i
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) −7.28115 5.29007i −0.399005 0.289894i
\(334\) 0 0
\(335\) 4.32624 13.3148i 0.236368 0.727465i
\(336\) 0 0
\(337\) 12.1353 8.81678i 0.661049 0.480281i −0.205968 0.978559i \(-0.566034\pi\)
0.867017 + 0.498278i \(0.166034\pi\)
\(338\) 0 0
\(339\) 5.87132 + 18.0701i 0.318886 + 0.981432i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 6.18034 + 19.0211i 0.333707 + 1.02704i
\(344\) 0 0
\(345\) 1.61803 1.17557i 0.0871120 0.0632906i
\(346\) 0 0
\(347\) −2.47214 + 7.60845i −0.132711 + 0.408443i −0.995227 0.0975871i \(-0.968888\pi\)
0.862516 + 0.506030i \(0.168888\pi\)
\(348\) 0 0
\(349\) −2.42705 1.76336i −0.129917 0.0943903i 0.520929 0.853600i \(-0.325586\pi\)
−0.650846 + 0.759210i \(0.725586\pi\)
\(350\) 0 0
\(351\) −3.00000 −0.160128
\(352\) 0 0
\(353\) −3.00000 −0.159674 −0.0798369 0.996808i \(-0.525440\pi\)
−0.0798369 + 0.996808i \(0.525440\pi\)
\(354\) 0 0
\(355\) −4.85410 3.52671i −0.257629 0.187178i
\(356\) 0 0
\(357\) 4.32624 13.3148i 0.228969 0.704693i
\(358\) 0 0
\(359\) −24.2705 + 17.6336i −1.28095 + 0.930664i −0.999581 0.0289366i \(-0.990788\pi\)
−0.281367 + 0.959600i \(0.590788\pi\)
\(360\) 0 0
\(361\) −0.927051 2.85317i −0.0487922 0.150167i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.85410 + 5.70634i 0.0970481 + 0.298683i
\(366\) 0 0
\(367\) 8.09017 5.87785i 0.422303 0.306821i −0.356261 0.934387i \(-0.615948\pi\)
0.778564 + 0.627565i \(0.215948\pi\)
\(368\) 0 0
\(369\) −2.78115 + 8.55951i −0.144781 + 0.445590i
\(370\) 0 0
\(371\) −21.0344 15.2824i −1.09205 0.793424i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) 7.28115 + 5.29007i 0.374998 + 0.272452i
\(378\) 0 0
\(379\) 8.03444 24.7275i 0.412702 1.27016i −0.501589 0.865106i \(-0.667251\pi\)
0.914291 0.405059i \(-0.132749\pi\)
\(380\) 0 0
\(381\) −9.70820 + 7.05342i −0.497366 + 0.361358i
\(382\) 0 0
\(383\) −3.09017 9.51057i −0.157900 0.485967i 0.840543 0.541745i \(-0.182236\pi\)
−0.998443 + 0.0557778i \(0.982236\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.618034 + 1.90211i 0.0314164 + 0.0966898i
\(388\) 0 0
\(389\) −12.1353 + 8.81678i −0.615282 + 0.447028i −0.851270 0.524727i \(-0.824167\pi\)
0.235988 + 0.971756i \(0.424167\pi\)
\(390\) 0 0
\(391\) −4.32624 + 13.3148i −0.218787 + 0.673358i
\(392\) 0 0
\(393\) −17.7984 12.9313i −0.897809 0.652297i
\(394\) 0 0
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 25.0000 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(398\) 0 0
\(399\) 6.47214 + 4.70228i 0.324012 + 0.235409i
\(400\) 0 0
\(401\) −3.39919 + 10.4616i −0.169747 + 0.522428i −0.999355 0.0359187i \(-0.988564\pi\)
0.829607 + 0.558347i \(0.188564\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.309017 0.951057i −0.0153552 0.0472584i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −9.57953 29.4828i −0.473677 1.45783i −0.847734 0.530422i \(-0.822033\pi\)
0.374056 0.927406i \(-0.377967\pi\)
\(410\) 0 0
\(411\) −8.09017 + 5.87785i −0.399059 + 0.289933i
\(412\) 0 0
\(413\) 3.70820 11.4127i 0.182469 0.561581i
\(414\) 0 0
\(415\) 6.47214 + 4.70228i 0.317705 + 0.230826i
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) −4.04508 2.93893i −0.197145 0.143235i 0.484833 0.874607i \(-0.338880\pi\)
−0.681979 + 0.731372i \(0.738880\pi\)
\(422\) 0 0
\(423\) −3.70820 + 11.4127i −0.180299 + 0.554903i
\(424\) 0 0
\(425\) 22.6525 16.4580i 1.09881 0.798330i
\(426\) 0 0
\(427\) −1.23607 3.80423i −0.0598175 0.184099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.27051 28.5317i −0.446545 1.37432i −0.880781 0.473524i \(-0.842982\pi\)
0.434236 0.900799i \(-0.357018\pi\)
\(432\) 0 0
\(433\) −8.89919 + 6.46564i −0.427668 + 0.310719i −0.780716 0.624886i \(-0.785145\pi\)
0.353048 + 0.935605i \(0.385145\pi\)
\(434\) 0 0
\(435\) −0.927051 + 2.85317i −0.0444487 + 0.136799i
\(436\) 0 0
\(437\) −6.47214 4.70228i −0.309604 0.224941i
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 1.61803 + 1.17557i 0.0768751 + 0.0558530i 0.625559 0.780177i \(-0.284871\pi\)
−0.548684 + 0.836030i \(0.684871\pi\)
\(444\) 0 0
\(445\) −0.309017 + 0.951057i −0.0146488 + 0.0450844i
\(446\) 0 0
\(447\) 10.5172 7.64121i 0.497447 0.361417i
\(448\) 0 0
\(449\) 8.96149 + 27.5806i 0.422919 + 1.30161i 0.904973 + 0.425469i \(0.139891\pi\)
−0.482054 + 0.876142i \(0.660109\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −2.47214 7.60845i −0.116151 0.357476i
\(454\) 0 0
\(455\) −4.85410 + 3.52671i −0.227564 + 0.165335i
\(456\) 0 0
\(457\) −2.16312 + 6.65740i −0.101186 + 0.311420i −0.988816 0.149137i \(-0.952350\pi\)
0.887630 + 0.460557i \(0.152350\pi\)
\(458\) 0 0
\(459\) 5.66312 + 4.11450i 0.264332 + 0.192048i
\(460\) 0 0
\(461\) −11.0000 −0.512321 −0.256161 0.966634i \(-0.582458\pi\)
−0.256161 + 0.966634i \(0.582458\pi\)
\(462\) 0 0
\(463\) −30.0000 −1.39422 −0.697109 0.716965i \(-0.745531\pi\)
−0.697109 + 0.716965i \(0.745531\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.27051 28.5317i 0.428988 1.32029i −0.470135 0.882594i \(-0.655795\pi\)
0.899123 0.437695i \(-0.144205\pi\)
\(468\) 0 0
\(469\) −22.6525 + 16.4580i −1.04599 + 0.759959i
\(470\) 0 0
\(471\) −4.32624 13.3148i −0.199343 0.613513i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.94427 + 15.2169i 0.226859 + 0.698199i
\(476\) 0 0
\(477\) 10.5172 7.64121i 0.481550 0.349867i
\(478\) 0 0
\(479\) −9.27051 + 28.5317i −0.423580 + 1.30365i 0.480767 + 0.876849i \(0.340358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(480\) 0 0
\(481\) −21.8435 15.8702i −0.995976 0.723619i
\(482\) 0 0
\(483\) −4.00000 −0.182006
\(484\) 0 0
\(485\) −7.00000 −0.317854
\(486\) 0 0
\(487\) −1.61803 1.17557i −0.0733201 0.0532702i 0.550521 0.834821i \(-0.314429\pi\)
−0.623842 + 0.781551i \(0.714429\pi\)
\(488\) 0 0
\(489\) 0.618034 1.90211i 0.0279485 0.0860165i
\(490\) 0 0
\(491\) 6.47214 4.70228i 0.292083 0.212211i −0.432087 0.901832i \(-0.642223\pi\)
0.724171 + 0.689621i \(0.242223\pi\)
\(492\) 0 0
\(493\) −6.48936 19.9722i −0.292266 0.899502i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.70820 + 11.4127i 0.166336 + 0.511929i
\(498\) 0 0
\(499\) 8.09017 5.87785i 0.362166 0.263129i −0.391789 0.920055i \(-0.628144\pi\)
0.753955 + 0.656926i \(0.228144\pi\)
\(500\) 0 0
\(501\) 5.56231 17.1190i 0.248506 0.764821i
\(502\) 0 0
\(503\) 11.3262 + 8.22899i 0.505012 + 0.366913i 0.810928 0.585146i \(-0.198963\pi\)
−0.305916 + 0.952058i \(0.598963\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 4.00000 0.177646
\(508\) 0 0
\(509\) −1.61803 1.17557i −0.0717181 0.0521062i 0.551349 0.834275i \(-0.314113\pi\)
−0.623067 + 0.782169i \(0.714113\pi\)
\(510\) 0 0
\(511\) 3.70820 11.4127i 0.164041 0.504867i
\(512\) 0 0
\(513\) −3.23607 + 2.35114i −0.142876 + 0.103805i
\(514\) 0 0
\(515\) 1.85410 + 5.70634i 0.0817015 + 0.251451i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 4.32624 + 13.3148i 0.189901 + 0.584454i
\(520\) 0 0
\(521\) 24.2705 17.6336i 1.06331 0.772540i 0.0886124 0.996066i \(-0.471757\pi\)
0.974698 + 0.223526i \(0.0717568\pi\)
\(522\) 0 0
\(523\) 12.3607 38.0423i 0.540495 1.66347i −0.190973 0.981595i \(-0.561164\pi\)
0.731467 0.681877i \(-0.238836\pi\)
\(524\) 0 0
\(525\) 6.47214 + 4.70228i 0.282467 + 0.205224i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 4.85410 + 3.52671i 0.210650 + 0.153046i
\(532\) 0 0
\(533\) −8.34346 + 25.6785i −0.361395 + 1.11226i
\(534\) 0 0
\(535\) 11.3262 8.22899i 0.489676 0.355770i
\(536\) 0 0
\(537\) −2.47214 7.60845i −0.106681 0.328329i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.03444 + 24.7275i 0.345428 + 1.06312i 0.961354 + 0.275314i \(0.0887817\pi\)
−0.615927 + 0.787803i \(0.711218\pi\)
\(542\) 0 0
\(543\) 10.5172 7.64121i 0.451337 0.327916i
\(544\) 0 0
\(545\) −0.927051 + 2.85317i −0.0397105 + 0.122216i
\(546\) 0 0
\(547\) 6.47214 + 4.70228i 0.276729 + 0.201055i 0.717489 0.696570i \(-0.245291\pi\)
−0.440761 + 0.897625i \(0.645291\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) 25.8885 + 18.8091i 1.10089 + 0.799845i
\(554\) 0 0
\(555\) 2.78115 8.55951i 0.118053 0.363331i
\(556\) 0 0
\(557\) 14.5623 10.5801i 0.617025 0.448295i −0.234856 0.972030i \(-0.575462\pi\)
0.851881 + 0.523735i \(0.175462\pi\)
\(558\) 0 0
\(559\) 1.85410 + 5.70634i 0.0784202 + 0.241352i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.618034 + 1.90211i 0.0260470 + 0.0801645i 0.963235 0.268660i \(-0.0865809\pi\)
−0.937188 + 0.348825i \(0.886581\pi\)
\(564\) 0 0
\(565\) −15.3713 + 11.1679i −0.646676 + 0.469838i
\(566\) 0 0
\(567\) −0.618034 + 1.90211i −0.0259550 + 0.0798812i
\(568\) 0 0
\(569\) 17.7984 + 12.9313i 0.746147 + 0.542107i 0.894630 0.446808i \(-0.147439\pi\)
−0.148483 + 0.988915i \(0.547439\pi\)
\(570\) 0 0
\(571\) 14.0000 0.585882 0.292941 0.956131i \(-0.405366\pi\)
0.292941 + 0.956131i \(0.405366\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) −6.47214 4.70228i −0.269907 0.196099i
\(576\) 0 0
\(577\) −4.01722 + 12.3637i −0.167239 + 0.514709i −0.999194 0.0401338i \(-0.987222\pi\)
0.831955 + 0.554843i \(0.187222\pi\)
\(578\) 0 0
\(579\) 4.04508 2.93893i 0.168108 0.122138i
\(580\) 0 0
\(581\) −4.94427 15.2169i −0.205123 0.631304i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.927051 2.85317i −0.0383288 0.117964i
\(586\) 0 0
\(587\) −19.4164 + 14.1068i −0.801401 + 0.582252i −0.911325 0.411688i \(-0.864939\pi\)
0.109924 + 0.993940i \(0.464939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −5.66312 4.11450i −0.232950 0.169248i
\(592\) 0 0
\(593\) 3.00000 0.123195 0.0615976 0.998101i \(-0.480380\pi\)
0.0615976 + 0.998101i \(0.480380\pi\)
\(594\) 0 0
\(595\) 14.0000 0.573944
\(596\) 0 0
\(597\) −8.09017 5.87785i −0.331109 0.240564i
\(598\) 0 0
\(599\) −7.41641 + 22.8254i −0.303026 + 0.932619i 0.677380 + 0.735633i \(0.263115\pi\)
−0.980406 + 0.196986i \(0.936885\pi\)
\(600\) 0 0
\(601\) −4.04508 + 2.93893i −0.165002 + 0.119881i −0.667222 0.744859i \(-0.732517\pi\)
0.502220 + 0.864740i \(0.332517\pi\)
\(602\) 0 0
\(603\) −4.32624 13.3148i −0.176178 0.542220i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.47214 + 7.60845i 0.100341 + 0.308818i 0.988609 0.150508i \(-0.0480910\pi\)
−0.888268 + 0.459326i \(0.848091\pi\)
\(608\) 0 0
\(609\) 4.85410 3.52671i 0.196698 0.142910i
\(610\) 0 0
\(611\) −11.1246 + 34.2380i −0.450054 + 1.38512i
\(612\) 0 0
\(613\) 26.6976 + 19.3969i 1.07830 + 0.783434i 0.977386 0.211461i \(-0.0678221\pi\)
0.100918 + 0.994895i \(0.467822\pi\)
\(614\) 0 0
\(615\) −9.00000 −0.362915
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) 17.7984 + 12.9313i 0.715377 + 0.519752i 0.884904 0.465774i \(-0.154224\pi\)
−0.169527 + 0.985526i \(0.554224\pi\)
\(620\) 0 0
\(621\) 0.618034 1.90211i 0.0248008 0.0763292i
\(622\) 0 0
\(623\) 1.61803 1.17557i 0.0648252 0.0470982i
\(624\) 0 0
\(625\) 3.39919 + 10.4616i 0.135967 + 0.418465i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.4681 + 59.9166i 0.776243 + 2.38903i
\(630\) 0 0
\(631\) −17.7984 + 12.9313i −0.708542 + 0.514786i −0.882703 0.469931i \(-0.844279\pi\)
0.174161 + 0.984717i \(0.444279\pi\)
\(632\) 0 0
\(633\) 4.32624 13.3148i 0.171953 0.529215i
\(634\) 0 0
\(635\) −9.70820 7.05342i −0.385258 0.279907i
\(636\) 0 0
\(637\) −9.00000 −0.356593
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 31.5517 + 22.9236i 1.24622 + 0.905429i 0.997996 0.0632750i \(-0.0201545\pi\)
0.248220 + 0.968704i \(0.420155\pi\)
\(642\) 0 0
\(643\) −12.3607 + 38.0423i −0.487458 + 1.50024i 0.340932 + 0.940088i \(0.389257\pi\)
−0.828390 + 0.560152i \(0.810743\pi\)
\(644\) 0 0
\(645\) −1.61803 + 1.17557i −0.0637100 + 0.0462880i
\(646\) 0 0
\(647\) 9.88854 + 30.4338i 0.388759 + 1.19648i 0.933717 + 0.358013i \(0.116546\pi\)
−0.544958 + 0.838463i \(0.683454\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −33.9787 + 24.6870i −1.32969 + 0.966076i −0.329933 + 0.944004i \(0.607026\pi\)
−0.999756 + 0.0220720i \(0.992974\pi\)
\(654\) 0 0
\(655\) 6.79837 20.9232i 0.265634 0.817539i
\(656\) 0 0
\(657\) 4.85410 + 3.52671i 0.189377 + 0.137590i
\(658\) 0 0
\(659\) 48.0000 1.86981 0.934907 0.354892i \(-0.115482\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(660\) 0 0
\(661\) −3.00000 −0.116686 −0.0583432 0.998297i \(-0.518582\pi\)
−0.0583432 + 0.998297i \(0.518582\pi\)
\(662\) 0 0
\(663\) 16.9894 + 12.3435i 0.659812 + 0.479381i
\(664\) 0 0
\(665\) −2.47214 + 7.60845i −0.0958653 + 0.295043i
\(666\) 0 0
\(667\) −4.85410 + 3.52671i −0.187952 + 0.136555i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −11.7426 36.1401i −0.452646 1.39310i −0.873877 0.486147i \(-0.838402\pi\)
0.421231 0.906953i \(-0.361598\pi\)
\(674\) 0 0
\(675\) −3.23607 + 2.35114i −0.124556 + 0.0904955i
\(676\) 0 0
\(677\) 5.25329 16.1680i 0.201900 0.621385i −0.797926 0.602755i \(-0.794070\pi\)
0.999826 0.0186300i \(-0.00593045\pi\)
\(678\) 0 0
\(679\) 11.3262 + 8.22899i 0.434661 + 0.315800i
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) 0 0
\(685\) −8.09017 5.87785i −0.309110 0.224581i
\(686\) 0 0
\(687\) −8.96149 + 27.5806i −0.341902 + 1.05227i
\(688\) 0 0
\(689\) 31.5517 22.9236i 1.20202 0.873321i
\(690\) 0 0
\(691\) −5.56231 17.1190i −0.211600 0.651238i −0.999378 0.0352781i \(-0.988768\pi\)
0.787777 0.615960i \(-0.211232\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.32624 + 13.3148i 0.164104 + 0.505059i
\(696\) 0 0
\(697\) 50.9681 37.0305i 1.93055 1.40263i
\(698\) 0 0
\(699\) 7.72542 23.7764i 0.292202 0.899307i
\(700\) 0 0
\(701\) 21.8435 + 15.8702i 0.825016 + 0.599409i 0.918145 0.396245i \(-0.129687\pi\)
−0.0931288 + 0.995654i \(0.529687\pi\)
\(702\) 0 0
\(703\) −36.0000 −1.35777
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) −3.23607 2.35114i −0.121705 0.0884238i
\(708\) 0 0
\(709\) 1.85410 5.70634i 0.0696323 0.214306i −0.910185 0.414202i \(-0.864061\pi\)
0.979817 + 0.199896i \(0.0640606\pi\)
\(710\) 0 0
\(711\) −12.9443 + 9.40456i −0.485448 + 0.352699i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4.94427 15.2169i −0.184647 0.568286i
\(718\) 0 0
\(719\) −33.9787 + 24.6870i −1.26719 + 0.920669i −0.999087 0.0427206i \(-0.986397\pi\)
−0.268105 + 0.963390i \(0.586397\pi\)
\(720\) 0 0
\(721\) 3.70820 11.4127i 0.138101 0.425030i
\(722\) 0 0
\(723\) 21.0344 + 15.2824i 0.782279 + 0.568359i
\(724\) 0 0
\(725\) 12.0000 0.445669
\(726\) 0 0
\(727\) −6.00000 −0.222528 −0.111264 0.993791i \(-0.535490\pi\)
−0.111264 + 0.993791i \(0.535490\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) 4.32624 13.3148i 0.160012 0.492465i
\(732\) 0 0
\(733\) 13.7533 9.99235i 0.507989 0.369076i −0.304071 0.952649i \(-0.598346\pi\)
0.812060 + 0.583574i \(0.198346\pi\)
\(734\) 0 0
\(735\) −0.927051 2.85317i −0.0341948 0.105241i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 12.3607 + 38.0423i 0.454695 + 1.39941i 0.871493 + 0.490408i \(0.163152\pi\)
−0.416798 + 0.908999i \(0.636848\pi\)
\(740\) 0 0
\(741\) −9.70820 + 7.05342i −0.356640 + 0.259114i
\(742\) 0 0
\(743\) 8.03444 24.7275i 0.294755 0.907163i −0.688549 0.725190i \(-0.741752\pi\)
0.983304 0.181973i \(-0.0582482\pi\)
\(744\) 0 0
\(745\) 10.5172 + 7.64121i 0.385321 + 0.279952i
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) −28.0000 −1.02310
\(750\) 0 0
\(751\) 27.5066 + 19.9847i 1.00373 + 0.729252i 0.962885 0.269913i \(-0.0869951\pi\)
0.0408447 + 0.999166i \(0.486995\pi\)
\(752\) 0 0
\(753\) 3.09017 9.51057i 0.112612 0.346584i
\(754\) 0 0
\(755\) 6.47214 4.70228i 0.235545 0.171134i
\(756\) 0 0
\(757\) −13.2877 40.8954i −0.482951 1.48637i −0.834927 0.550361i \(-0.814490\pi\)
0.351976 0.936009i \(-0.385510\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.34346 + 25.6785i 0.302450 + 0.930846i 0.980616 + 0.195937i \(0.0627749\pi\)
−0.678166 + 0.734909i \(0.737225\pi\)
\(762\) 0 0
\(763\) 4.85410 3.52671i 0.175730 0.127676i
\(764\) 0 0
\(765\) −2.16312 + 6.65740i −0.0782077 + 0.240699i
\(766\) 0 0
\(767\) 14.5623 + 10.5801i 0.525814 + 0.382027i
\(768\) 0 0
\(769\) 41.0000 1.47850 0.739249 0.673432i \(-0.235181\pi\)
0.739249 + 0.673432i \(0.235181\pi\)
\(770\) 0 0
\(771\) 7.00000 0.252099
\(772\) 0 0
\(773\) 24.2705 + 17.6336i 0.872950 + 0.634235i 0.931377 0.364057i \(-0.118609\pi\)
−0.0584272 + 0.998292i \(0.518609\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −14.5623 + 10.5801i −0.522420 + 0.379560i
\(778\) 0 0
\(779\) 11.1246 + 34.2380i 0.398581 + 1.22670i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.927051 + 2.85317i 0.0331301 + 0.101964i
\(784\) 0 0
\(785\) 11.3262 8.22899i 0.404251 0.293705i
\(786\) 0 0
\(787\) 9.88854 30.4338i 0.352489 1.08485i −0.604963 0.796254i \(-0.706812\pi\)
0.957451 0.288594i \(-0.0931879\pi\)
\(788\) 0 0
\(789\) −9.70820 7.05342i −0.345621 0.251109i
\(790\) 0 0
\(791\) 38.0000 1.35112
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 0 0
\(795\) 10.5172 + 7.64121i 0.373007 + 0.271006i
\(796\) 0 0
\(797\) 12.9787 39.9444i 0.459730 1.41490i −0.405762 0.913979i \(-0.632994\pi\)
0.865492 0.500924i \(-0.167006\pi\)
\(798\) 0 0
\(799\) 67.9574 49.3740i 2.40416 1.74673i
\(800\) 0 0
\(801\) 0.309017 + 0.951057i 0.0109186 + 0.0336039i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −1.23607 3.80423i −0.0435657 0.134081i
\(806\) 0 0
\(807\) −0.809017 + 0.587785i −0.0284787 + 0.0206910i
\(808\) 0 0
\(809\) −10.5066 + 32.3359i −0.369392 + 1.13687i 0.577793 + 0.816183i \(0.303914\pi\)
−0.947185 + 0.320687i \(0.896086\pi\)
\(810\) 0 0
\(811\) 16.1803 + 11.7557i 0.568169 + 0.412799i 0.834439 0.551100i \(-0.185792\pi\)
−0.266271 + 0.963898i \(0.585792\pi\)
\(812\) 0 0
\(813\) −22.0000 −0.771574
\(814\) 0 0
\(815\) 2.00000 0.0700569
\(816\) 0 0
\(817\) 6.47214 + 4.70228i 0.226431 + 0.164512i
\(818\) 0 0
\(819\) −1.85410 + 5.70634i −0.0647876 + 0.199396i
\(820\) 0 0
\(821\) 8.09017 5.87785i 0.282349 0.205138i −0.437592 0.899173i \(-0.644169\pi\)
0.719941 + 0.694035i \(0.244169\pi\)
\(822\) 0 0
\(823\) −10.5066 32.3359i −0.366236 1.12716i −0.949203 0.314664i \(-0.898108\pi\)
0.582967 0.812496i \(-0.301892\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.618034 1.90211i −0.0214911 0.0661430i 0.939736 0.341902i \(-0.111071\pi\)
−0.961227 + 0.275759i \(0.911071\pi\)
\(828\) 0 0
\(829\) −39.6418 + 28.8015i −1.37682 + 1.00032i −0.379648 + 0.925131i \(0.623955\pi\)
−0.997170 + 0.0751857i \(0.976045\pi\)
\(830\) 0 0
\(831\) 5.25329 16.1680i 0.182235 0.560860i
\(832\) 0 0
\(833\) 16.9894 + 12.3435i 0.588646 + 0.427677i
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −38.8328 28.2137i −1.34066 0.974045i −0.999420 0.0340680i \(-0.989154\pi\)
−0.341238 0.939977i \(-0.610846\pi\)
\(840\) 0 0
\(841\) −6.18034 + 19.0211i −0.213115 + 0.655901i
\(842\) 0 0
\(843\) 17.7984 12.9313i 0.613009 0.445377i
\(844\) 0 0
\(845\) 1.23607 + 3.80423i 0.0425220 + 0.130869i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.32624 13.3148i −0.148476 0.456962i
\(850\) 0 0
\(851\) 14.5623 10.5801i 0.499189 0.362682i
\(852\) 0 0
\(853\) 4.63525 14.2658i 0.158708 0.488453i −0.839810 0.542881i \(-0.817333\pi\)
0.998518 + 0.0544277i \(0.0173334\pi\)
\(854\) 0 0
\(855\) −3.23607 2.35114i −0.110671 0.0804073i
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) 22.0000 0.750630 0.375315 0.926897i \(-0.377534\pi\)
0.375315 + 0.926897i \(0.377534\pi\)
\(860\) 0 0
\(861\) 14.5623 + 10.5801i 0.496282 + 0.360570i
\(862\) 0 0
\(863\) −3.09017 + 9.51057i −0.105191 + 0.323743i −0.989775 0.142636i \(-0.954442\pi\)
0.884585 + 0.466380i \(0.154442\pi\)
\(864\) 0 0
\(865\) −11.3262 + 8.22899i −0.385104 + 0.279794i
\(866\) 0 0
\(867\) −9.88854 30.4338i −0.335833 1.03359i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −12.9787 39.9444i −0.439767 1.35346i
\(872\) 0 0
\(873\) −5.66312 + 4.11450i −0.191668 + 0.139255i
\(874\) 0 0
\(875\) −5.56231 + 17.1190i −0.188040 + 0.578728i
\(876\) 0 0
\(877\) −12.1353 8.81678i −0.409778 0.297721i 0.363734 0.931503i \(-0.381502\pi\)
−0.773512 + 0.633782i \(0.781502\pi\)
\(878\) 0 0
\(879\) −17.0000 −0.573396
\(880\) 0 0
\(881\) −23.0000 −0.774890 −0.387445 0.921893i \(-0.626642\pi\)
−0.387445 + 0.921893i \(0.626642\pi\)
\(882\) 0 0
\(883\) 35.5967 + 25.8626i 1.19793 + 0.870344i 0.994079 0.108659i \(-0.0346555\pi\)
0.203847 + 0.979003i \(0.434656\pi\)
\(884\) 0 0
\(885\) −1.85410 + 5.70634i −0.0623250 + 0.191816i
\(886\) 0 0
\(887\) 4.85410 3.52671i 0.162985 0.118415i −0.503303 0.864110i \(-0.667882\pi\)
0.666288 + 0.745694i \(0.267882\pi\)
\(888\) 0 0
\(889\) 7.41641 + 22.8254i 0.248738 + 0.765538i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 14.8328 + 45.6507i 0.496361 + 1.52764i
\(894\) 0 0
\(895\) 6.47214 4.70228i 0.216340 0.157180i
\(896\) 0 0
\(897\) 1.85410 5.70634i 0.0619067 0.190529i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −91.0000 −3.03165
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) 10.5172 + 7.64121i 0.349604 + 0.254002i
\(906\) 0 0
\(907\) −8.03444 + 24.7275i −0.266779 + 0.821062i 0.724499 + 0.689276i \(0.242071\pi\)
−0.991278 + 0.131786i \(0.957929\pi\)
\(908\) 0 0
\(909\) 1.61803 1.17557i 0.0536668 0.0389912i
\(910\) 0 0
\(911\) 9.27051 + 28.5317i 0.307146 + 0.945297i 0.978868 + 0.204494i \(0.0655549\pi\)
−0.671722 + 0.740803i \(0.734445\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0.618034 + 1.90211i 0.0204316 + 0.0628819i
\(916\) 0 0
\(917\) −35.5967 + 25.8626i −1.17551 + 0.854057i
\(918\) 0 0
\(919\) −8.03444 + 24.7275i −0.265032 + 0.815684i 0.726654 + 0.687003i \(0.241074\pi\)
−0.991686 + 0.128681i \(0.958926\pi\)
\(920\) 0 0
\(921\) −17.7984 12.9313i −0.586476 0.426100i
\(922\) 0 0
\(923\) −18.0000 −0.592477
\(924\) 0 0
\(925\) −36.0000 −1.18367
\(926\) 0 0
\(927\) 4.85410 + 3.52671i 0.159430 + 0.115832i
\(928\) 0 0
\(929\) 2.78115 8.55951i 0.0912467 0.280828i −0.895011 0.446045i \(-0.852832\pi\)
0.986257 + 0.165216i \(0.0528322\pi\)
\(930\) 0 0
\(931\) −9.70820 + 7.05342i −0.318174 + 0.231167i
\(932\) 0 0
\(933\) −8.65248 26.6296i −0.283269 0.871813i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.96149 + 27.5806i 0.292759 + 0.901020i 0.983965 + 0.178362i \(0.0570799\pi\)
−0.691206 + 0.722658i \(0.742920\pi\)
\(938\) 0 0
\(939\) −0.809017 + 0.587785i −0.0264013 + 0.0191816i
\(940\) 0 0
\(941\) −8.34346 + 25.6785i −0.271989 + 0.837096i 0.718011 + 0.696031i \(0.245053\pi\)
−0.990000 + 0.141065i \(0.954947\pi\)
\(942\) 0 0
\(943\) −14.5623 10.5801i −0.474214 0.344537i
\(944\) 0 0
\(945\) −2.00000 −0.0650600
\(946\) 0 0
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 0 0
\(949\) 14.5623 + 10.5801i 0.472712 + 0.343446i
\(950\) 0 0
\(951\) 1.85410 5.70634i 0.0601234 0.185041i
\(952\) 0 0
\(953\) 26.6976 19.3969i 0.864819 0.628328i −0.0643728 0.997926i \(-0.520505\pi\)
0.929192 + 0.369598i \(0.120505\pi\)
\(954\) 0 0
\(955\) 3.70820 + 11.4127i 0.119995 + 0.369306i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.18034 + 19.0211i 0.199574 + 0.614224i
\(960\) 0 0
\(961\) 25.0795 18.2213i 0.809017 0.587785i
\(962\) 0 0
\(963\) 4.32624 13.3148i 0.139411 0.429063i
\(964\) 0 0
\(965\) 4.04508 + 2.93893i 0.130216 + 0.0946074i
\(966\) 0 0
\(967\) 62.0000 1.99379 0.996893 0.0787703i \(-0.0250994\pi\)
0.996893 + 0.0787703i \(0.0250994\pi\)
\(968\) 0 0
\(969\) 28.0000 0.899490
\(970\) 0 0
\(971\) −33.9787 24.6870i −1.09043 0.792243i −0.110957 0.993825i \(-0.535392\pi\)
−0.979472 + 0.201582i \(0.935392\pi\)
\(972\) 0 0
\(973\) 8.65248 26.6296i 0.277386 0.853705i
\(974\) 0 0
\(975\) −9.70820 + 7.05342i −0.310911 + 0.225890i
\(976\) 0 0
\(977\) 12.6697 + 38.9933i 0.405340 + 1.24751i 0.920611 + 0.390480i \(0.127691\pi\)
−0.515272 + 0.857027i \(0.672309\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.927051 + 2.85317i 0.0295985 + 0.0910947i
\(982\) 0 0
\(983\) 29.1246 21.1603i 0.928931 0.674908i −0.0168000 0.999859i \(-0.505348\pi\)
0.945731 + 0.324951i \(0.105348\pi\)
\(984\) 0 0
\(985\) 2.16312 6.65740i 0.0689227 0.212122i
\(986\) 0 0
\(987\) 19.4164 + 14.1068i 0.618031 + 0.449026i
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 0 0
\(993\) 6.47214 + 4.70228i 0.205387 + 0.149222i
\(994\) 0 0
\(995\) 3.09017 9.51057i 0.0979650 0.301505i
\(996\) 0 0
\(997\) −47.7320 + 34.6793i −1.51169 + 1.09831i −0.546266 + 0.837612i \(0.683951\pi\)
−0.965422 + 0.260694i \(0.916049\pi\)
\(998\) 0 0
\(999\) −2.78115 8.55951i −0.0879918 0.270811i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.i.n.1237.1 4
11.2 odd 10 1452.2.i.m.493.1 4
11.3 even 5 1452.2.a.a.1.1 1
11.4 even 5 inner 1452.2.i.n.1213.1 4
11.5 even 5 inner 1452.2.i.n.565.1 4
11.6 odd 10 1452.2.i.m.565.1 4
11.7 odd 10 1452.2.i.m.1213.1 4
11.8 odd 10 1452.2.a.b.1.1 yes 1
11.9 even 5 inner 1452.2.i.n.493.1 4
11.10 odd 2 1452.2.i.m.1237.1 4
33.8 even 10 4356.2.a.i.1.1 1
33.14 odd 10 4356.2.a.h.1.1 1
44.3 odd 10 5808.2.a.y.1.1 1
44.19 even 10 5808.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.2.a.a.1.1 1 11.3 even 5
1452.2.a.b.1.1 yes 1 11.8 odd 10
1452.2.i.m.493.1 4 11.2 odd 10
1452.2.i.m.565.1 4 11.6 odd 10
1452.2.i.m.1213.1 4 11.7 odd 10
1452.2.i.m.1237.1 4 11.10 odd 2
1452.2.i.n.493.1 4 11.9 even 5 inner
1452.2.i.n.565.1 4 11.5 even 5 inner
1452.2.i.n.1213.1 4 11.4 even 5 inner
1452.2.i.n.1237.1 4 1.1 even 1 trivial
4356.2.a.h.1.1 1 33.14 odd 10
4356.2.a.i.1.1 1 33.8 even 10
5808.2.a.v.1.1 1 44.19 even 10
5808.2.a.y.1.1 1 44.3 odd 10