Properties

Label 1452.2.i
Level $1452$
Weight $2$
Character orbit 1452.i
Rep. character $\chi_{1452}(493,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $72$
Newform subspaces $17$
Sturm bound $528$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 17 \)
Sturm bound: \(528\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).

Total New Old
Modular forms 1200 72 1128
Cusp forms 912 72 840
Eisenstein series 288 0 288

Trace form

\( 72 q + 4 q^{5} - 10 q^{7} - 18 q^{9} - 6 q^{13} + 10 q^{15} + 10 q^{17} - 8 q^{19} + 16 q^{21} + 28 q^{23} - 12 q^{25} + 12 q^{29} - 12 q^{31} + 20 q^{35} - 10 q^{37} - 8 q^{39} + 28 q^{41} + 8 q^{43} + 4 q^{45}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1452.2.i.a 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 1452.2.a.g \(0\) \(-1\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}-3\zeta_{10}q^{5}-2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.b 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 1452.2.a.g \(0\) \(-1\) \(-3\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}-3\zeta_{10}q^{5}+2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.c 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.i.a \(0\) \(-1\) \(-2\) \(-3\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+(-1+\zeta_{10}-\zeta_{10}^{2})q^{5}+\cdots\)
1452.2.i.d 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.a.b \(0\) \(-1\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}-2\zeta_{10}q^{5}-2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.e 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.a.b \(0\) \(-1\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}-2\zeta_{10}q^{5}+2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.f 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.i.a \(0\) \(-1\) \(-2\) \(3\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+(-1+\zeta_{10}-\zeta_{10}^{2})q^{5}+\cdots\)
1452.2.i.g 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.i.a \(0\) \(-1\) \(3\) \(-7\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+(1+\zeta_{10}^{2})q^{5}+(-2+2\zeta_{10}+\cdots)q^{7}+\cdots\)
1452.2.i.h 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 1452.2.a.d \(0\) \(-1\) \(4\) \(-5\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+4\zeta_{10}q^{5}-5\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.i 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 1452.2.a.d \(0\) \(-1\) \(4\) \(5\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+4\zeta_{10}q^{5}+5\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.j 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.i.b \(0\) \(1\) \(-7\) \(-3\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}+(-3+2\zeta_{10}-3\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
1452.2.i.k 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.a.a \(0\) \(1\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}-2\zeta_{10}q^{5}-2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.l 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.a.a \(0\) \(1\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}-2\zeta_{10}q^{5}+2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.m 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 1452.2.a.a \(0\) \(1\) \(1\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}+\zeta_{10}q^{5}-2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.n 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 1452.2.a.a \(0\) \(1\) \(1\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}+\zeta_{10}q^{5}+2\zeta_{10}^{3}q^{7}+\cdots\)
1452.2.i.o 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.i.b \(0\) \(1\) \(8\) \(-7\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}+(3-\zeta_{10}+3\zeta_{10}^{2})q^{5}+\cdots\)
1452.2.i.p 1452.i 11.c $4$ $11.594$ \(\Q(\zeta_{10})\) None 132.2.i.b \(0\) \(1\) \(8\) \(7\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}+(3-\zeta_{10}+3\zeta_{10}^{2})q^{5}+\cdots\)
1452.2.i.q 1452.i 11.c $8$ $11.594$ 8.0.324000000.3 None 1452.2.a.k \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1+\beta _{2}+\beta _{4}+\beta _{6})q^{3}+\beta _{7}q^{7}+\beta _{6}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(726, [\chi])\)\(^{\oplus 2}\)