L(s) = 1 | + (0.809 + 0.587i)3-s + (−0.309 + 0.951i)5-s + (1.61 − 1.17i)7-s + (0.309 + 0.951i)9-s + (0.927 + 2.85i)13-s + (−0.809 + 0.587i)15-s + (2.16 − 6.65i)17-s + (3.23 + 2.35i)19-s + 2·21-s − 2·23-s + (3.23 + 2.35i)25-s + (−0.309 + 0.951i)27-s + (2.42 − 1.76i)29-s + (0.618 + 1.90i)35-s + (−7.28 + 5.29i)37-s + ⋯ |
L(s) = 1 | + (0.467 + 0.339i)3-s + (−0.138 + 0.425i)5-s + (0.611 − 0.444i)7-s + (0.103 + 0.317i)9-s + (0.257 + 0.791i)13-s + (−0.208 + 0.151i)15-s + (0.524 − 1.61i)17-s + (0.742 + 0.539i)19-s + 0.436·21-s − 0.417·23-s + (0.647 + 0.470i)25-s + (−0.0594 + 0.183i)27-s + (0.450 − 0.327i)29-s + (0.104 + 0.321i)35-s + (−1.19 + 0.869i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.780 - 0.625i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.177797445\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.177797445\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (0.309 - 0.951i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-1.61 + 1.17i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-0.927 - 2.85i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-2.16 + 6.65i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.23 - 2.35i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + 2T + 23T^{2} \) |
| 29 | \( 1 + (-2.42 + 1.76i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (7.28 - 5.29i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-7.28 - 5.29i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 + (-9.70 - 7.05i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (4.01 + 12.3i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-4.85 + 3.52i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-0.618 + 1.90i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 14T + 67T^{2} \) |
| 71 | \( 1 + (1.85 - 5.70i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-4.85 + 3.52i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-4.94 - 15.2i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.47 + 7.60i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (-2.16 - 6.65i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.600470828033869045477987226244, −8.892763958234161492525351651567, −7.87068781070234371499763706522, −7.37942857363695551121911500395, −6.48084814825939068290475413707, −5.26659738041004497230250985587, −4.51616793721705409782307932799, −3.53623961696262903983289177339, −2.64096913159027827524216281389, −1.25610116474299648280681821902,
1.01271914629319192854901496950, 2.16730898191930565994435109693, 3.31377370831796005736407263412, 4.28439577093229492829562402642, 5.38611627620177608179359781950, 6.01704920473596091899393198831, 7.23553402489200625968281518208, 7.921409010209840653025838367108, 8.650137470927553058153429460796, 9.091967734966419414752926284836