Defining parameters
| Level: | \( N \) | \(=\) | \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1452.i (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 17 \) | ||
| Sturm bound: | \(528\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1452, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1200 | 72 | 1128 |
| Cusp forms | 912 | 72 | 840 |
| Eisenstein series | 288 | 0 | 288 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1452, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1452, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1452, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(726, [\chi])\)\(^{\oplus 2}\)