Properties

Label 1452.2.i.n.565.1
Level $1452$
Weight $2$
Character 1452.565
Analytic conductor $11.594$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(493,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.493"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,1,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 565.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 1452.565
Dual form 1452.2.i.n.1213.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{3} +(0.809017 - 0.587785i) q^{5} +(-0.618034 - 1.90211i) q^{7} +(-0.809017 - 0.587785i) q^{9} +(-2.42705 - 1.76336i) q^{13} +(0.309017 + 0.951057i) q^{15} +(-5.66312 + 4.11450i) q^{17} +(-1.23607 + 3.80423i) q^{19} +2.00000 q^{21} -2.00000 q^{23} +(-1.23607 + 3.80423i) q^{25} +(0.809017 - 0.587785i) q^{27} +(-0.927051 - 2.85317i) q^{29} +(-1.61803 - 1.17557i) q^{35} +(2.78115 + 8.55951i) q^{37} +(2.42705 - 1.76336i) q^{39} +(-2.78115 + 8.55951i) q^{41} +2.00000 q^{43} -1.00000 q^{45} +(-3.70820 + 11.4127i) q^{47} +(2.42705 - 1.76336i) q^{49} +(-2.16312 - 6.65740i) q^{51} +(10.5172 + 7.64121i) q^{53} +(-3.23607 - 2.35114i) q^{57} +(-1.85410 - 5.70634i) q^{59} +(-1.61803 + 1.17557i) q^{61} +(-0.618034 + 1.90211i) q^{63} -3.00000 q^{65} -14.0000 q^{67} +(0.618034 - 1.90211i) q^{69} +(4.85410 - 3.52671i) q^{71} +(-1.85410 - 5.70634i) q^{73} +(-3.23607 - 2.35114i) q^{75} +(-12.9443 - 9.40456i) q^{79} +(0.309017 + 0.951057i) q^{81} +(-6.47214 + 4.70228i) q^{83} +(-2.16312 + 6.65740i) q^{85} +3.00000 q^{87} +1.00000 q^{89} +(-1.85410 + 5.70634i) q^{91} +(1.23607 + 3.80423i) q^{95} +(-5.66312 - 4.11450i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + q^{5} + 2 q^{7} - q^{9} - 3 q^{13} - q^{15} - 7 q^{17} + 4 q^{19} + 8 q^{21} - 8 q^{23} + 4 q^{25} + q^{27} + 3 q^{29} - 2 q^{35} - 9 q^{37} + 3 q^{39} + 9 q^{41} + 8 q^{43} - 4 q^{45}+ \cdots - 7 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i
\(4\) 0 0
\(5\) 0.809017 0.587785i 0.361803 0.262866i −0.392000 0.919965i \(-0.628217\pi\)
0.753804 + 0.657099i \(0.228217\pi\)
\(6\) 0 0
\(7\) −0.618034 1.90211i −0.233595 0.718931i −0.997305 0.0733714i \(-0.976624\pi\)
0.763710 0.645560i \(-0.223376\pi\)
\(8\) 0 0
\(9\) −0.809017 0.587785i −0.269672 0.195928i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.42705 1.76336i −0.673143 0.489067i 0.197933 0.980216i \(-0.436577\pi\)
−0.871076 + 0.491149i \(0.836577\pi\)
\(14\) 0 0
\(15\) 0.309017 + 0.951057i 0.0797878 + 0.245562i
\(16\) 0 0
\(17\) −5.66312 + 4.11450i −1.37351 + 0.997912i −0.376054 + 0.926598i \(0.622719\pi\)
−0.997454 + 0.0713144i \(0.977281\pi\)
\(18\) 0 0
\(19\) −1.23607 + 3.80423i −0.283573 + 0.872749i 0.703249 + 0.710943i \(0.251732\pi\)
−0.986823 + 0.161806i \(0.948268\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −1.23607 + 3.80423i −0.247214 + 0.760845i
\(26\) 0 0
\(27\) 0.809017 0.587785i 0.155695 0.113119i
\(28\) 0 0
\(29\) −0.927051 2.85317i −0.172149 0.529820i 0.827343 0.561697i \(-0.189851\pi\)
−0.999492 + 0.0318771i \(0.989851\pi\)
\(30\) 0 0
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.61803 1.17557i −0.273498 0.198708i
\(36\) 0 0
\(37\) 2.78115 + 8.55951i 0.457219 + 1.40717i 0.868510 + 0.495671i \(0.165078\pi\)
−0.411292 + 0.911504i \(0.634922\pi\)
\(38\) 0 0
\(39\) 2.42705 1.76336i 0.388639 0.282363i
\(40\) 0 0
\(41\) −2.78115 + 8.55951i −0.434343 + 1.33677i 0.459415 + 0.888222i \(0.348059\pi\)
−0.893758 + 0.448549i \(0.851941\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −3.70820 + 11.4127i −0.540897 + 1.66471i 0.189653 + 0.981851i \(0.439264\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(48\) 0 0
\(49\) 2.42705 1.76336i 0.346722 0.251908i
\(50\) 0 0
\(51\) −2.16312 6.65740i −0.302897 0.932222i
\(52\) 0 0
\(53\) 10.5172 + 7.64121i 1.44465 + 1.04960i 0.987045 + 0.160446i \(0.0512932\pi\)
0.457607 + 0.889155i \(0.348707\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.23607 2.35114i −0.428628 0.311416i
\(58\) 0 0
\(59\) −1.85410 5.70634i −0.241384 0.742902i −0.996210 0.0869778i \(-0.972279\pi\)
0.754827 0.655924i \(-0.227721\pi\)
\(60\) 0 0
\(61\) −1.61803 + 1.17557i −0.207168 + 0.150516i −0.686531 0.727100i \(-0.740868\pi\)
0.479363 + 0.877616i \(0.340868\pi\)
\(62\) 0 0
\(63\) −0.618034 + 1.90211i −0.0778650 + 0.239644i
\(64\) 0 0
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) −14.0000 −1.71037 −0.855186 0.518321i \(-0.826557\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(68\) 0 0
\(69\) 0.618034 1.90211i 0.0744025 0.228988i
\(70\) 0 0
\(71\) 4.85410 3.52671i 0.576076 0.418544i −0.261231 0.965276i \(-0.584129\pi\)
0.837307 + 0.546733i \(0.184129\pi\)
\(72\) 0 0
\(73\) −1.85410 5.70634i −0.217006 0.667876i −0.999005 0.0445966i \(-0.985800\pi\)
0.781999 0.623280i \(-0.214200\pi\)
\(74\) 0 0
\(75\) −3.23607 2.35114i −0.373669 0.271486i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.9443 9.40456i −1.45634 1.05810i −0.984296 0.176523i \(-0.943515\pi\)
−0.472048 0.881573i \(-0.656485\pi\)
\(80\) 0 0
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) −6.47214 + 4.70228i −0.710409 + 0.516143i −0.883306 0.468798i \(-0.844687\pi\)
0.172896 + 0.984940i \(0.444687\pi\)
\(84\) 0 0
\(85\) −2.16312 + 6.65740i −0.234623 + 0.722096i
\(86\) 0 0
\(87\) 3.00000 0.321634
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) −1.85410 + 5.70634i −0.194363 + 0.598187i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.23607 + 3.80423i 0.126818 + 0.390305i
\(96\) 0 0
\(97\) −5.66312 4.11450i −0.575003 0.417764i 0.261916 0.965091i \(-0.415646\pi\)
−0.836919 + 0.547327i \(0.815646\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.61803 + 1.17557i 0.161000 + 0.116974i 0.665368 0.746515i \(-0.268274\pi\)
−0.504368 + 0.863489i \(0.668274\pi\)
\(102\) 0 0
\(103\) −1.85410 5.70634i −0.182690 0.562262i 0.817211 0.576339i \(-0.195519\pi\)
−0.999901 + 0.0140765i \(0.995519\pi\)
\(104\) 0 0
\(105\) 1.61803 1.17557i 0.157904 0.114724i
\(106\) 0 0
\(107\) 4.32624 13.3148i 0.418233 1.28719i −0.491094 0.871107i \(-0.663403\pi\)
0.909327 0.416083i \(-0.136597\pi\)
\(108\) 0 0
\(109\) 3.00000 0.287348 0.143674 0.989625i \(-0.454108\pi\)
0.143674 + 0.989625i \(0.454108\pi\)
\(110\) 0 0
\(111\) −9.00000 −0.854242
\(112\) 0 0
\(113\) −5.87132 + 18.0701i −0.552328 + 1.69989i 0.150571 + 0.988599i \(0.451889\pi\)
−0.702898 + 0.711290i \(0.748111\pi\)
\(114\) 0 0
\(115\) −1.61803 + 1.17557i −0.150882 + 0.109623i
\(116\) 0 0
\(117\) 0.927051 + 2.85317i 0.0857059 + 0.263776i
\(118\) 0 0
\(119\) 11.3262 + 8.22899i 1.03827 + 0.754351i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −7.28115 5.29007i −0.656519 0.476989i
\(124\) 0 0
\(125\) 2.78115 + 8.55951i 0.248754 + 0.765586i
\(126\) 0 0
\(127\) 9.70820 7.05342i 0.861464 0.625890i −0.0668190 0.997765i \(-0.521285\pi\)
0.928283 + 0.371875i \(0.121285\pi\)
\(128\) 0 0
\(129\) −0.618034 + 1.90211i −0.0544149 + 0.167472i
\(130\) 0 0
\(131\) −22.0000 −1.92215 −0.961074 0.276289i \(-0.910895\pi\)
−0.961074 + 0.276289i \(0.910895\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) 0.309017 0.951057i 0.0265959 0.0818539i
\(136\) 0 0
\(137\) 8.09017 5.87785i 0.691190 0.502179i −0.185861 0.982576i \(-0.559507\pi\)
0.877051 + 0.480397i \(0.159507\pi\)
\(138\) 0 0
\(139\) −4.32624 13.3148i −0.366947 1.12935i −0.948753 0.316018i \(-0.897654\pi\)
0.581806 0.813327i \(-0.302346\pi\)
\(140\) 0 0
\(141\) −9.70820 7.05342i −0.817578 0.594005i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −2.42705 1.76336i −0.201556 0.146439i
\(146\) 0 0
\(147\) 0.927051 + 2.85317i 0.0764619 + 0.235325i
\(148\) 0 0
\(149\) −10.5172 + 7.64121i −0.861604 + 0.625992i −0.928321 0.371780i \(-0.878748\pi\)
0.0667166 + 0.997772i \(0.478748\pi\)
\(150\) 0 0
\(151\) 2.47214 7.60845i 0.201180 0.619167i −0.798669 0.601770i \(-0.794462\pi\)
0.999849 0.0173966i \(-0.00553779\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.32624 13.3148i 0.345271 1.06264i −0.616167 0.787616i \(-0.711315\pi\)
0.961438 0.275020i \(-0.0886846\pi\)
\(158\) 0 0
\(159\) −10.5172 + 7.64121i −0.834070 + 0.605987i
\(160\) 0 0
\(161\) 1.23607 + 3.80423i 0.0974158 + 0.299815i
\(162\) 0 0
\(163\) 1.61803 + 1.17557i 0.126734 + 0.0920778i 0.649347 0.760493i \(-0.275042\pi\)
−0.522612 + 0.852570i \(0.675042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.5623 + 10.5801i 1.12687 + 0.818715i 0.985236 0.171204i \(-0.0547658\pi\)
0.141630 + 0.989920i \(0.454766\pi\)
\(168\) 0 0
\(169\) −1.23607 3.80423i −0.0950822 0.292633i
\(170\) 0 0
\(171\) 3.23607 2.35114i 0.247468 0.179796i
\(172\) 0 0
\(173\) −4.32624 + 13.3148i −0.328918 + 1.01230i 0.640723 + 0.767772i \(0.278635\pi\)
−0.969641 + 0.244533i \(0.921365\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) 2.47214 7.60845i 0.184776 0.568682i −0.815168 0.579224i \(-0.803356\pi\)
0.999944 + 0.0105417i \(0.00335560\pi\)
\(180\) 0 0
\(181\) −10.5172 + 7.64121i −0.781739 + 0.567967i −0.905500 0.424345i \(-0.860504\pi\)
0.123762 + 0.992312i \(0.460504\pi\)
\(182\) 0 0
\(183\) −0.618034 1.90211i −0.0456864 0.140608i
\(184\) 0 0
\(185\) 7.28115 + 5.29007i 0.535321 + 0.388933i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.61803 1.17557i −0.117695 0.0855102i
\(190\) 0 0
\(191\) −3.70820 11.4127i −0.268316 0.825792i −0.990911 0.134520i \(-0.957051\pi\)
0.722595 0.691272i \(-0.242949\pi\)
\(192\) 0 0
\(193\) −4.04508 + 2.93893i −0.291172 + 0.211549i −0.723775 0.690036i \(-0.757595\pi\)
0.432604 + 0.901584i \(0.357595\pi\)
\(194\) 0 0
\(195\) 0.927051 2.85317i 0.0663875 0.204320i
\(196\) 0 0
\(197\) −7.00000 −0.498729 −0.249365 0.968410i \(-0.580222\pi\)
−0.249365 + 0.968410i \(0.580222\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 4.32624 13.3148i 0.305149 0.939153i
\(202\) 0 0
\(203\) −4.85410 + 3.52671i −0.340691 + 0.247527i
\(204\) 0 0
\(205\) 2.78115 + 8.55951i 0.194244 + 0.597822i
\(206\) 0 0
\(207\) 1.61803 + 1.17557i 0.112461 + 0.0817078i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 11.3262 + 8.22899i 0.779730 + 0.566507i 0.904898 0.425628i \(-0.139947\pi\)
−0.125168 + 0.992136i \(0.539947\pi\)
\(212\) 0 0
\(213\) 1.85410 + 5.70634i 0.127041 + 0.390992i
\(214\) 0 0
\(215\) 1.61803 1.17557i 0.110349 0.0801732i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 21.0000 1.41261
\(222\) 0 0
\(223\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(224\) 0 0
\(225\) 3.23607 2.35114i 0.215738 0.156743i
\(226\) 0 0
\(227\) 5.56231 + 17.1190i 0.369183 + 1.13623i 0.947320 + 0.320289i \(0.103780\pi\)
−0.578137 + 0.815940i \(0.696220\pi\)
\(228\) 0 0
\(229\) −23.4615 17.0458i −1.55038 1.12642i −0.943380 0.331714i \(-0.892373\pi\)
−0.606999 0.794703i \(-0.707627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.2254 + 14.6946i 1.32501 + 0.962677i 0.999855 + 0.0170171i \(0.00541696\pi\)
0.325156 + 0.945660i \(0.394583\pi\)
\(234\) 0 0
\(235\) 3.70820 + 11.4127i 0.241897 + 0.744481i
\(236\) 0 0
\(237\) 12.9443 9.40456i 0.840821 0.610892i
\(238\) 0 0
\(239\) 4.94427 15.2169i 0.319818 0.984300i −0.653907 0.756575i \(-0.726871\pi\)
0.973726 0.227725i \(-0.0731287\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0.927051 2.85317i 0.0592271 0.182282i
\(246\) 0 0
\(247\) 9.70820 7.05342i 0.617718 0.448799i
\(248\) 0 0
\(249\) −2.47214 7.60845i −0.156665 0.482166i
\(250\) 0 0
\(251\) 8.09017 + 5.87785i 0.510647 + 0.371007i 0.813069 0.582167i \(-0.197795\pi\)
−0.302422 + 0.953174i \(0.597795\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −5.66312 4.11450i −0.354638 0.257660i
\(256\) 0 0
\(257\) −2.16312 6.65740i −0.134932 0.415277i 0.860648 0.509201i \(-0.170059\pi\)
−0.995579 + 0.0939239i \(0.970059\pi\)
\(258\) 0 0
\(259\) 14.5623 10.5801i 0.904858 0.657418i
\(260\) 0 0
\(261\) −0.927051 + 2.85317i −0.0573830 + 0.176607i
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 13.0000 0.798584
\(266\) 0 0
\(267\) −0.309017 + 0.951057i −0.0189115 + 0.0582037i
\(268\) 0 0
\(269\) 0.809017 0.587785i 0.0493266 0.0358379i −0.562849 0.826560i \(-0.690295\pi\)
0.612175 + 0.790722i \(0.290295\pi\)
\(270\) 0 0
\(271\) 6.79837 + 20.9232i 0.412972 + 1.27100i 0.914052 + 0.405596i \(0.132936\pi\)
−0.501081 + 0.865401i \(0.667064\pi\)
\(272\) 0 0
\(273\) −4.85410 3.52671i −0.293784 0.213446i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 13.7533 + 9.99235i 0.826355 + 0.600382i 0.918526 0.395361i \(-0.129381\pi\)
−0.0921707 + 0.995743i \(0.529381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −17.7984 + 12.9313i −1.06176 + 0.771415i −0.974414 0.224763i \(-0.927839\pi\)
−0.0873484 + 0.996178i \(0.527839\pi\)
\(282\) 0 0
\(283\) 4.32624 13.3148i 0.257168 0.791482i −0.736227 0.676735i \(-0.763394\pi\)
0.993395 0.114747i \(-0.0366058\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) 18.0000 1.06251
\(288\) 0 0
\(289\) 9.88854 30.4338i 0.581679 1.79022i
\(290\) 0 0
\(291\) 5.66312 4.11450i 0.331978 0.241196i
\(292\) 0 0
\(293\) 5.25329 + 16.1680i 0.306900 + 0.944542i 0.978961 + 0.204046i \(0.0654093\pi\)
−0.672061 + 0.740496i \(0.734591\pi\)
\(294\) 0 0
\(295\) −4.85410 3.52671i −0.282617 0.205333i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.85410 + 3.52671i 0.280720 + 0.203955i
\(300\) 0 0
\(301\) −1.23607 3.80423i −0.0712458 0.219272i
\(302\) 0 0
\(303\) −1.61803 + 1.17557i −0.0929536 + 0.0675348i
\(304\) 0 0
\(305\) −0.618034 + 1.90211i −0.0353885 + 0.108915i
\(306\) 0 0
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 8.65248 26.6296i 0.490637 1.51003i −0.333011 0.942923i \(-0.608065\pi\)
0.823648 0.567102i \(-0.191935\pi\)
\(312\) 0 0
\(313\) 0.809017 0.587785i 0.0457283 0.0332236i −0.564686 0.825306i \(-0.691003\pi\)
0.610415 + 0.792082i \(0.291003\pi\)
\(314\) 0 0
\(315\) 0.618034 + 1.90211i 0.0348223 + 0.107172i
\(316\) 0 0
\(317\) 4.85410 + 3.52671i 0.272634 + 0.198080i 0.715698 0.698410i \(-0.246109\pi\)
−0.443064 + 0.896490i \(0.646109\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 11.3262 + 8.22899i 0.632169 + 0.459298i
\(322\) 0 0
\(323\) −8.65248 26.6296i −0.481437 1.48171i
\(324\) 0 0
\(325\) 9.70820 7.05342i 0.538514 0.391254i
\(326\) 0 0
\(327\) −0.927051 + 2.85317i −0.0512660 + 0.157781i
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 2.78115 8.55951i 0.152406 0.469058i
\(334\) 0 0
\(335\) −11.3262 + 8.22899i −0.618818 + 0.449598i
\(336\) 0 0
\(337\) −4.63525 14.2658i −0.252498 0.777110i −0.994312 0.106504i \(-0.966034\pi\)
0.741814 0.670606i \(-0.233966\pi\)
\(338\) 0 0
\(339\) −15.3713 11.1679i −0.834856 0.606558i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −16.1803 11.7557i −0.873656 0.634748i
\(344\) 0 0
\(345\) −0.618034 1.90211i −0.0332738 0.102406i
\(346\) 0 0
\(347\) 6.47214 4.70228i 0.347442 0.252432i −0.400353 0.916361i \(-0.631112\pi\)
0.747795 + 0.663929i \(0.231112\pi\)
\(348\) 0 0
\(349\) 0.927051 2.85317i 0.0496239 0.152727i −0.923174 0.384383i \(-0.874414\pi\)
0.972798 + 0.231656i \(0.0744144\pi\)
\(350\) 0 0
\(351\) −3.00000 −0.160128
\(352\) 0 0
\(353\) −3.00000 −0.159674 −0.0798369 0.996808i \(-0.525440\pi\)
−0.0798369 + 0.996808i \(0.525440\pi\)
\(354\) 0 0
\(355\) 1.85410 5.70634i 0.0984055 0.302861i
\(356\) 0 0
\(357\) −11.3262 + 8.22899i −0.599448 + 0.435525i
\(358\) 0 0
\(359\) 9.27051 + 28.5317i 0.489279 + 1.50585i 0.825687 + 0.564129i \(0.190788\pi\)
−0.336408 + 0.941716i \(0.609212\pi\)
\(360\) 0 0
\(361\) 2.42705 + 1.76336i 0.127740 + 0.0928082i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.85410 3.52671i −0.254075 0.184597i
\(366\) 0 0
\(367\) −3.09017 9.51057i −0.161306 0.496447i 0.837440 0.546530i \(-0.184052\pi\)
−0.998745 + 0.0500825i \(0.984052\pi\)
\(368\) 0 0
\(369\) 7.28115 5.29007i 0.379042 0.275390i
\(370\) 0 0
\(371\) 8.03444 24.7275i 0.417127 1.28379i
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) −2.78115 + 8.55951i −0.143237 + 0.440837i
\(378\) 0 0
\(379\) −21.0344 + 15.2824i −1.08047 + 0.785005i −0.977764 0.209707i \(-0.932749\pi\)
−0.102702 + 0.994712i \(0.532749\pi\)
\(380\) 0 0
\(381\) 3.70820 + 11.4127i 0.189977 + 0.584689i
\(382\) 0 0
\(383\) 8.09017 + 5.87785i 0.413388 + 0.300344i 0.774972 0.631995i \(-0.217764\pi\)
−0.361584 + 0.932340i \(0.617764\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.61803 1.17557i −0.0822493 0.0597576i
\(388\) 0 0
\(389\) 4.63525 + 14.2658i 0.235017 + 0.723307i 0.997119 + 0.0758507i \(0.0241672\pi\)
−0.762102 + 0.647456i \(0.775833\pi\)
\(390\) 0 0
\(391\) 11.3262 8.22899i 0.572792 0.416158i
\(392\) 0 0
\(393\) 6.79837 20.9232i 0.342933 1.05544i
\(394\) 0 0
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 25.0000 1.25471 0.627357 0.778732i \(-0.284137\pi\)
0.627357 + 0.778732i \(0.284137\pi\)
\(398\) 0 0
\(399\) −2.47214 + 7.60845i −0.123762 + 0.380899i
\(400\) 0 0
\(401\) 8.89919 6.46564i 0.444404 0.322879i −0.342978 0.939343i \(-0.611436\pi\)
0.787382 + 0.616465i \(0.211436\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.809017 + 0.587785i 0.0402004 + 0.0292073i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 25.0795 + 18.2213i 1.24010 + 0.900987i 0.997605 0.0691646i \(-0.0220334\pi\)
0.242498 + 0.970152i \(0.422033\pi\)
\(410\) 0 0
\(411\) 3.09017 + 9.51057i 0.152427 + 0.469122i
\(412\) 0 0
\(413\) −9.70820 + 7.05342i −0.477709 + 0.347076i
\(414\) 0 0
\(415\) −2.47214 + 7.60845i −0.121352 + 0.373484i
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 1.54508 4.75528i 0.0753028 0.231758i −0.906319 0.422594i \(-0.861120\pi\)
0.981622 + 0.190835i \(0.0611197\pi\)
\(422\) 0 0
\(423\) 9.70820 7.05342i 0.472029 0.342949i
\(424\) 0 0
\(425\) −8.65248 26.6296i −0.419707 1.29172i
\(426\) 0 0
\(427\) 3.23607 + 2.35114i 0.156604 + 0.113780i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.2705 + 17.6336i 1.16907 + 0.849379i 0.990897 0.134621i \(-0.0429816\pi\)
0.178172 + 0.983999i \(0.442982\pi\)
\(432\) 0 0
\(433\) 3.39919 + 10.4616i 0.163354 + 0.502753i 0.998911 0.0466507i \(-0.0148548\pi\)
−0.835557 + 0.549404i \(0.814855\pi\)
\(434\) 0 0
\(435\) 2.42705 1.76336i 0.116368 0.0845464i
\(436\) 0 0
\(437\) 2.47214 7.60845i 0.118258 0.363962i
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −0.618034 + 1.90211i −0.0293637 + 0.0903721i −0.964664 0.263482i \(-0.915129\pi\)
0.935301 + 0.353854i \(0.115129\pi\)
\(444\) 0 0
\(445\) 0.809017 0.587785i 0.0383511 0.0278637i
\(446\) 0 0
\(447\) −4.01722 12.3637i −0.190008 0.584785i
\(448\) 0 0
\(449\) −23.4615 17.0458i −1.10722 0.804440i −0.124993 0.992158i \(-0.539891\pi\)
−0.982223 + 0.187718i \(0.939891\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 6.47214 + 4.70228i 0.304087 + 0.220932i
\(454\) 0 0
\(455\) 1.85410 + 5.70634i 0.0869216 + 0.267517i
\(456\) 0 0
\(457\) 5.66312 4.11450i 0.264910 0.192468i −0.447399 0.894334i \(-0.647650\pi\)
0.712309 + 0.701866i \(0.247650\pi\)
\(458\) 0 0
\(459\) −2.16312 + 6.65740i −0.100966 + 0.310741i
\(460\) 0 0
\(461\) −11.0000 −0.512321 −0.256161 0.966634i \(-0.582458\pi\)
−0.256161 + 0.966634i \(0.582458\pi\)
\(462\) 0 0
\(463\) −30.0000 −1.39422 −0.697109 0.716965i \(-0.745531\pi\)
−0.697109 + 0.716965i \(0.745531\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.2705 + 17.6336i −1.12311 + 0.815984i −0.984677 0.174389i \(-0.944205\pi\)
−0.138428 + 0.990372i \(0.544205\pi\)
\(468\) 0 0
\(469\) 8.65248 + 26.6296i 0.399534 + 1.22964i
\(470\) 0 0
\(471\) 11.3262 + 8.22899i 0.521885 + 0.379172i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −12.9443 9.40456i −0.593924 0.431511i
\(476\) 0 0
\(477\) −4.01722 12.3637i −0.183936 0.566097i
\(478\) 0 0
\(479\) 24.2705 17.6336i 1.10895 0.805698i 0.126450 0.991973i \(-0.459642\pi\)
0.982498 + 0.186275i \(0.0596416\pi\)
\(480\) 0 0
\(481\) 8.34346 25.6785i 0.380429 1.17084i
\(482\) 0 0
\(483\) −4.00000 −0.182006
\(484\) 0 0
\(485\) −7.00000 −0.317854
\(486\) 0 0
\(487\) 0.618034 1.90211i 0.0280058 0.0861930i −0.936077 0.351796i \(-0.885571\pi\)
0.964082 + 0.265603i \(0.0855711\pi\)
\(488\) 0 0
\(489\) −1.61803 + 1.17557i −0.0731700 + 0.0531611i
\(490\) 0 0
\(491\) −2.47214 7.60845i −0.111566 0.343365i 0.879649 0.475623i \(-0.157777\pi\)
−0.991215 + 0.132258i \(0.957777\pi\)
\(492\) 0 0
\(493\) 16.9894 + 12.3435i 0.765162 + 0.555923i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.70820 7.05342i −0.435472 0.316389i
\(498\) 0 0
\(499\) −3.09017 9.51057i −0.138335 0.425751i 0.857759 0.514052i \(-0.171856\pi\)
−0.996094 + 0.0883009i \(0.971856\pi\)
\(500\) 0 0
\(501\) −14.5623 + 10.5801i −0.650596 + 0.472686i
\(502\) 0 0
\(503\) −4.32624 + 13.3148i −0.192897 + 0.593677i 0.807097 + 0.590418i \(0.201037\pi\)
−0.999995 + 0.00325871i \(0.998963\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 4.00000 0.177646
\(508\) 0 0
\(509\) 0.618034 1.90211i 0.0273939 0.0843097i −0.936425 0.350868i \(-0.885887\pi\)
0.963819 + 0.266558i \(0.0858865\pi\)
\(510\) 0 0
\(511\) −9.70820 + 7.05342i −0.429466 + 0.312025i
\(512\) 0 0
\(513\) 1.23607 + 3.80423i 0.0545737 + 0.167961i
\(514\) 0 0
\(515\) −4.85410 3.52671i −0.213897 0.155405i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −11.3262 8.22899i −0.497167 0.361213i
\(520\) 0 0
\(521\) −9.27051 28.5317i −0.406148 1.25000i −0.919933 0.392077i \(-0.871757\pi\)
0.513784 0.857920i \(-0.328243\pi\)
\(522\) 0 0
\(523\) −32.3607 + 23.5114i −1.41503 + 1.02808i −0.422467 + 0.906378i \(0.638836\pi\)
−0.992566 + 0.121704i \(0.961164\pi\)
\(524\) 0 0
\(525\) −2.47214 + 7.60845i −0.107893 + 0.332060i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −1.85410 + 5.70634i −0.0804612 + 0.247634i
\(532\) 0 0
\(533\) 21.8435 15.8702i 0.946145 0.687415i
\(534\) 0 0
\(535\) −4.32624 13.3148i −0.187040 0.575649i
\(536\) 0 0
\(537\) 6.47214 + 4.70228i 0.279293 + 0.202918i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −21.0344 15.2824i −0.904341 0.657042i 0.0352361 0.999379i \(-0.488782\pi\)
−0.939577 + 0.342337i \(0.888782\pi\)
\(542\) 0 0
\(543\) −4.01722 12.3637i −0.172395 0.530579i
\(544\) 0 0
\(545\) 2.42705 1.76336i 0.103963 0.0755339i
\(546\) 0 0
\(547\) −2.47214 + 7.60845i −0.105701 + 0.325314i −0.989894 0.141807i \(-0.954709\pi\)
0.884193 + 0.467121i \(0.154709\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) −9.88854 + 30.4338i −0.420504 + 1.29418i
\(554\) 0 0
\(555\) −7.28115 + 5.29007i −0.309068 + 0.224551i
\(556\) 0 0
\(557\) −5.56231 17.1190i −0.235682 0.725356i −0.997030 0.0770122i \(-0.975462\pi\)
0.761348 0.648344i \(-0.224538\pi\)
\(558\) 0 0
\(559\) −4.85410 3.52671i −0.205307 0.149164i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.61803 1.17557i −0.0681920 0.0495444i 0.553167 0.833070i \(-0.313419\pi\)
−0.621359 + 0.783526i \(0.713419\pi\)
\(564\) 0 0
\(565\) 5.87132 + 18.0701i 0.247008 + 0.760214i
\(566\) 0 0
\(567\) 1.61803 1.17557i 0.0679510 0.0493693i
\(568\) 0 0
\(569\) −6.79837 + 20.9232i −0.285003 + 0.877148i 0.701395 + 0.712773i \(0.252561\pi\)
−0.986398 + 0.164375i \(0.947439\pi\)
\(570\) 0 0
\(571\) 14.0000 0.585882 0.292941 0.956131i \(-0.405366\pi\)
0.292941 + 0.956131i \(0.405366\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) 2.47214 7.60845i 0.103095 0.317294i
\(576\) 0 0
\(577\) 10.5172 7.64121i 0.437838 0.318108i −0.346938 0.937888i \(-0.612778\pi\)
0.784775 + 0.619781i \(0.212778\pi\)
\(578\) 0 0
\(579\) −1.54508 4.75528i −0.0642115 0.197623i
\(580\) 0 0
\(581\) 12.9443 + 9.40456i 0.537019 + 0.390167i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 2.42705 + 1.76336i 0.100346 + 0.0729058i
\(586\) 0 0
\(587\) 7.41641 + 22.8254i 0.306108 + 0.942103i 0.979261 + 0.202601i \(0.0649393\pi\)
−0.673154 + 0.739503i \(0.735061\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 2.16312 6.65740i 0.0889788 0.273849i
\(592\) 0 0
\(593\) 3.00000 0.123195 0.0615976 0.998101i \(-0.480380\pi\)
0.0615976 + 0.998101i \(0.480380\pi\)
\(594\) 0 0
\(595\) 14.0000 0.573944
\(596\) 0 0
\(597\) 3.09017 9.51057i 0.126472 0.389242i
\(598\) 0 0
\(599\) 19.4164 14.1068i 0.793333 0.576390i −0.115618 0.993294i \(-0.536885\pi\)
0.908951 + 0.416904i \(0.136885\pi\)
\(600\) 0 0
\(601\) 1.54508 + 4.75528i 0.0630253 + 0.193972i 0.977611 0.210420i \(-0.0674831\pi\)
−0.914586 + 0.404392i \(0.867483\pi\)
\(602\) 0 0
\(603\) 11.3262 + 8.22899i 0.461240 + 0.335111i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.47214 4.70228i −0.262696 0.190860i 0.448639 0.893713i \(-0.351909\pi\)
−0.711335 + 0.702853i \(0.751909\pi\)
\(608\) 0 0
\(609\) −1.85410 5.70634i −0.0751320 0.231233i
\(610\) 0 0
\(611\) 29.1246 21.1603i 1.17826 0.856053i
\(612\) 0 0
\(613\) −10.1976 + 31.3849i −0.411876 + 1.26762i 0.503140 + 0.864205i \(0.332178\pi\)
−0.915016 + 0.403418i \(0.867822\pi\)
\(614\) 0 0
\(615\) −9.00000 −0.362915
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) −6.79837 + 20.9232i −0.273250 + 0.840976i 0.716427 + 0.697662i \(0.245776\pi\)
−0.989677 + 0.143315i \(0.954224\pi\)
\(620\) 0 0
\(621\) −1.61803 + 1.17557i −0.0649295 + 0.0471740i
\(622\) 0 0
\(623\) −0.618034 1.90211i −0.0247610 0.0762065i
\(624\) 0 0
\(625\) −8.89919 6.46564i −0.355967 0.258626i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −50.9681 37.0305i −2.03223 1.47650i
\(630\) 0 0
\(631\) 6.79837 + 20.9232i 0.270639 + 0.832941i 0.990340 + 0.138657i \(0.0442787\pi\)
−0.719701 + 0.694284i \(0.755721\pi\)
\(632\) 0 0
\(633\) −11.3262 + 8.22899i −0.450178 + 0.327073i
\(634\) 0 0
\(635\) 3.70820 11.4127i 0.147156 0.452898i
\(636\) 0 0
\(637\) −9.00000 −0.356593
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −12.0517 + 37.0912i −0.476012 + 1.46501i 0.368576 + 0.929598i \(0.379845\pi\)
−0.844588 + 0.535417i \(0.820155\pi\)
\(642\) 0 0
\(643\) 32.3607 23.5114i 1.27618 0.927200i 0.276750 0.960942i \(-0.410743\pi\)
0.999431 + 0.0337424i \(0.0107426\pi\)
\(644\) 0 0
\(645\) 0.618034 + 1.90211i 0.0243351 + 0.0748956i
\(646\) 0 0
\(647\) −25.8885 18.8091i −1.01778 0.739463i −0.0519563 0.998649i \(-0.516546\pi\)
−0.965827 + 0.259186i \(0.916546\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.9787 + 39.9444i 0.507896 + 1.56314i 0.795846 + 0.605499i \(0.207026\pi\)
−0.287950 + 0.957645i \(0.592974\pi\)
\(654\) 0 0
\(655\) −17.7984 + 12.9313i −0.695440 + 0.505267i
\(656\) 0 0
\(657\) −1.85410 + 5.70634i −0.0723354 + 0.222625i
\(658\) 0 0
\(659\) 48.0000 1.86981 0.934907 0.354892i \(-0.115482\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(660\) 0 0
\(661\) −3.00000 −0.116686 −0.0583432 0.998297i \(-0.518582\pi\)
−0.0583432 + 0.998297i \(0.518582\pi\)
\(662\) 0 0
\(663\) −6.48936 + 19.9722i −0.252026 + 0.775655i
\(664\) 0 0
\(665\) 6.47214 4.70228i 0.250979 0.182347i
\(666\) 0 0
\(667\) 1.85410 + 5.70634i 0.0717911 + 0.220950i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 30.7426 + 22.3358i 1.18504 + 0.860983i 0.992731 0.120351i \(-0.0384019\pi\)
0.192310 + 0.981334i \(0.438402\pi\)
\(674\) 0 0
\(675\) 1.23607 + 3.80423i 0.0475763 + 0.146425i
\(676\) 0 0
\(677\) −13.7533 + 9.99235i −0.528582 + 0.384037i −0.819827 0.572611i \(-0.805930\pi\)
0.291245 + 0.956648i \(0.405930\pi\)
\(678\) 0 0
\(679\) −4.32624 + 13.3148i −0.166026 + 0.510975i
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) 0 0
\(685\) 3.09017 9.51057i 0.118069 0.363380i
\(686\) 0 0
\(687\) 23.4615 17.0458i 0.895112 0.650337i
\(688\) 0 0
\(689\) −12.0517 37.0912i −0.459132 1.41306i
\(690\) 0 0
\(691\) 14.5623 + 10.5801i 0.553976 + 0.402487i 0.829249 0.558879i \(-0.188768\pi\)
−0.275273 + 0.961366i \(0.588768\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.3262 8.22899i −0.429629 0.312144i
\(696\) 0 0
\(697\) −19.4681 59.9166i −0.737406 2.26950i
\(698\) 0 0
\(699\) −20.2254 + 14.6946i −0.764996 + 0.555802i
\(700\) 0 0
\(701\) −8.34346 + 25.6785i −0.315128 + 0.969865i 0.660574 + 0.750761i \(0.270313\pi\)
−0.975702 + 0.219103i \(0.929687\pi\)
\(702\) 0 0
\(703\) −36.0000 −1.35777
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) 1.23607 3.80423i 0.0464871 0.143073i
\(708\) 0 0
\(709\) −4.85410 + 3.52671i −0.182300 + 0.132448i −0.675192 0.737642i \(-0.735939\pi\)
0.492893 + 0.870090i \(0.335939\pi\)
\(710\) 0 0
\(711\) 4.94427 + 15.2169i 0.185425 + 0.570678i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 12.9443 + 9.40456i 0.483413 + 0.351220i
\(718\) 0 0
\(719\) 12.9787 + 39.9444i 0.484024 + 1.48967i 0.833389 + 0.552687i \(0.186397\pi\)
−0.349365 + 0.936987i \(0.613603\pi\)
\(720\) 0 0
\(721\) −9.70820 + 7.05342i −0.361552 + 0.262683i
\(722\) 0 0
\(723\) −8.03444 + 24.7275i −0.298804 + 0.919624i
\(724\) 0 0
\(725\) 12.0000 0.445669
\(726\) 0 0
\(727\) −6.00000 −0.222528 −0.111264 0.993791i \(-0.535490\pi\)
−0.111264 + 0.993791i \(0.535490\pi\)
\(728\) 0 0
\(729\) 0.309017 0.951057i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) −11.3262 + 8.22899i −0.418916 + 0.304360i
\(732\) 0 0
\(733\) −5.25329 16.1680i −0.194035 0.597177i −0.999986 0.00519616i \(-0.998346\pi\)
0.805952 0.591981i \(-0.201654\pi\)
\(734\) 0 0
\(735\) 2.42705 + 1.76336i 0.0895231 + 0.0650424i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −32.3607 23.5114i −1.19041 0.864881i −0.197100 0.980383i \(-0.563152\pi\)
−0.993307 + 0.115502i \(0.963152\pi\)
\(740\) 0 0
\(741\) 3.70820 + 11.4127i 0.136224 + 0.419255i
\(742\) 0 0
\(743\) −21.0344 + 15.2824i −0.771679 + 0.560657i −0.902470 0.430752i \(-0.858248\pi\)
0.130791 + 0.991410i \(0.458248\pi\)
\(744\) 0 0
\(745\) −4.01722 + 12.3637i −0.147180 + 0.452972i
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) −28.0000 −1.02310
\(750\) 0 0
\(751\) −10.5066 + 32.3359i −0.383390 + 1.17995i 0.554251 + 0.832350i \(0.313005\pi\)
−0.937641 + 0.347605i \(0.886995\pi\)
\(752\) 0 0
\(753\) −8.09017 + 5.87785i −0.294822 + 0.214201i
\(754\) 0 0
\(755\) −2.47214 7.60845i −0.0899702 0.276900i
\(756\) 0 0
\(757\) 34.7877 + 25.2748i 1.26438 + 0.918627i 0.998964 0.0455066i \(-0.0144902\pi\)
0.265418 + 0.964134i \(0.414490\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.8435 15.8702i −0.791825 0.575294i 0.116680 0.993170i \(-0.462775\pi\)
−0.908504 + 0.417875i \(0.862775\pi\)
\(762\) 0 0
\(763\) −1.85410 5.70634i −0.0671230 0.206583i
\(764\) 0 0
\(765\) 5.66312 4.11450i 0.204750 0.148760i
\(766\) 0 0
\(767\) −5.56231 + 17.1190i −0.200843 + 0.618132i
\(768\) 0 0
\(769\) 41.0000 1.47850 0.739249 0.673432i \(-0.235181\pi\)
0.739249 + 0.673432i \(0.235181\pi\)
\(770\) 0 0
\(771\) 7.00000 0.252099
\(772\) 0 0
\(773\) −9.27051 + 28.5317i −0.333437 + 1.02621i 0.634050 + 0.773292i \(0.281391\pi\)
−0.967487 + 0.252921i \(0.918609\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 5.56231 + 17.1190i 0.199547 + 0.614141i
\(778\) 0 0
\(779\) −29.1246 21.1603i −1.04350 0.758145i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.42705 1.76336i −0.0867357 0.0630172i
\(784\) 0 0
\(785\) −4.32624 13.3148i −0.154410 0.475225i
\(786\) 0 0
\(787\) −25.8885 + 18.8091i −0.922827 + 0.670473i −0.944226 0.329298i \(-0.893188\pi\)
0.0213991 + 0.999771i \(0.493188\pi\)
\(788\) 0 0
\(789\) 3.70820 11.4127i 0.132016 0.406302i
\(790\) 0 0
\(791\) 38.0000 1.35112
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 0 0
\(795\) −4.01722 + 12.3637i −0.142476 + 0.438496i
\(796\) 0 0
\(797\) −33.9787 + 24.6870i −1.20359 + 0.874458i −0.994633 0.103468i \(-0.967006\pi\)
−0.208955 + 0.977925i \(0.567006\pi\)
\(798\) 0 0
\(799\) −25.9574 79.8887i −0.918308 2.82626i
\(800\) 0 0
\(801\) −0.809017 0.587785i −0.0285852 0.0207684i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 3.23607 + 2.35114i 0.114056 + 0.0828668i
\(806\) 0 0
\(807\) 0.309017 + 0.951057i 0.0108779 + 0.0334788i
\(808\) 0 0
\(809\) 27.5066 19.9847i 0.967080 0.702625i 0.0122956 0.999924i \(-0.496086\pi\)
0.954784 + 0.297300i \(0.0960861\pi\)
\(810\) 0 0
\(811\) −6.18034 + 19.0211i −0.217021 + 0.667922i 0.781983 + 0.623300i \(0.214208\pi\)
−0.999004 + 0.0446223i \(0.985792\pi\)
\(812\) 0 0
\(813\) −22.0000 −0.771574
\(814\) 0 0
\(815\) 2.00000 0.0700569
\(816\) 0 0
\(817\) −2.47214 + 7.60845i −0.0864891 + 0.266186i
\(818\) 0 0
\(819\) 4.85410 3.52671i 0.169616 0.123233i
\(820\) 0 0
\(821\) −3.09017 9.51057i −0.107848 0.331921i 0.882541 0.470236i \(-0.155831\pi\)
−0.990388 + 0.138315i \(0.955831\pi\)
\(822\) 0 0
\(823\) 27.5066 + 19.9847i 0.958819 + 0.696623i 0.952876 0.303360i \(-0.0981083\pi\)
0.00594286 + 0.999982i \(0.498108\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.61803 + 1.17557i 0.0562646 + 0.0408786i 0.615562 0.788088i \(-0.288929\pi\)
−0.559297 + 0.828967i \(0.688929\pi\)
\(828\) 0 0
\(829\) 15.1418 + 46.6018i 0.525898 + 1.61855i 0.762534 + 0.646948i \(0.223955\pi\)
−0.236636 + 0.971598i \(0.576045\pi\)
\(830\) 0 0
\(831\) −13.7533 + 9.99235i −0.477096 + 0.346631i
\(832\) 0 0
\(833\) −6.48936 + 19.9722i −0.224843 + 0.691995i
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14.8328 45.6507i 0.512086 1.57604i −0.276437 0.961032i \(-0.589154\pi\)
0.788523 0.615006i \(-0.210846\pi\)
\(840\) 0 0
\(841\) 16.1803 11.7557i 0.557943 0.405369i
\(842\) 0 0
\(843\) −6.79837 20.9232i −0.234148 0.720635i
\(844\) 0 0
\(845\) −3.23607 2.35114i −0.111324 0.0808817i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.3262 + 8.22899i 0.388715 + 0.282418i
\(850\) 0 0
\(851\) −5.56231 17.1190i −0.190673 0.586832i
\(852\) 0 0
\(853\) −12.1353 + 8.81678i −0.415503 + 0.301881i −0.775826 0.630947i \(-0.782667\pi\)
0.360323 + 0.932828i \(0.382667\pi\)
\(854\) 0 0
\(855\) 1.23607 3.80423i 0.0422726 0.130102i
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) 22.0000 0.750630 0.375315 0.926897i \(-0.377534\pi\)
0.375315 + 0.926897i \(0.377534\pi\)
\(860\) 0 0
\(861\) −5.56231 + 17.1190i −0.189563 + 0.583415i
\(862\) 0 0
\(863\) 8.09017 5.87785i 0.275393 0.200084i −0.441513 0.897255i \(-0.645558\pi\)
0.716905 + 0.697171i \(0.245558\pi\)
\(864\) 0 0
\(865\) 4.32624 + 13.3148i 0.147097 + 0.452716i
\(866\) 0 0
\(867\) 25.8885 + 18.8091i 0.879221 + 0.638791i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 33.9787 + 24.6870i 1.15132 + 0.836486i
\(872\) 0 0
\(873\) 2.16312 + 6.65740i 0.0732105 + 0.225319i
\(874\) 0 0
\(875\) 14.5623 10.5801i 0.492296 0.357674i
\(876\) 0 0
\(877\) 4.63525 14.2658i 0.156521 0.481723i −0.841790 0.539804i \(-0.818498\pi\)
0.998312 + 0.0580810i \(0.0184982\pi\)
\(878\) 0 0
\(879\) −17.0000 −0.573396
\(880\) 0 0
\(881\) −23.0000 −0.774890 −0.387445 0.921893i \(-0.626642\pi\)
−0.387445 + 0.921893i \(0.626642\pi\)
\(882\) 0 0
\(883\) −13.5967 + 41.8465i −0.457567 + 1.40825i 0.410528 + 0.911848i \(0.365344\pi\)
−0.868095 + 0.496398i \(0.834656\pi\)
\(884\) 0 0
\(885\) 4.85410 3.52671i 0.163169 0.118549i
\(886\) 0 0
\(887\) −1.85410 5.70634i −0.0622547 0.191600i 0.915092 0.403245i \(-0.132118\pi\)
−0.977347 + 0.211645i \(0.932118\pi\)
\(888\) 0 0
\(889\) −19.4164 14.1068i −0.651205 0.473128i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −38.8328 28.2137i −1.29949 0.944135i
\(894\) 0 0
\(895\) −2.47214 7.60845i −0.0826344 0.254323i
\(896\) 0 0
\(897\) −4.85410 + 3.52671i −0.162074 + 0.117753i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −91.0000 −3.03165
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) −4.01722 + 12.3637i −0.133537 + 0.410984i
\(906\) 0 0
\(907\) 21.0344 15.2824i 0.698437 0.507444i −0.180986 0.983486i \(-0.557929\pi\)
0.879423 + 0.476041i \(0.157929\pi\)
\(908\) 0 0
\(909\) −0.618034 1.90211i −0.0204989 0.0630891i
\(910\) 0 0
\(911\) −24.2705 17.6336i −0.804118 0.584226i 0.108001 0.994151i \(-0.465555\pi\)
−0.912119 + 0.409925i \(0.865555\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1.61803 1.17557i −0.0534906 0.0388632i
\(916\) 0 0
\(917\) 13.5967 + 41.8465i 0.449004 + 1.38189i
\(918\) 0 0
\(919\) 21.0344 15.2824i 0.693862 0.504120i −0.184065 0.982914i \(-0.558926\pi\)
0.877927 + 0.478794i \(0.158926\pi\)
\(920\) 0 0
\(921\) 6.79837 20.9232i 0.224014 0.689444i
\(922\) 0 0
\(923\) −18.0000 −0.592477
\(924\) 0 0
\(925\) −36.0000 −1.18367
\(926\) 0 0
\(927\) −1.85410 + 5.70634i −0.0608967 + 0.187421i
\(928\) 0 0
\(929\) −7.28115 + 5.29007i −0.238887 + 0.173561i −0.700787 0.713370i \(-0.747168\pi\)
0.461900 + 0.886932i \(0.347168\pi\)
\(930\) 0 0
\(931\) 3.70820 + 11.4127i 0.121531 + 0.374035i
\(932\) 0 0
\(933\) 22.6525 + 16.4580i 0.741609 + 0.538810i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −23.4615 17.0458i −0.766454 0.556861i 0.134429 0.990923i \(-0.457080\pi\)
−0.900883 + 0.434062i \(0.857080\pi\)
\(938\) 0 0
\(939\) 0.309017 + 0.951057i 0.0100844 + 0.0310366i
\(940\) 0 0
\(941\) 21.8435 15.8702i 0.712076 0.517354i −0.171766 0.985138i \(-0.554947\pi\)
0.883843 + 0.467784i \(0.154947\pi\)
\(942\) 0 0
\(943\) 5.56231 17.1190i 0.181134 0.557472i
\(944\) 0 0
\(945\) −2.00000 −0.0650600
\(946\) 0 0
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 0 0
\(949\) −5.56231 + 17.1190i −0.180560 + 0.555707i
\(950\) 0 0
\(951\) −4.85410 + 3.52671i −0.157405 + 0.114361i
\(952\) 0 0
\(953\) −10.1976 31.3849i −0.330331 1.01666i −0.968976 0.247154i \(-0.920505\pi\)
0.638645 0.769502i \(-0.279495\pi\)
\(954\) 0 0
\(955\) −9.70820 7.05342i −0.314150 0.228243i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.1803 11.7557i −0.522490 0.379612i
\(960\) 0 0
\(961\) −9.57953 29.4828i −0.309017 0.951057i
\(962\) 0 0
\(963\) −11.3262 + 8.22899i −0.364983 + 0.265176i
\(964\) 0 0
\(965\) −1.54508 + 4.75528i −0.0497380 + 0.153078i
\(966\) 0 0
\(967\) 62.0000 1.99379 0.996893 0.0787703i \(-0.0250994\pi\)
0.996893 + 0.0787703i \(0.0250994\pi\)
\(968\) 0 0
\(969\) 28.0000 0.899490
\(970\) 0 0
\(971\) 12.9787 39.9444i 0.416507 1.28188i −0.494389 0.869240i \(-0.664608\pi\)
0.910896 0.412635i \(-0.135392\pi\)
\(972\) 0 0
\(973\) −22.6525 + 16.4580i −0.726205 + 0.527619i
\(974\) 0 0
\(975\) 3.70820 + 11.4127i 0.118758 + 0.365498i
\(976\) 0 0
\(977\) −33.1697 24.0992i −1.06119 0.771002i −0.0868840 0.996218i \(-0.527691\pi\)
−0.974309 + 0.225217i \(0.927691\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.42705 1.76336i −0.0774898 0.0562996i
\(982\) 0 0
\(983\) −11.1246 34.2380i −0.354820 1.09202i −0.956114 0.292996i \(-0.905348\pi\)
0.601294 0.799028i \(-0.294652\pi\)
\(984\) 0 0
\(985\) −5.66312 + 4.11450i −0.180442 + 0.131099i
\(986\) 0 0
\(987\) −7.41641 + 22.8254i −0.236067 + 0.726539i
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 0 0
\(993\) −2.47214 + 7.60845i −0.0784509 + 0.241447i
\(994\) 0 0
\(995\) −8.09017 + 5.87785i −0.256476 + 0.186340i
\(996\) 0 0
\(997\) 18.2320 + 56.1123i 0.577413 + 1.77710i 0.627811 + 0.778366i \(0.283951\pi\)
−0.0503972 + 0.998729i \(0.516049\pi\)
\(998\) 0 0
\(999\) 7.28115 + 5.29007i 0.230365 + 0.167370i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.i.n.565.1 4
11.2 odd 10 1452.2.i.m.1237.1 4
11.3 even 5 inner 1452.2.i.n.1213.1 4
11.4 even 5 inner 1452.2.i.n.493.1 4
11.5 even 5 1452.2.a.a.1.1 1
11.6 odd 10 1452.2.a.b.1.1 yes 1
11.7 odd 10 1452.2.i.m.493.1 4
11.8 odd 10 1452.2.i.m.1213.1 4
11.9 even 5 inner 1452.2.i.n.1237.1 4
11.10 odd 2 1452.2.i.m.565.1 4
33.5 odd 10 4356.2.a.h.1.1 1
33.17 even 10 4356.2.a.i.1.1 1
44.27 odd 10 5808.2.a.y.1.1 1
44.39 even 10 5808.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.2.a.a.1.1 1 11.5 even 5
1452.2.a.b.1.1 yes 1 11.6 odd 10
1452.2.i.m.493.1 4 11.7 odd 10
1452.2.i.m.565.1 4 11.10 odd 2
1452.2.i.m.1213.1 4 11.8 odd 10
1452.2.i.m.1237.1 4 11.2 odd 10
1452.2.i.n.493.1 4 11.4 even 5 inner
1452.2.i.n.565.1 4 1.1 even 1 trivial
1452.2.i.n.1213.1 4 11.3 even 5 inner
1452.2.i.n.1237.1 4 11.9 even 5 inner
4356.2.a.h.1.1 1 33.5 odd 10
4356.2.a.i.1.1 1 33.17 even 10
5808.2.a.v.1.1 1 44.39 even 10
5808.2.a.y.1.1 1 44.27 odd 10