Properties

Label 1452.2.b.e.725.10
Level $1452$
Weight $2$
Character 1452.725
Analytic conductor $11.594$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,2,Mod(725,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.725"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1452.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,6,0,0,0,0,0,-10,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,-32,0,6, 0,0,0,40,0,0,0,0,0,36,0,0,0,0,0,0,0,2,0,0,0,-28,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,44,0,16,0,0,0,0,0,-84,0,0,0,0,0,-58,0,0,0,0,0,0,0,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5942783735\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 725.10
Root \(-1.53089 + 0.810175i\) of defining polynomial
Character \(\chi\) \(=\) 1452.725
Dual form 1452.2.b.e.725.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.24359 - 1.20560i) q^{3} -3.05881i q^{5} +3.65040i q^{7} +(0.0930440 - 2.99856i) q^{9} -1.08050i q^{13} +(-3.68771 - 3.80392i) q^{15} -1.23182 q^{17} -5.17993i q^{19} +(4.40094 + 4.53961i) q^{21} -6.43947i q^{23} -4.35634 q^{25} +(-3.49936 - 3.84116i) q^{27} -7.42093 q^{29} +3.91913 q^{31} +11.1659 q^{35} +0.211719 q^{37} +(-1.30266 - 1.34371i) q^{39} +6.43039 q^{41} -11.6128i q^{43} +(-9.17202 - 0.284604i) q^{45} +3.18566i q^{47} -6.32545 q^{49} +(-1.53188 + 1.48509i) q^{51} +8.20307i q^{53} +(-6.24494 - 6.44173i) q^{57} -6.23422i q^{59} -6.10661i q^{61} +(10.9459 + 0.339648i) q^{63} -3.30506 q^{65} -3.24458 q^{67} +(-7.76344 - 8.00808i) q^{69} +0.332103i q^{71} +13.6200i q^{73} +(-5.41751 + 5.25201i) q^{75} -1.32789i q^{79} +(-8.98269 - 0.557995i) q^{81} +7.81134 q^{83} +3.76791i q^{85} +(-9.22861 + 8.94669i) q^{87} +10.3772i q^{89} +3.94427 q^{91} +(4.87380 - 4.72491i) q^{93} -15.8444 q^{95} +6.35634 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{3} - 10 q^{9} - 16 q^{15} - 32 q^{25} + 6 q^{27} + 40 q^{31} + 36 q^{37} + 2 q^{45} - 28 q^{49} + 44 q^{67} + 16 q^{69} - 84 q^{75} - 58 q^{81} - 80 q^{91} + 12 q^{93} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.24359 1.20560i 0.717988 0.696055i
\(4\) 0 0
\(5\) 3.05881i 1.36794i −0.729509 0.683971i \(-0.760251\pi\)
0.729509 0.683971i \(-0.239749\pi\)
\(6\) 0 0
\(7\) 3.65040i 1.37972i 0.723941 + 0.689861i \(0.242329\pi\)
−0.723941 + 0.689861i \(0.757671\pi\)
\(8\) 0 0
\(9\) 0.0930440 2.99856i 0.0310147 0.999519i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.08050i 0.299678i −0.988710 0.149839i \(-0.952125\pi\)
0.988710 0.149839i \(-0.0478755\pi\)
\(14\) 0 0
\(15\) −3.68771 3.80392i −0.952163 0.982167i
\(16\) 0 0
\(17\) −1.23182 −0.298761 −0.149380 0.988780i \(-0.547728\pi\)
−0.149380 + 0.988780i \(0.547728\pi\)
\(18\) 0 0
\(19\) 5.17993i 1.18836i −0.804333 0.594179i \(-0.797477\pi\)
0.804333 0.594179i \(-0.202523\pi\)
\(20\) 0 0
\(21\) 4.40094 + 4.53961i 0.960363 + 0.990625i
\(22\) 0 0
\(23\) 6.43947i 1.34272i −0.741130 0.671361i \(-0.765710\pi\)
0.741130 0.671361i \(-0.234290\pi\)
\(24\) 0 0
\(25\) −4.35634 −0.871267
\(26\) 0 0
\(27\) −3.49936 3.84116i −0.673452 0.739231i
\(28\) 0 0
\(29\) −7.42093 −1.37803 −0.689016 0.724746i \(-0.741957\pi\)
−0.689016 + 0.724746i \(0.741957\pi\)
\(30\) 0 0
\(31\) 3.91913 0.703897 0.351948 0.936019i \(-0.385519\pi\)
0.351948 + 0.936019i \(0.385519\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 11.1659 1.88738
\(36\) 0 0
\(37\) 0.211719 0.0348063 0.0174032 0.999849i \(-0.494460\pi\)
0.0174032 + 0.999849i \(0.494460\pi\)
\(38\) 0 0
\(39\) −1.30266 1.34371i −0.208592 0.215165i
\(40\) 0 0
\(41\) 6.43039 1.00426 0.502129 0.864793i \(-0.332550\pi\)
0.502129 + 0.864793i \(0.332550\pi\)
\(42\) 0 0
\(43\) 11.6128i 1.77094i −0.464699 0.885469i \(-0.653837\pi\)
0.464699 0.885469i \(-0.346163\pi\)
\(44\) 0 0
\(45\) −9.17202 0.284604i −1.36728 0.0424263i
\(46\) 0 0
\(47\) 3.18566i 0.464677i 0.972635 + 0.232338i \(0.0746377\pi\)
−0.972635 + 0.232338i \(0.925362\pi\)
\(48\) 0 0
\(49\) −6.32545 −0.903635
\(50\) 0 0
\(51\) −1.53188 + 1.48509i −0.214507 + 0.207954i
\(52\) 0 0
\(53\) 8.20307i 1.12678i 0.826192 + 0.563389i \(0.190503\pi\)
−0.826192 + 0.563389i \(0.809497\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.24494 6.44173i −0.827163 0.853228i
\(58\) 0 0
\(59\) 6.23422i 0.811626i −0.913956 0.405813i \(-0.866988\pi\)
0.913956 0.405813i \(-0.133012\pi\)
\(60\) 0 0
\(61\) 6.10661i 0.781872i −0.920418 0.390936i \(-0.872151\pi\)
0.920418 0.390936i \(-0.127849\pi\)
\(62\) 0 0
\(63\) 10.9459 + 0.339648i 1.37906 + 0.0427916i
\(64\) 0 0
\(65\) −3.30506 −0.409942
\(66\) 0 0
\(67\) −3.24458 −0.396388 −0.198194 0.980163i \(-0.563508\pi\)
−0.198194 + 0.980163i \(0.563508\pi\)
\(68\) 0 0
\(69\) −7.76344 8.00808i −0.934609 0.964059i
\(70\) 0 0
\(71\) 0.332103i 0.0394134i 0.999806 + 0.0197067i \(0.00627324\pi\)
−0.999806 + 0.0197067i \(0.993727\pi\)
\(72\) 0 0
\(73\) 13.6200i 1.59410i 0.603913 + 0.797050i \(0.293607\pi\)
−0.603913 + 0.797050i \(0.706393\pi\)
\(74\) 0 0
\(75\) −5.41751 + 5.25201i −0.625560 + 0.606450i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.32789i 0.149399i −0.997206 0.0746995i \(-0.976200\pi\)
0.997206 0.0746995i \(-0.0237998\pi\)
\(80\) 0 0
\(81\) −8.98269 0.557995i −0.998076 0.0619995i
\(82\) 0 0
\(83\) 7.81134 0.857406 0.428703 0.903446i \(-0.358971\pi\)
0.428703 + 0.903446i \(0.358971\pi\)
\(84\) 0 0
\(85\) 3.76791i 0.408688i
\(86\) 0 0
\(87\) −9.22861 + 8.94669i −0.989411 + 0.959186i
\(88\) 0 0
\(89\) 10.3772i 1.09998i 0.835172 + 0.549989i \(0.185368\pi\)
−0.835172 + 0.549989i \(0.814632\pi\)
\(90\) 0 0
\(91\) 3.94427 0.413472
\(92\) 0 0
\(93\) 4.87380 4.72491i 0.505390 0.489951i
\(94\) 0 0
\(95\) −15.8444 −1.62561
\(96\) 0 0
\(97\) 6.35634 0.645388 0.322694 0.946503i \(-0.395412\pi\)
0.322694 + 0.946503i \(0.395412\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.81134 −0.777257 −0.388629 0.921395i \(-0.627051\pi\)
−0.388629 + 0.921395i \(0.627051\pi\)
\(102\) 0 0
\(103\) 0.438486 0.0432053 0.0216026 0.999767i \(-0.493123\pi\)
0.0216026 + 0.999767i \(0.493123\pi\)
\(104\) 0 0
\(105\) 13.8858 13.4616i 1.35512 1.31372i
\(106\) 0 0
\(107\) −10.4167 −1.00702 −0.503508 0.863991i \(-0.667958\pi\)
−0.503508 + 0.863991i \(0.667958\pi\)
\(108\) 0 0
\(109\) 2.29088i 0.219427i 0.993963 + 0.109713i \(0.0349933\pi\)
−0.993963 + 0.109713i \(0.965007\pi\)
\(110\) 0 0
\(111\) 0.263292 0.255248i 0.0249905 0.0242271i
\(112\) 0 0
\(113\) 11.9879i 1.12773i −0.825868 0.563863i \(-0.809315\pi\)
0.825868 0.563863i \(-0.190685\pi\)
\(114\) 0 0
\(115\) −19.6971 −1.83677
\(116\) 0 0
\(117\) −3.23995 0.100534i −0.299533 0.00929440i
\(118\) 0 0
\(119\) 4.49665i 0.412207i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 7.99679 7.75250i 0.721046 0.699019i
\(124\) 0 0
\(125\) 1.96885i 0.176099i
\(126\) 0 0
\(127\) 19.9941i 1.77419i 0.461585 + 0.887096i \(0.347281\pi\)
−0.461585 + 0.887096i \(0.652719\pi\)
\(128\) 0 0
\(129\) −14.0004 14.4416i −1.23267 1.27151i
\(130\) 0 0
\(131\) 6.04743 0.528367 0.264183 0.964472i \(-0.414898\pi\)
0.264183 + 0.964472i \(0.414898\pi\)
\(132\) 0 0
\(133\) 18.9089 1.63961
\(134\) 0 0
\(135\) −11.7494 + 10.7039i −1.01123 + 0.921244i
\(136\) 0 0
\(137\) 3.57957i 0.305823i 0.988240 + 0.152912i \(0.0488650\pi\)
−0.988240 + 0.152912i \(0.951135\pi\)
\(138\) 0 0
\(139\) 6.62302i 0.561757i 0.959743 + 0.280878i \(0.0906258\pi\)
−0.959743 + 0.280878i \(0.909374\pi\)
\(140\) 0 0
\(141\) 3.84065 + 3.96167i 0.323441 + 0.333633i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 22.6992i 1.88507i
\(146\) 0 0
\(147\) −7.86628 + 7.62598i −0.648800 + 0.628980i
\(148\) 0 0
\(149\) 15.4615 1.26665 0.633327 0.773884i \(-0.281689\pi\)
0.633327 + 0.773884i \(0.281689\pi\)
\(150\) 0 0
\(151\) 6.50933i 0.529722i −0.964287 0.264861i \(-0.914674\pi\)
0.964287 0.264861i \(-0.0853260\pi\)
\(152\) 0 0
\(153\) −0.114614 + 3.69369i −0.00926597 + 0.298617i
\(154\) 0 0
\(155\) 11.9879i 0.962890i
\(156\) 0 0
\(157\) 20.8780 1.66624 0.833121 0.553090i \(-0.186552\pi\)
0.833121 + 0.553090i \(0.186552\pi\)
\(158\) 0 0
\(159\) 9.88964 + 10.2013i 0.784300 + 0.809014i
\(160\) 0 0
\(161\) 23.5067 1.85258
\(162\) 0 0
\(163\) 1.64041 0.128487 0.0642436 0.997934i \(-0.479537\pi\)
0.0642436 + 0.997934i \(0.479537\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.96934 −0.384539 −0.192270 0.981342i \(-0.561585\pi\)
−0.192270 + 0.981342i \(0.561585\pi\)
\(168\) 0 0
\(169\) 11.8325 0.910193
\(170\) 0 0
\(171\) −15.5323 0.481962i −1.18779 0.0368565i
\(172\) 0 0
\(173\) 7.29132 0.554349 0.277174 0.960820i \(-0.410602\pi\)
0.277174 + 0.960820i \(0.410602\pi\)
\(174\) 0 0
\(175\) 15.9024i 1.20211i
\(176\) 0 0
\(177\) −7.51599 7.75283i −0.564937 0.582738i
\(178\) 0 0
\(179\) 9.10438i 0.680493i −0.940336 0.340247i \(-0.889489\pi\)
0.940336 0.340247i \(-0.110511\pi\)
\(180\) 0 0
\(181\) 22.0567 1.63946 0.819731 0.572748i \(-0.194123\pi\)
0.819731 + 0.572748i \(0.194123\pi\)
\(182\) 0 0
\(183\) −7.36215 7.59414i −0.544226 0.561375i
\(184\) 0 0
\(185\) 0.647607i 0.0476130i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 14.0218 12.7741i 1.01993 0.929177i
\(190\) 0 0
\(191\) 9.65116i 0.698334i 0.937061 + 0.349167i \(0.113535\pi\)
−0.937061 + 0.349167i \(0.886465\pi\)
\(192\) 0 0
\(193\) 2.25700i 0.162463i 0.996695 + 0.0812314i \(0.0258853\pi\)
−0.996695 + 0.0812314i \(0.974115\pi\)
\(194\) 0 0
\(195\) −4.11014 + 3.98458i −0.294333 + 0.285342i
\(196\) 0 0
\(197\) −5.10641 −0.363816 −0.181908 0.983316i \(-0.558227\pi\)
−0.181908 + 0.983316i \(0.558227\pi\)
\(198\) 0 0
\(199\) −9.78375 −0.693552 −0.346776 0.937948i \(-0.612724\pi\)
−0.346776 + 0.937948i \(0.612724\pi\)
\(200\) 0 0
\(201\) −4.03493 + 3.91167i −0.284602 + 0.275908i
\(202\) 0 0
\(203\) 27.0894i 1.90130i
\(204\) 0 0
\(205\) 19.6694i 1.37377i
\(206\) 0 0
\(207\) −19.3091 0.599154i −1.34208 0.0416441i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.35956i 0.506653i −0.967381 0.253327i \(-0.918475\pi\)
0.967381 0.253327i \(-0.0815247\pi\)
\(212\) 0 0
\(213\) 0.400384 + 0.413001i 0.0274339 + 0.0282983i
\(214\) 0 0
\(215\) −35.5214 −2.42254
\(216\) 0 0
\(217\) 14.3064i 0.971182i
\(218\) 0 0
\(219\) 16.4203 + 16.9377i 1.10958 + 1.14455i
\(220\) 0 0
\(221\) 1.33099i 0.0895319i
\(222\) 0 0
\(223\) 3.93694 0.263637 0.131819 0.991274i \(-0.457918\pi\)
0.131819 + 0.991274i \(0.457918\pi\)
\(224\) 0 0
\(225\) −0.405331 + 13.0627i −0.0270221 + 0.870848i
\(226\) 0 0
\(227\) 28.7622 1.90901 0.954507 0.298189i \(-0.0963825\pi\)
0.954507 + 0.298189i \(0.0963825\pi\)
\(228\) 0 0
\(229\) 12.7265 0.840991 0.420495 0.907295i \(-0.361856\pi\)
0.420495 + 0.907295i \(0.361856\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.0453 −1.24770 −0.623849 0.781545i \(-0.714432\pi\)
−0.623849 + 0.781545i \(0.714432\pi\)
\(234\) 0 0
\(235\) 9.74435 0.635651
\(236\) 0 0
\(237\) −1.60090 1.65135i −0.103990 0.107267i
\(238\) 0 0
\(239\) 20.4999 1.32603 0.663013 0.748608i \(-0.269278\pi\)
0.663013 + 0.748608i \(0.269278\pi\)
\(240\) 0 0
\(241\) 18.9036i 1.21769i −0.793290 0.608845i \(-0.791633\pi\)
0.793290 0.608845i \(-0.208367\pi\)
\(242\) 0 0
\(243\) −11.8435 + 10.1356i −0.759762 + 0.650201i
\(244\) 0 0
\(245\) 19.3484i 1.23612i
\(246\) 0 0
\(247\) −5.59693 −0.356124
\(248\) 0 0
\(249\) 9.71412 9.41737i 0.615607 0.596802i
\(250\) 0 0
\(251\) 25.5144i 1.61046i −0.592965 0.805228i \(-0.702043\pi\)
0.592965 0.805228i \(-0.297957\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 4.54261 + 4.68575i 0.284469 + 0.293433i
\(256\) 0 0
\(257\) 6.80152i 0.424267i −0.977241 0.212134i \(-0.931959\pi\)
0.977241 0.212134i \(-0.0680412\pi\)
\(258\) 0 0
\(259\) 0.772858i 0.0480231i
\(260\) 0 0
\(261\) −0.690473 + 22.2521i −0.0427392 + 1.37737i
\(262\) 0 0
\(263\) 17.9177 1.10485 0.552426 0.833562i \(-0.313702\pi\)
0.552426 + 0.833562i \(0.313702\pi\)
\(264\) 0 0
\(265\) 25.0916 1.54137
\(266\) 0 0
\(267\) 12.5107 + 12.9050i 0.765645 + 0.789771i
\(268\) 0 0
\(269\) 28.6051i 1.74408i 0.489431 + 0.872042i \(0.337204\pi\)
−0.489431 + 0.872042i \(0.662796\pi\)
\(270\) 0 0
\(271\) 3.19670i 0.194186i 0.995275 + 0.0970928i \(0.0309544\pi\)
−0.995275 + 0.0970928i \(0.969046\pi\)
\(272\) 0 0
\(273\) 4.90507 4.75523i 0.296868 0.287799i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.4310i 1.28767i 0.765166 + 0.643833i \(0.222657\pi\)
−0.765166 + 0.643833i \(0.777343\pi\)
\(278\) 0 0
\(279\) 0.364652 11.7517i 0.0218311 0.703558i
\(280\) 0 0
\(281\) −10.3245 −0.615907 −0.307954 0.951401i \(-0.599644\pi\)
−0.307954 + 0.951401i \(0.599644\pi\)
\(282\) 0 0
\(283\) 6.04879i 0.359563i 0.983707 + 0.179782i \(0.0575391\pi\)
−0.983707 + 0.179782i \(0.942461\pi\)
\(284\) 0 0
\(285\) −19.7040 + 19.1021i −1.16717 + 1.13151i
\(286\) 0 0
\(287\) 23.4735i 1.38560i
\(288\) 0 0
\(289\) −15.4826 −0.910742
\(290\) 0 0
\(291\) 7.90469 7.66322i 0.463381 0.449226i
\(292\) 0 0
\(293\) −28.0204 −1.63697 −0.818485 0.574528i \(-0.805185\pi\)
−0.818485 + 0.574528i \(0.805185\pi\)
\(294\) 0 0
\(295\) −19.0693 −1.11026
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.95787 −0.402384
\(300\) 0 0
\(301\) 42.3915 2.44340
\(302\) 0 0
\(303\) −9.71412 + 9.41737i −0.558062 + 0.541014i
\(304\) 0 0
\(305\) −18.6790 −1.06956
\(306\) 0 0
\(307\) 7.37725i 0.421042i −0.977589 0.210521i \(-0.932484\pi\)
0.977589 0.210521i \(-0.0675160\pi\)
\(308\) 0 0
\(309\) 0.545298 0.528640i 0.0310209 0.0300733i
\(310\) 0 0
\(311\) 11.3364i 0.642826i 0.946939 + 0.321413i \(0.104158\pi\)
−0.946939 + 0.321413i \(0.895842\pi\)
\(312\) 0 0
\(313\) 1.67902 0.0949039 0.0474519 0.998874i \(-0.484890\pi\)
0.0474519 + 0.998874i \(0.484890\pi\)
\(314\) 0 0
\(315\) 1.03892 33.4816i 0.0585365 1.88647i
\(316\) 0 0
\(317\) 0.852858i 0.0479013i −0.999713 0.0239506i \(-0.992376\pi\)
0.999713 0.0239506i \(-0.00762446\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.9541 + 12.5583i −0.723026 + 0.700938i
\(322\) 0 0
\(323\) 6.38076i 0.355035i
\(324\) 0 0
\(325\) 4.70703i 0.261099i
\(326\) 0 0
\(327\) 2.76189 + 2.84892i 0.152733 + 0.157546i
\(328\) 0 0
\(329\) −11.6290 −0.641125
\(330\) 0 0
\(331\) 21.1263 1.16121 0.580603 0.814187i \(-0.302817\pi\)
0.580603 + 0.814187i \(0.302817\pi\)
\(332\) 0 0
\(333\) 0.0196991 0.634850i 0.00107951 0.0347896i
\(334\) 0 0
\(335\) 9.92455i 0.542236i
\(336\) 0 0
\(337\) 12.0494i 0.656373i −0.944613 0.328186i \(-0.893563\pi\)
0.944613 0.328186i \(-0.106437\pi\)
\(338\) 0 0
\(339\) −14.4526 14.9080i −0.784959 0.809694i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 2.46239i 0.132957i
\(344\) 0 0
\(345\) −24.4952 + 23.7469i −1.31878 + 1.27849i
\(346\) 0 0
\(347\) 2.09275 0.112345 0.0561723 0.998421i \(-0.482110\pi\)
0.0561723 + 0.998421i \(0.482110\pi\)
\(348\) 0 0
\(349\) 12.5572i 0.672171i 0.941832 + 0.336085i \(0.109103\pi\)
−0.941832 + 0.336085i \(0.890897\pi\)
\(350\) 0 0
\(351\) −4.15038 + 3.78107i −0.221531 + 0.201818i
\(352\) 0 0
\(353\) 11.9737i 0.637296i 0.947873 + 0.318648i \(0.103229\pi\)
−0.947873 + 0.318648i \(0.896771\pi\)
\(354\) 0 0
\(355\) 1.01584 0.0539152
\(356\) 0 0
\(357\) −5.42117 5.59200i −0.286919 0.295960i
\(358\) 0 0
\(359\) 28.2301 1.48993 0.744964 0.667104i \(-0.232467\pi\)
0.744964 + 0.667104i \(0.232467\pi\)
\(360\) 0 0
\(361\) −7.83172 −0.412196
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 41.6610 2.18064
\(366\) 0 0
\(367\) −13.7951 −0.720100 −0.360050 0.932933i \(-0.617240\pi\)
−0.360050 + 0.932933i \(0.617240\pi\)
\(368\) 0 0
\(369\) 0.598309 19.2819i 0.0311467 1.00378i
\(370\) 0 0
\(371\) −29.9445 −1.55464
\(372\) 0 0
\(373\) 4.34739i 0.225099i −0.993646 0.112550i \(-0.964098\pi\)
0.993646 0.112550i \(-0.0359017\pi\)
\(374\) 0 0
\(375\) −2.37365 2.44845i −0.122575 0.126437i
\(376\) 0 0
\(377\) 8.01833i 0.412965i
\(378\) 0 0
\(379\) 22.4289 1.15209 0.576047 0.817416i \(-0.304594\pi\)
0.576047 + 0.817416i \(0.304594\pi\)
\(380\) 0 0
\(381\) 24.1050 + 24.8645i 1.23494 + 1.27385i
\(382\) 0 0
\(383\) 18.1642i 0.928148i 0.885796 + 0.464074i \(0.153613\pi\)
−0.885796 + 0.464074i \(0.846387\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −34.8217 1.08050i −1.77009 0.0549251i
\(388\) 0 0
\(389\) 25.3194i 1.28375i 0.766811 + 0.641873i \(0.221843\pi\)
−0.766811 + 0.641873i \(0.778157\pi\)
\(390\) 0 0
\(391\) 7.93228i 0.401153i
\(392\) 0 0
\(393\) 7.52054 7.29080i 0.379361 0.367772i
\(394\) 0 0
\(395\) −4.06176 −0.204369
\(396\) 0 0
\(397\) −1.96507 −0.0986240 −0.0493120 0.998783i \(-0.515703\pi\)
−0.0493120 + 0.998783i \(0.515703\pi\)
\(398\) 0 0
\(399\) 23.5149 22.7966i 1.17722 1.14126i
\(400\) 0 0
\(401\) 18.5121i 0.924450i 0.886763 + 0.462225i \(0.152949\pi\)
−0.886763 + 0.462225i \(0.847051\pi\)
\(402\) 0 0
\(403\) 4.23463i 0.210942i
\(404\) 0 0
\(405\) −1.70680 + 27.4764i −0.0848118 + 1.36531i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 11.6205i 0.574597i −0.957841 0.287298i \(-0.907243\pi\)
0.957841 0.287298i \(-0.0927572\pi\)
\(410\) 0 0
\(411\) 4.31554 + 4.45152i 0.212870 + 0.219577i
\(412\) 0 0
\(413\) 22.7574 1.11982
\(414\) 0 0
\(415\) 23.8934i 1.17288i
\(416\) 0 0
\(417\) 7.98473 + 8.23633i 0.391014 + 0.403335i
\(418\) 0 0
\(419\) 29.2430i 1.42861i −0.699833 0.714306i \(-0.746742\pi\)
0.699833 0.714306i \(-0.253258\pi\)
\(420\) 0 0
\(421\) 18.1210 0.883161 0.441581 0.897222i \(-0.354418\pi\)
0.441581 + 0.897222i \(0.354418\pi\)
\(422\) 0 0
\(423\) 9.55240 + 0.296407i 0.464453 + 0.0144118i
\(424\) 0 0
\(425\) 5.36623 0.260300
\(426\) 0 0
\(427\) 22.2916 1.07877
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.3909 −0.693183 −0.346592 0.938016i \(-0.612661\pi\)
−0.346592 + 0.938016i \(0.612661\pi\)
\(432\) 0 0
\(433\) 20.3440 0.977673 0.488836 0.872376i \(-0.337422\pi\)
0.488836 + 0.872376i \(0.337422\pi\)
\(434\) 0 0
\(435\) 27.3663 + 28.2286i 1.31211 + 1.35346i
\(436\) 0 0
\(437\) −33.3560 −1.59564
\(438\) 0 0
\(439\) 4.46676i 0.213187i −0.994303 0.106593i \(-0.966006\pi\)
0.994303 0.106593i \(-0.0339943\pi\)
\(440\) 0 0
\(441\) −0.588545 + 18.9672i −0.0280259 + 0.903200i
\(442\) 0 0
\(443\) 12.4792i 0.592905i −0.955048 0.296453i \(-0.904196\pi\)
0.955048 0.296453i \(-0.0958037\pi\)
\(444\) 0 0
\(445\) 31.7418 1.50471
\(446\) 0 0
\(447\) 19.2278 18.6404i 0.909443 0.881662i
\(448\) 0 0
\(449\) 13.6637i 0.644828i 0.946599 + 0.322414i \(0.104494\pi\)
−0.946599 + 0.322414i \(0.895506\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −7.84766 8.09495i −0.368715 0.380334i
\(454\) 0 0
\(455\) 12.0648i 0.565606i
\(456\) 0 0
\(457\) 8.90829i 0.416712i 0.978053 + 0.208356i \(0.0668113\pi\)
−0.978053 + 0.208356i \(0.933189\pi\)
\(458\) 0 0
\(459\) 4.31059 + 4.73162i 0.201201 + 0.220853i
\(460\) 0 0
\(461\) −12.5468 −0.584365 −0.292182 0.956363i \(-0.594381\pi\)
−0.292182 + 0.956363i \(0.594381\pi\)
\(462\) 0 0
\(463\) −5.12033 −0.237962 −0.118981 0.992897i \(-0.537963\pi\)
−0.118981 + 0.992897i \(0.537963\pi\)
\(464\) 0 0
\(465\) −14.4526 14.9080i −0.670225 0.691344i
\(466\) 0 0
\(467\) 21.4504i 0.992606i 0.868149 + 0.496303i \(0.165309\pi\)
−0.868149 + 0.496303i \(0.834691\pi\)
\(468\) 0 0
\(469\) 11.8440i 0.546906i
\(470\) 0 0
\(471\) 25.9637 25.1705i 1.19634 1.15980i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 22.5655i 1.03538i
\(476\) 0 0
\(477\) 24.5974 + 0.763246i 1.12624 + 0.0349466i
\(478\) 0 0
\(479\) 7.48249 0.341884 0.170942 0.985281i \(-0.445319\pi\)
0.170942 + 0.985281i \(0.445319\pi\)
\(480\) 0 0
\(481\) 0.228762i 0.0104307i
\(482\) 0 0
\(483\) 29.2327 28.3397i 1.33013 1.28950i
\(484\) 0 0
\(485\) 19.4428i 0.882854i
\(486\) 0 0
\(487\) 11.2665 0.510532 0.255266 0.966871i \(-0.417837\pi\)
0.255266 + 0.966871i \(0.417837\pi\)
\(488\) 0 0
\(489\) 2.04001 1.97769i 0.0922523 0.0894341i
\(490\) 0 0
\(491\) −13.7517 −0.620606 −0.310303 0.950638i \(-0.600430\pi\)
−0.310303 + 0.950638i \(0.600430\pi\)
\(492\) 0 0
\(493\) 9.14126 0.411702
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.21231 −0.0543795
\(498\) 0 0
\(499\) −26.2330 −1.17435 −0.587176 0.809460i \(-0.699760\pi\)
−0.587176 + 0.809460i \(0.699760\pi\)
\(500\) 0 0
\(501\) −6.17984 + 5.99105i −0.276095 + 0.267661i
\(502\) 0 0
\(503\) 19.5399 0.871242 0.435621 0.900130i \(-0.356529\pi\)
0.435621 + 0.900130i \(0.356529\pi\)
\(504\) 0 0
\(505\) 23.8934i 1.06324i
\(506\) 0 0
\(507\) 14.7148 14.2653i 0.653508 0.633545i
\(508\) 0 0
\(509\) 0.289477i 0.0128308i −0.999979 0.00641542i \(-0.997958\pi\)
0.999979 0.00641542i \(-0.00204211\pi\)
\(510\) 0 0
\(511\) −49.7185 −2.19942
\(512\) 0 0
\(513\) −19.8969 + 18.1265i −0.878471 + 0.800302i
\(514\) 0 0
\(515\) 1.34125i 0.0591024i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 9.06743 8.79043i 0.398016 0.385857i
\(520\) 0 0
\(521\) 36.7929i 1.61193i 0.591965 + 0.805963i \(0.298352\pi\)
−0.591965 + 0.805963i \(0.701648\pi\)
\(522\) 0 0
\(523\) 5.06868i 0.221638i −0.993841 0.110819i \(-0.964653\pi\)
0.993841 0.110819i \(-0.0353474\pi\)
\(524\) 0 0
\(525\) −19.1720 19.7761i −0.836733 0.863099i
\(526\) 0 0
\(527\) −4.82767 −0.210297
\(528\) 0 0
\(529\) −18.4668 −0.802903
\(530\) 0 0
\(531\) −18.6937 0.580057i −0.811236 0.0251723i
\(532\) 0 0
\(533\) 6.94806i 0.300954i
\(534\) 0 0
\(535\) 31.8626i 1.37754i
\(536\) 0 0
\(537\) −10.9763 11.3221i −0.473661 0.488586i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 21.2060i 0.911718i −0.890052 0.455859i \(-0.849332\pi\)
0.890052 0.455859i \(-0.150668\pi\)
\(542\) 0 0
\(543\) 27.4296 26.5916i 1.17712 1.14116i
\(544\) 0 0
\(545\) 7.00737 0.300163
\(546\) 0 0
\(547\) 0.965430i 0.0412788i −0.999787 0.0206394i \(-0.993430\pi\)
0.999787 0.0206394i \(-0.00657019\pi\)
\(548\) 0 0
\(549\) −18.3110 0.568184i −0.781496 0.0242495i
\(550\) 0 0
\(551\) 38.4399i 1.63760i
\(552\) 0 0
\(553\) 4.84732 0.206129
\(554\) 0 0
\(555\) −0.780757 0.805359i −0.0331413 0.0341856i
\(556\) 0 0
\(557\) −14.1607 −0.600006 −0.300003 0.953938i \(-0.596988\pi\)
−0.300003 + 0.953938i \(0.596988\pi\)
\(558\) 0 0
\(559\) −12.5477 −0.530710
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.3740 0.437212 0.218606 0.975813i \(-0.429849\pi\)
0.218606 + 0.975813i \(0.429849\pi\)
\(564\) 0 0
\(565\) −36.6687 −1.54266
\(566\) 0 0
\(567\) 2.03691 32.7904i 0.0855421 1.37707i
\(568\) 0 0
\(569\) 12.9057 0.541034 0.270517 0.962715i \(-0.412805\pi\)
0.270517 + 0.962715i \(0.412805\pi\)
\(570\) 0 0
\(571\) 29.4474i 1.23234i 0.787614 + 0.616169i \(0.211316\pi\)
−0.787614 + 0.616169i \(0.788684\pi\)
\(572\) 0 0
\(573\) 11.6355 + 12.0021i 0.486079 + 0.501395i
\(574\) 0 0
\(575\) 28.0525i 1.16987i
\(576\) 0 0
\(577\) −4.04137 −0.168244 −0.0841222 0.996455i \(-0.526809\pi\)
−0.0841222 + 0.996455i \(0.526809\pi\)
\(578\) 0 0
\(579\) 2.72105 + 2.80679i 0.113083 + 0.116646i
\(580\) 0 0
\(581\) 28.5145i 1.18298i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.307516 + 9.91040i −0.0127142 + 0.409745i
\(586\) 0 0
\(587\) 20.8322i 0.859838i −0.902867 0.429919i \(-0.858542\pi\)
0.902867 0.429919i \(-0.141458\pi\)
\(588\) 0 0
\(589\) 20.3008i 0.836482i
\(590\) 0 0
\(591\) −6.35029 + 6.15630i −0.261216 + 0.253236i
\(592\) 0 0
\(593\) 12.8061 0.525882 0.262941 0.964812i \(-0.415308\pi\)
0.262941 + 0.964812i \(0.415308\pi\)
\(594\) 0 0
\(595\) −13.7544 −0.563876
\(596\) 0 0
\(597\) −12.1670 + 11.7953i −0.497962 + 0.482750i
\(598\) 0 0
\(599\) 33.7538i 1.37914i −0.724218 0.689571i \(-0.757799\pi\)
0.724218 0.689571i \(-0.242201\pi\)
\(600\) 0 0
\(601\) 40.4651i 1.65061i −0.564690 0.825303i \(-0.691004\pi\)
0.564690 0.825303i \(-0.308996\pi\)
\(602\) 0 0
\(603\) −0.301888 + 9.72905i −0.0122938 + 0.396197i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22.5565i 0.915538i −0.889071 0.457769i \(-0.848649\pi\)
0.889071 0.457769i \(-0.151351\pi\)
\(608\) 0 0
\(609\) −32.6590 33.6881i −1.32341 1.36511i
\(610\) 0 0
\(611\) 3.44212 0.139253
\(612\) 0 0
\(613\) 27.2539i 1.10078i 0.834909 + 0.550388i \(0.185520\pi\)
−0.834909 + 0.550388i \(0.814480\pi\)
\(614\) 0 0
\(615\) −23.7134 24.4607i −0.956218 0.986350i
\(616\) 0 0
\(617\) 6.44731i 0.259559i 0.991543 + 0.129779i \(0.0414269\pi\)
−0.991543 + 0.129779i \(0.958573\pi\)
\(618\) 0 0
\(619\) −46.7893 −1.88062 −0.940311 0.340316i \(-0.889466\pi\)
−0.940311 + 0.340316i \(0.889466\pi\)
\(620\) 0 0
\(621\) −24.7350 + 22.5340i −0.992582 + 0.904259i
\(622\) 0 0
\(623\) −37.8809 −1.51766
\(624\) 0 0
\(625\) −27.8040 −1.11216
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.260800 −0.0103988
\(630\) 0 0
\(631\) −12.2283 −0.486801 −0.243401 0.969926i \(-0.578263\pi\)
−0.243401 + 0.969926i \(0.578263\pi\)
\(632\) 0 0
\(633\) −8.87271 9.15230i −0.352658 0.363771i
\(634\) 0 0
\(635\) 61.1583 2.42699
\(636\) 0 0
\(637\) 6.83466i 0.270799i
\(638\) 0 0
\(639\) 0.995829 + 0.0309002i 0.0393944 + 0.00122239i
\(640\) 0 0
\(641\) 20.3115i 0.802255i −0.916022 0.401127i \(-0.868618\pi\)
0.916022 0.401127i \(-0.131382\pi\)
\(642\) 0 0
\(643\) −23.7532 −0.936737 −0.468368 0.883533i \(-0.655158\pi\)
−0.468368 + 0.883533i \(0.655158\pi\)
\(644\) 0 0
\(645\) −44.1742 + 42.8247i −1.73936 + 1.68622i
\(646\) 0 0
\(647\) 1.94916i 0.0766295i −0.999266 0.0383147i \(-0.987801\pi\)
0.999266 0.0383147i \(-0.0121989\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 17.2478 + 17.7913i 0.675996 + 0.697298i
\(652\) 0 0
\(653\) 23.0875i 0.903482i −0.892149 0.451741i \(-0.850803\pi\)
0.892149 0.451741i \(-0.149197\pi\)
\(654\) 0 0
\(655\) 18.4980i 0.722776i
\(656\) 0 0
\(657\) 40.8403 + 1.26726i 1.59333 + 0.0494405i
\(658\) 0 0
\(659\) −44.0671 −1.71661 −0.858305 0.513139i \(-0.828482\pi\)
−0.858305 + 0.513139i \(0.828482\pi\)
\(660\) 0 0
\(661\) −31.5126 −1.22570 −0.612848 0.790201i \(-0.709976\pi\)
−0.612848 + 0.790201i \(0.709976\pi\)
\(662\) 0 0
\(663\) 1.60464 + 1.65521i 0.0623191 + 0.0642829i
\(664\) 0 0
\(665\) 57.8386i 2.24289i
\(666\) 0 0
\(667\) 47.7868i 1.85031i
\(668\) 0 0
\(669\) 4.89595 4.74639i 0.189288 0.183506i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 39.7858i 1.53363i 0.641868 + 0.766815i \(0.278160\pi\)
−0.641868 + 0.766815i \(0.721840\pi\)
\(674\) 0 0
\(675\) 15.2444 + 16.7334i 0.586757 + 0.644068i
\(676\) 0 0
\(677\) −39.7490 −1.52768 −0.763839 0.645407i \(-0.776688\pi\)
−0.763839 + 0.645407i \(0.776688\pi\)
\(678\) 0 0
\(679\) 23.2032i 0.890457i
\(680\) 0 0
\(681\) 35.7684 34.6758i 1.37065 1.32878i
\(682\) 0 0
\(683\) 24.4150i 0.934216i −0.884200 0.467108i \(-0.845296\pi\)
0.884200 0.467108i \(-0.154704\pi\)
\(684\) 0 0
\(685\) 10.9492 0.418349
\(686\) 0 0
\(687\) 15.8266 15.3431i 0.603822 0.585376i
\(688\) 0 0
\(689\) 8.86344 0.337670
\(690\) 0 0
\(691\) −30.1233 −1.14595 −0.572973 0.819574i \(-0.694210\pi\)
−0.572973 + 0.819574i \(0.694210\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.2586 0.768451
\(696\) 0 0
\(697\) −7.92110 −0.300033
\(698\) 0 0
\(699\) −23.6846 + 22.9610i −0.895833 + 0.868467i
\(700\) 0 0
\(701\) 8.51569 0.321633 0.160817 0.986984i \(-0.448587\pi\)
0.160817 + 0.986984i \(0.448587\pi\)
\(702\) 0 0
\(703\) 1.09669i 0.0413624i
\(704\) 0 0
\(705\) 12.1180 11.7478i 0.456390 0.442448i
\(706\) 0 0
\(707\) 28.5145i 1.07240i
\(708\) 0 0
\(709\) −1.23558 −0.0464031 −0.0232016 0.999731i \(-0.507386\pi\)
−0.0232016 + 0.999731i \(0.507386\pi\)
\(710\) 0 0
\(711\) −3.98174 0.123552i −0.149327 0.00463356i
\(712\) 0 0
\(713\) 25.2371i 0.945138i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 25.4935 24.7147i 0.952071 0.922987i
\(718\) 0 0
\(719\) 20.9164i 0.780052i −0.920804 0.390026i \(-0.872466\pi\)
0.920804 0.390026i \(-0.127534\pi\)
\(720\) 0 0
\(721\) 1.60065i 0.0596113i
\(722\) 0 0
\(723\) −22.7903 23.5084i −0.847579 0.874287i
\(724\) 0 0
\(725\) 32.3281 1.20063
\(726\) 0 0
\(727\) −5.62159 −0.208493 −0.104247 0.994551i \(-0.533243\pi\)
−0.104247 + 0.994551i \(0.533243\pi\)
\(728\) 0 0
\(729\) −2.50897 + 26.8832i −0.0929247 + 0.995673i
\(730\) 0 0
\(731\) 14.3049i 0.529087i
\(732\) 0 0
\(733\) 18.1073i 0.668807i 0.942430 + 0.334404i \(0.108535\pi\)
−0.942430 + 0.334404i \(0.891465\pi\)
\(734\) 0 0
\(735\) 23.3264 + 24.0615i 0.860408 + 0.887521i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 49.7282i 1.82928i −0.404270 0.914640i \(-0.632474\pi\)
0.404270 0.914640i \(-0.367526\pi\)
\(740\) 0 0
\(741\) −6.96031 + 6.74768i −0.255693 + 0.247882i
\(742\) 0 0
\(743\) −15.3013 −0.561350 −0.280675 0.959803i \(-0.590558\pi\)
−0.280675 + 0.959803i \(0.590558\pi\)
\(744\) 0 0
\(745\) 47.2938i 1.73271i
\(746\) 0 0
\(747\) 0.726798 23.4227i 0.0265922 0.856993i
\(748\) 0 0
\(749\) 38.0250i 1.38940i
\(750\) 0 0
\(751\) 1.18083 0.0430891 0.0215445 0.999768i \(-0.493142\pi\)
0.0215445 + 0.999768i \(0.493142\pi\)
\(752\) 0 0
\(753\) −30.7603 31.7296i −1.12097 1.15629i
\(754\) 0 0
\(755\) −19.9108 −0.724629
\(756\) 0 0
\(757\) 54.9853 1.99848 0.999238 0.0390247i \(-0.0124251\pi\)
0.999238 + 0.0390247i \(0.0124251\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36.7383 −1.33176 −0.665882 0.746057i \(-0.731945\pi\)
−0.665882 + 0.746057i \(0.731945\pi\)
\(762\) 0 0
\(763\) −8.36264 −0.302748
\(764\) 0 0
\(765\) 11.2983 + 0.350582i 0.408491 + 0.0126753i
\(766\) 0 0
\(767\) −6.73609 −0.243226
\(768\) 0 0
\(769\) 33.5717i 1.21063i 0.795988 + 0.605313i \(0.206952\pi\)
−0.795988 + 0.605313i \(0.793048\pi\)
\(770\) 0 0
\(771\) −8.19993 8.45832i −0.295313 0.304619i
\(772\) 0 0
\(773\) 7.97762i 0.286935i 0.989655 + 0.143467i \(0.0458252\pi\)
−0.989655 + 0.143467i \(0.954175\pi\)
\(774\) 0 0
\(775\) −17.0730 −0.613282
\(776\) 0 0
\(777\) 0.931760 + 0.961120i 0.0334267 + 0.0344800i
\(778\) 0 0
\(779\) 33.3090i 1.19342i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 25.9685 + 28.5049i 0.928038 + 1.01868i
\(784\) 0 0
\(785\) 63.8618i 2.27932i
\(786\) 0 0
\(787\) 23.4104i 0.834492i −0.908794 0.417246i \(-0.862995\pi\)
0.908794 0.417246i \(-0.137005\pi\)
\(788\) 0 0
\(789\) 22.2823 21.6016i 0.793271 0.769038i
\(790\) 0 0
\(791\) 43.7606 1.55595
\(792\) 0 0
\(793\) −6.59822 −0.234310
\(794\) 0 0
\(795\) 31.2038 30.2506i 1.10668 1.07288i
\(796\) 0 0
\(797\) 10.6500i 0.377244i −0.982050 0.188622i \(-0.939598\pi\)
0.982050 0.188622i \(-0.0604021\pi\)
\(798\) 0 0
\(799\) 3.92417i 0.138827i
\(800\) 0 0
\(801\) 31.1165 + 0.965533i 1.09945 + 0.0341154i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 71.9025i 2.53423i
\(806\) 0 0
\(807\) 34.4864 + 35.5731i 1.21398 + 1.25223i
\(808\) 0 0
\(809\) 39.6943 1.39558 0.697788 0.716304i \(-0.254168\pi\)
0.697788 + 0.716304i \(0.254168\pi\)
\(810\) 0 0
\(811\) 39.7461i 1.39568i −0.716256 0.697838i \(-0.754146\pi\)
0.716256 0.697838i \(-0.245854\pi\)
\(812\) 0 0
\(813\) 3.85395 + 3.97539i 0.135164 + 0.139423i
\(814\) 0 0
\(815\) 5.01772i 0.175763i
\(816\) 0 0
\(817\) −60.1536 −2.10451
\(818\) 0 0
\(819\) 0.366991 11.8271i 0.0128237 0.413273i
\(820\) 0 0
\(821\) 36.4514 1.27216 0.636081 0.771622i \(-0.280554\pi\)
0.636081 + 0.771622i \(0.280554\pi\)
\(822\) 0 0
\(823\) 39.8859 1.39034 0.695168 0.718847i \(-0.255330\pi\)
0.695168 + 0.718847i \(0.255330\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.1727 0.492833 0.246417 0.969164i \(-0.420747\pi\)
0.246417 + 0.969164i \(0.420747\pi\)
\(828\) 0 0
\(829\) −39.5015 −1.37194 −0.685971 0.727629i \(-0.740622\pi\)
−0.685971 + 0.727629i \(0.740622\pi\)
\(830\) 0 0
\(831\) 25.8373 + 26.6515i 0.896286 + 0.924529i
\(832\) 0 0
\(833\) 7.79183 0.269971
\(834\) 0 0
\(835\) 15.2003i 0.526028i
\(836\) 0 0
\(837\) −13.7144 15.0540i −0.474041 0.520342i
\(838\) 0 0
\(839\) 17.3687i 0.599635i −0.953997 0.299818i \(-0.903074\pi\)
0.953997 0.299818i \(-0.0969258\pi\)
\(840\) 0 0
\(841\) 26.0702 0.898971
\(842\) 0 0
\(843\) −12.8395 + 12.4472i −0.442214 + 0.428705i
\(844\) 0 0
\(845\) 36.1934i 1.24509i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 7.29244 + 7.52223i 0.250276 + 0.258162i
\(850\) 0 0
\(851\) 1.36335i 0.0467352i
\(852\) 0 0
\(853\) 9.24212i 0.316444i 0.987404 + 0.158222i \(0.0505762\pi\)
−0.987404 + 0.158222i \(0.949424\pi\)
\(854\) 0 0
\(855\) −1.47423 + 47.5105i −0.0504176 + 1.62482i
\(856\) 0 0
\(857\) 56.2505 1.92148 0.960740 0.277449i \(-0.0894889\pi\)
0.960740 + 0.277449i \(0.0894889\pi\)
\(858\) 0 0
\(859\) −38.7547 −1.32229 −0.661147 0.750257i \(-0.729930\pi\)
−0.661147 + 0.750257i \(0.729930\pi\)
\(860\) 0 0
\(861\) 28.2997 + 29.1915i 0.964453 + 0.994844i
\(862\) 0 0
\(863\) 5.59929i 0.190602i −0.995448 0.0953011i \(-0.969619\pi\)
0.995448 0.0953011i \(-0.0303814\pi\)
\(864\) 0 0
\(865\) 22.3028i 0.758317i
\(866\) 0 0
\(867\) −19.2541 + 18.6659i −0.653902 + 0.633927i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 3.50578i 0.118789i
\(872\) 0 0
\(873\) 0.591419 19.0598i 0.0200165 0.645078i
\(874\) 0 0
\(875\) 7.18709 0.242968
\(876\) 0 0
\(877\) 34.4472i 1.16320i −0.813475 0.581600i \(-0.802427\pi\)
0.813475 0.581600i \(-0.197573\pi\)
\(878\) 0 0
\(879\) −34.8460 + 33.7815i −1.17532 + 1.13942i
\(880\) 0 0
\(881\) 8.23935i 0.277591i −0.990321 0.138795i \(-0.955677\pi\)
0.990321 0.138795i \(-0.0443231\pi\)
\(882\) 0 0
\(883\) 7.69807 0.259061 0.129530 0.991575i \(-0.458653\pi\)
0.129530 + 0.991575i \(0.458653\pi\)
\(884\) 0 0
\(885\) −23.7144 + 22.9900i −0.797152 + 0.772801i
\(886\) 0 0
\(887\) −12.6960 −0.426289 −0.213144 0.977021i \(-0.568371\pi\)
−0.213144 + 0.977021i \(0.568371\pi\)
\(888\) 0 0
\(889\) −72.9866 −2.44789
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16.5015 0.552203
\(894\) 0 0
\(895\) −27.8486 −0.930876
\(896\) 0 0
\(897\) −8.65275 + 8.38842i −0.288907 + 0.280081i
\(898\) 0 0
\(899\) −29.0836 −0.969992
\(900\) 0 0
\(901\) 10.1047i 0.336637i
\(902\) 0 0
\(903\) 52.7177 51.1073i 1.75434 1.70074i
\(904\) 0 0
\(905\) 67.4674i 2.24269i
\(906\) 0 0
\(907\) 44.5008 1.47763 0.738813 0.673910i \(-0.235387\pi\)
0.738813 + 0.673910i \(0.235387\pi\)
\(908\) 0 0
\(909\) −0.726798 + 23.4227i −0.0241064 + 0.776883i
\(910\) 0 0
\(911\) 52.1022i 1.72622i 0.505013 + 0.863112i \(0.331488\pi\)
−0.505013 + 0.863112i \(0.668512\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −23.2291 + 22.5194i −0.767929 + 0.744470i
\(916\) 0 0
\(917\) 22.0756i 0.729000i
\(918\) 0 0
\(919\) 45.7680i 1.50975i −0.655870 0.754874i \(-0.727698\pi\)
0.655870 0.754874i \(-0.272302\pi\)
\(920\) 0 0
\(921\) −8.89404 9.17430i −0.293068 0.302303i
\(922\) 0 0
\(923\) 0.358838 0.0118113
\(924\) 0 0
\(925\) −0.922317 −0.0303256
\(926\) 0 0
\(927\) 0.0407985 1.31482i 0.00134000 0.0431845i
\(928\) 0 0
\(929\) 24.9892i 0.819871i −0.912115 0.409935i \(-0.865551\pi\)
0.912115 0.409935i \(-0.134449\pi\)
\(930\) 0 0
\(931\) 32.7654i 1.07384i
\(932\) 0 0
\(933\) 13.6671 + 14.0978i 0.447442 + 0.461542i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6.80770i 0.222398i 0.993798 + 0.111199i \(0.0354691\pi\)
−0.993798 + 0.111199i \(0.964531\pi\)
\(938\) 0 0
\(939\) 2.08802 2.02423i 0.0681399 0.0660583i
\(940\) 0 0
\(941\) −0.266675 −0.00869335 −0.00434667 0.999991i \(-0.501384\pi\)
−0.00434667 + 0.999991i \(0.501384\pi\)
\(942\) 0 0
\(943\) 41.4083i 1.34844i
\(944\) 0 0
\(945\) −39.0735 42.8900i −1.27106 1.39521i
\(946\) 0 0
\(947\) 33.2727i 1.08122i 0.841274 + 0.540609i \(0.181806\pi\)
−0.841274 + 0.540609i \(0.818194\pi\)
\(948\) 0 0
\(949\) 14.7165 0.477716
\(950\) 0 0
\(951\) −1.02821 1.06061i −0.0333419 0.0343926i
\(952\) 0 0
\(953\) −34.9634 −1.13257 −0.566287 0.824208i \(-0.691621\pi\)
−0.566287 + 0.824208i \(0.691621\pi\)
\(954\) 0 0
\(955\) 29.5211 0.955280
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.0669 −0.421951
\(960\) 0 0
\(961\) −15.6404 −0.504529
\(962\) 0 0
\(963\) −0.969207 + 31.2349i −0.0312323 + 1.00653i
\(964\) 0 0
\(965\) 6.90375 0.222240
\(966\) 0 0
\(967\) 28.9143i 0.929821i 0.885358 + 0.464910i \(0.153913\pi\)
−0.885358 + 0.464910i \(0.846087\pi\)
\(968\) 0 0
\(969\) 7.69266 + 7.93506i 0.247124 + 0.254911i
\(970\) 0 0
\(971\) 30.1285i 0.966870i 0.875380 + 0.483435i \(0.160611\pi\)
−0.875380 + 0.483435i \(0.839389\pi\)
\(972\) 0 0
\(973\) −24.1767 −0.775069
\(974\) 0 0
\(975\) 5.67481 + 5.85363i 0.181739 + 0.187466i
\(976\) 0 0
\(977\) 21.3778i 0.683937i −0.939711 0.341969i \(-0.888906\pi\)
0.939711 0.341969i \(-0.111094\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 6.86933 + 0.213153i 0.219321 + 0.00680544i
\(982\) 0 0
\(983\) 50.2823i 1.60376i 0.597487 + 0.801879i \(0.296166\pi\)
−0.597487 + 0.801879i \(0.703834\pi\)
\(984\) 0 0
\(985\) 15.6195i 0.497680i
\(986\) 0 0
\(987\) −14.4617 + 14.0199i −0.460321 + 0.446259i
\(988\) 0 0
\(989\) −74.7804 −2.37788
\(990\) 0 0
\(991\) 26.0847 0.828609 0.414305 0.910138i \(-0.364025\pi\)
0.414305 + 0.910138i \(0.364025\pi\)
\(992\) 0 0
\(993\) 26.2725 25.4699i 0.833732 0.808263i
\(994\) 0 0
\(995\) 29.9267i 0.948739i
\(996\) 0 0
\(997\) 22.5902i 0.715439i 0.933829 + 0.357720i \(0.116446\pi\)
−0.933829 + 0.357720i \(0.883554\pi\)
\(998\) 0 0
\(999\) −0.740879 0.813244i −0.0234404 0.0257299i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.2.b.e.725.10 16
3.2 odd 2 inner 1452.2.b.e.725.12 16
11.4 even 5 132.2.p.a.17.1 16
11.8 odd 10 132.2.p.a.101.2 yes 16
11.10 odd 2 inner 1452.2.b.e.725.9 16
33.8 even 10 132.2.p.a.101.1 yes 16
33.26 odd 10 132.2.p.a.17.2 yes 16
33.32 even 2 inner 1452.2.b.e.725.11 16
44.15 odd 10 528.2.bn.d.17.4 16
44.19 even 10 528.2.bn.d.497.3 16
132.59 even 10 528.2.bn.d.17.3 16
132.107 odd 10 528.2.bn.d.497.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.p.a.17.1 16 11.4 even 5
132.2.p.a.17.2 yes 16 33.26 odd 10
132.2.p.a.101.1 yes 16 33.8 even 10
132.2.p.a.101.2 yes 16 11.8 odd 10
528.2.bn.d.17.3 16 132.59 even 10
528.2.bn.d.17.4 16 44.15 odd 10
528.2.bn.d.497.3 16 44.19 even 10
528.2.bn.d.497.4 16 132.107 odd 10
1452.2.b.e.725.9 16 11.10 odd 2 inner
1452.2.b.e.725.10 16 1.1 even 1 trivial
1452.2.b.e.725.11 16 33.32 even 2 inner
1452.2.b.e.725.12 16 3.2 odd 2 inner