Properties

Label 528.2.bn.d.497.3
Level $528$
Weight $2$
Character 528.497
Analytic conductor $4.216$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [528,2,Mod(17,528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(528, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 5, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("528.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 528.bn (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-1,0,0,0,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.21610122672\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 497.3
Root \(0.762305 - 1.55528i\) of defining polynomial
Character \(\chi\) \(=\) 528.497
Dual form 528.2.bn.d.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.297452 - 1.70632i) q^{3} +(2.90910 - 0.945225i) q^{5} +(2.14565 - 2.95324i) q^{7} +(-2.82304 - 1.01510i) q^{9} +(-3.28976 - 0.421300i) q^{11} +(1.02762 + 0.333894i) q^{13} +(-0.747537 - 5.24502i) q^{15} +(0.380654 + 1.17153i) q^{17} +(3.04469 + 4.19066i) q^{19} +(-4.40094 - 4.53961i) q^{21} +6.43947i q^{23} +(3.52435 - 2.56059i) q^{25} +(-2.57180 + 4.51507i) q^{27} +(-6.00366 - 4.36191i) q^{29} +(-1.21108 + 3.72731i) q^{31} +(-1.69742 + 5.48806i) q^{33} +(3.45045 - 10.6194i) q^{35} +(-0.171284 - 0.124445i) q^{37} +(0.875396 - 1.65413i) q^{39} +(5.20230 - 3.77969i) q^{41} -11.6128i q^{43} +(-9.17202 - 0.284604i) q^{45} +(1.87249 + 2.57726i) q^{47} +(-1.95467 - 6.01586i) q^{49} +(2.11223 - 0.301042i) q^{51} +(7.80158 + 2.53489i) q^{53} +(-9.96847 + 1.88396i) q^{55} +(8.05624 - 3.94869i) q^{57} +(3.66438 - 5.04359i) q^{59} +(-5.80774 + 1.88705i) q^{61} +(-9.05509 + 6.15908i) q^{63} +3.30506 q^{65} +3.24458 q^{67} +(10.9878 + 1.91543i) q^{69} +(0.315849 - 0.102625i) q^{71} +(-8.00563 + 11.0188i) q^{73} +(-3.32086 - 6.77531i) q^{75} +(-8.30288 + 8.81148i) q^{77} +(-1.26290 - 0.410340i) q^{79} +(6.93916 + 5.73132i) q^{81} +(2.41384 + 7.42902i) q^{83} +(2.21472 + 3.04831i) q^{85} +(-9.22861 + 8.94669i) q^{87} +10.3772i q^{89} +(3.19098 - 2.31838i) q^{91} +(5.99975 + 3.17518i) q^{93} +(12.8184 + 9.31313i) q^{95} +(1.96422 - 6.04523i) q^{97} +(8.85947 + 4.52877i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{3} + 5 q^{9} - 9 q^{15} + 30 q^{19} - 12 q^{25} - q^{27} + 10 q^{31} - 41 q^{33} - 24 q^{37} + 35 q^{39} + 2 q^{45} + 12 q^{49} + 15 q^{51} - 62 q^{55} + 35 q^{57} + 40 q^{61} - 55 q^{63} - 44 q^{67}+ \cdots + 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.297452 1.70632i 0.171734 0.985143i
\(4\) 0 0
\(5\) 2.90910 0.945225i 1.30099 0.422718i 0.425065 0.905163i \(-0.360251\pi\)
0.875926 + 0.482445i \(0.160251\pi\)
\(6\) 0 0
\(7\) 2.14565 2.95324i 0.810981 1.11622i −0.180191 0.983632i \(-0.557671\pi\)
0.991171 0.132588i \(-0.0423286\pi\)
\(8\) 0 0
\(9\) −2.82304 1.01510i −0.941015 0.338365i
\(10\) 0 0
\(11\) −3.28976 0.421300i −0.991899 0.127027i
\(12\) 0 0
\(13\) 1.02762 + 0.333894i 0.285010 + 0.0926055i 0.448033 0.894017i \(-0.352125\pi\)
−0.163023 + 0.986622i \(0.552125\pi\)
\(14\) 0 0
\(15\) −0.747537 5.24502i −0.193013 1.35426i
\(16\) 0 0
\(17\) 0.380654 + 1.17153i 0.0923222 + 0.284138i 0.986547 0.163481i \(-0.0522721\pi\)
−0.894224 + 0.447619i \(0.852272\pi\)
\(18\) 0 0
\(19\) 3.04469 + 4.19066i 0.698500 + 0.961402i 0.999969 + 0.00792623i \(0.00252302\pi\)
−0.301469 + 0.953476i \(0.597477\pi\)
\(20\) 0 0
\(21\) −4.40094 4.53961i −0.960363 0.990625i
\(22\) 0 0
\(23\) 6.43947i 1.34272i 0.741130 + 0.671361i \(0.234290\pi\)
−0.741130 + 0.671361i \(0.765710\pi\)
\(24\) 0 0
\(25\) 3.52435 2.56059i 0.704870 0.512118i
\(26\) 0 0
\(27\) −2.57180 + 4.51507i −0.494942 + 0.868926i
\(28\) 0 0
\(29\) −6.00366 4.36191i −1.11485 0.809987i −0.131430 0.991325i \(-0.541957\pi\)
−0.983421 + 0.181339i \(0.941957\pi\)
\(30\) 0 0
\(31\) −1.21108 + 3.72731i −0.217516 + 0.669446i 0.781449 + 0.623969i \(0.214481\pi\)
−0.998965 + 0.0454768i \(0.985519\pi\)
\(32\) 0 0
\(33\) −1.69742 + 5.48806i −0.295482 + 0.955348i
\(34\) 0 0
\(35\) 3.45045 10.6194i 0.583233 1.79501i
\(36\) 0 0
\(37\) −0.171284 0.124445i −0.0281589 0.0204586i 0.573617 0.819124i \(-0.305540\pi\)
−0.601776 + 0.798665i \(0.705540\pi\)
\(38\) 0 0
\(39\) 0.875396 1.65413i 0.140176 0.264873i
\(40\) 0 0
\(41\) 5.20230 3.77969i 0.812462 0.590288i −0.102081 0.994776i \(-0.532550\pi\)
0.914543 + 0.404488i \(0.132550\pi\)
\(42\) 0 0
\(43\) 11.6128i 1.77094i −0.464699 0.885469i \(-0.653837\pi\)
0.464699 0.885469i \(-0.346163\pi\)
\(44\) 0 0
\(45\) −9.17202 0.284604i −1.36728 0.0424263i
\(46\) 0 0
\(47\) 1.87249 + 2.57726i 0.273130 + 0.375932i 0.923443 0.383735i \(-0.125362\pi\)
−0.650313 + 0.759666i \(0.725362\pi\)
\(48\) 0 0
\(49\) −1.95467 6.01586i −0.279239 0.859408i
\(50\) 0 0
\(51\) 2.11223 0.301042i 0.295772 0.0421544i
\(52\) 0 0
\(53\) 7.80158 + 2.53489i 1.07163 + 0.348194i 0.791122 0.611658i \(-0.209497\pi\)
0.280508 + 0.959852i \(0.409497\pi\)
\(54\) 0 0
\(55\) −9.96847 + 1.88396i −1.34415 + 0.254033i
\(56\) 0 0
\(57\) 8.05624 3.94869i 1.06708 0.523017i
\(58\) 0 0
\(59\) 3.66438 5.04359i 0.477062 0.656619i −0.500875 0.865520i \(-0.666988\pi\)
0.977937 + 0.208900i \(0.0669884\pi\)
\(60\) 0 0
\(61\) −5.80774 + 1.88705i −0.743604 + 0.241612i −0.656227 0.754564i \(-0.727849\pi\)
−0.0873774 + 0.996175i \(0.527849\pi\)
\(62\) 0 0
\(63\) −9.05509 + 6.15908i −1.14083 + 0.775971i
\(64\) 0 0
\(65\) 3.30506 0.409942
\(66\) 0 0
\(67\) 3.24458 0.396388 0.198194 0.980163i \(-0.436492\pi\)
0.198194 + 0.980163i \(0.436492\pi\)
\(68\) 0 0
\(69\) 10.9878 + 1.91543i 1.32277 + 0.230591i
\(70\) 0 0
\(71\) 0.315849 0.102625i 0.0374843 0.0121794i −0.290215 0.956962i \(-0.593727\pi\)
0.327699 + 0.944782i \(0.393727\pi\)
\(72\) 0 0
\(73\) −8.00563 + 11.0188i −0.936989 + 1.28965i 0.0200816 + 0.999798i \(0.493607\pi\)
−0.957070 + 0.289856i \(0.906393\pi\)
\(74\) 0 0
\(75\) −3.32086 6.77531i −0.383460 0.782346i
\(76\) 0 0
\(77\) −8.30288 + 8.81148i −0.946201 + 1.00416i
\(78\) 0 0
\(79\) −1.26290 0.410340i −0.142087 0.0461668i 0.237110 0.971483i \(-0.423800\pi\)
−0.379197 + 0.925316i \(0.623800\pi\)
\(80\) 0 0
\(81\) 6.93916 + 5.73132i 0.771018 + 0.636813i
\(82\) 0 0
\(83\) 2.41384 + 7.42902i 0.264953 + 0.815441i 0.991704 + 0.128541i \(0.0410293\pi\)
−0.726751 + 0.686901i \(0.758971\pi\)
\(84\) 0 0
\(85\) 2.21472 + 3.04831i 0.240221 + 0.330635i
\(86\) 0 0
\(87\) −9.22861 + 8.94669i −0.989411 + 0.959186i
\(88\) 0 0
\(89\) 10.3772i 1.09998i 0.835172 + 0.549989i \(0.185368\pi\)
−0.835172 + 0.549989i \(0.814632\pi\)
\(90\) 0 0
\(91\) 3.19098 2.31838i 0.334506 0.243033i
\(92\) 0 0
\(93\) 5.99975 + 3.17518i 0.622145 + 0.329251i
\(94\) 0 0
\(95\) 12.8184 + 9.31313i 1.31514 + 0.955507i
\(96\) 0 0
\(97\) 1.96422 6.04523i 0.199436 0.613801i −0.800460 0.599386i \(-0.795412\pi\)
0.999896 0.0144147i \(-0.00458849\pi\)
\(98\) 0 0
\(99\) 8.85947 + 4.52877i 0.890411 + 0.455158i
\(100\) 0 0
\(101\) 2.41384 7.42902i 0.240186 0.739215i −0.756205 0.654334i \(-0.772949\pi\)
0.996391 0.0848812i \(-0.0270511\pi\)
\(102\) 0 0
\(103\) 0.354742 + 0.257735i 0.0349538 + 0.0253954i 0.605125 0.796130i \(-0.293123\pi\)
−0.570171 + 0.821526i \(0.693123\pi\)
\(104\) 0 0
\(105\) −17.0937 9.04633i −1.66818 0.882832i
\(106\) 0 0
\(107\) 8.42725 6.12275i 0.814693 0.591909i −0.100494 0.994938i \(-0.532042\pi\)
0.915187 + 0.403029i \(0.132042\pi\)
\(108\) 0 0
\(109\) 2.29088i 0.219427i −0.993963 0.109713i \(-0.965007\pi\)
0.993963 0.109713i \(-0.0349933\pi\)
\(110\) 0 0
\(111\) −0.263292 + 0.255248i −0.0249905 + 0.0242271i
\(112\) 0 0
\(113\) 7.04630 + 9.69840i 0.662860 + 0.912349i 0.999572 0.0292588i \(-0.00931468\pi\)
−0.336711 + 0.941608i \(0.609315\pi\)
\(114\) 0 0
\(115\) 6.08675 + 18.7331i 0.567592 + 1.74687i
\(116\) 0 0
\(117\) −2.56208 1.98573i −0.236865 0.183581i
\(118\) 0 0
\(119\) 4.27657 + 1.38954i 0.392032 + 0.127379i
\(120\) 0 0
\(121\) 10.6450 + 2.77195i 0.967728 + 0.251995i
\(122\) 0 0
\(123\) −4.90192 10.0010i −0.441991 0.901764i
\(124\) 0 0
\(125\) −1.15726 + 1.59283i −0.103509 + 0.142467i
\(126\) 0 0
\(127\) −19.0155 + 6.17852i −1.68736 + 0.548255i −0.986316 0.164866i \(-0.947281\pi\)
−0.701041 + 0.713121i \(0.747281\pi\)
\(128\) 0 0
\(129\) −19.8152 3.45425i −1.74463 0.304130i
\(130\) 0 0
\(131\) 6.04743 0.528367 0.264183 0.964472i \(-0.414898\pi\)
0.264183 + 0.964472i \(0.414898\pi\)
\(132\) 0 0
\(133\) 18.9089 1.63961
\(134\) 0 0
\(135\) −3.21386 + 15.5657i −0.276605 + 1.33969i
\(136\) 0 0
\(137\) −3.40437 + 1.10615i −0.290855 + 0.0945045i −0.450810 0.892620i \(-0.648865\pi\)
0.159955 + 0.987124i \(0.448865\pi\)
\(138\) 0 0
\(139\) 3.89291 5.35813i 0.330192 0.454471i −0.611352 0.791358i \(-0.709374\pi\)
0.941545 + 0.336888i \(0.109374\pi\)
\(140\) 0 0
\(141\) 4.95460 2.42845i 0.417252 0.204512i
\(142\) 0 0
\(143\) −3.23995 1.53137i −0.270938 0.128059i
\(144\) 0 0
\(145\) −21.5882 7.01445i −1.79281 0.582518i
\(146\) 0 0
\(147\) −10.8464 + 1.54586i −0.894595 + 0.127501i
\(148\) 0 0
\(149\) −4.77786 14.7048i −0.391418 1.20466i −0.931716 0.363187i \(-0.881689\pi\)
0.540298 0.841473i \(-0.318311\pi\)
\(150\) 0 0
\(151\) 3.82609 + 5.26616i 0.311363 + 0.428554i 0.935806 0.352517i \(-0.114674\pi\)
−0.624443 + 0.781070i \(0.714674\pi\)
\(152\) 0 0
\(153\) 0.114614 3.69369i 0.00926597 0.298617i
\(154\) 0 0
\(155\) 11.9879i 0.962890i
\(156\) 0 0
\(157\) −16.8906 + 12.2718i −1.34802 + 0.979393i −0.348911 + 0.937156i \(0.613448\pi\)
−0.999108 + 0.0422371i \(0.986552\pi\)
\(158\) 0 0
\(159\) 6.64592 12.5580i 0.527056 0.995912i
\(160\) 0 0
\(161\) 19.0173 + 13.8169i 1.49877 + 1.08892i
\(162\) 0 0
\(163\) −0.506916 + 1.56013i −0.0397047 + 0.122199i −0.968944 0.247279i \(-0.920463\pi\)
0.929240 + 0.369478i \(0.120463\pi\)
\(164\) 0 0
\(165\) 0.249490 + 17.5698i 0.0194228 + 1.36780i
\(166\) 0 0
\(167\) −1.53561 + 4.72613i −0.118829 + 0.365719i −0.992726 0.120392i \(-0.961585\pi\)
0.873897 + 0.486111i \(0.161585\pi\)
\(168\) 0 0
\(169\) −9.57270 6.95498i −0.736362 0.534998i
\(170\) 0 0
\(171\) −4.34138 14.9211i −0.331994 1.14104i
\(172\) 0 0
\(173\) 5.89880 4.28573i 0.448477 0.325838i −0.340517 0.940238i \(-0.610602\pi\)
0.788994 + 0.614400i \(0.210602\pi\)
\(174\) 0 0
\(175\) 15.9024i 1.20211i
\(176\) 0 0
\(177\) −7.51599 7.75283i −0.564937 0.582738i
\(178\) 0 0
\(179\) −5.35142 7.36560i −0.399984 0.550531i 0.560756 0.827981i \(-0.310511\pi\)
−0.960740 + 0.277450i \(0.910511\pi\)
\(180\) 0 0
\(181\) 6.81590 + 20.9772i 0.506622 + 1.55922i 0.798027 + 0.602622i \(0.205877\pi\)
−0.291405 + 0.956600i \(0.594123\pi\)
\(182\) 0 0
\(183\) 1.49238 + 10.4712i 0.110320 + 0.774050i
\(184\) 0 0
\(185\) −0.615911 0.200122i −0.0452827 0.0147132i
\(186\) 0 0
\(187\) −0.758693 4.01443i −0.0554811 0.293564i
\(188\) 0 0
\(189\) 7.81590 + 17.2829i 0.568523 + 1.25715i
\(190\) 0 0
\(191\) −5.67281 + 7.80795i −0.410470 + 0.564964i −0.963333 0.268309i \(-0.913535\pi\)
0.552863 + 0.833272i \(0.313535\pi\)
\(192\) 0 0
\(193\) 2.14654 0.697453i 0.154511 0.0502037i −0.230740 0.973015i \(-0.574115\pi\)
0.385251 + 0.922812i \(0.374115\pi\)
\(194\) 0 0
\(195\) 0.983095 5.63948i 0.0704009 0.403851i
\(196\) 0 0
\(197\) 5.10641 0.363816 0.181908 0.983316i \(-0.441773\pi\)
0.181908 + 0.983316i \(0.441773\pi\)
\(198\) 0 0
\(199\) 9.78375 0.693552 0.346776 0.937948i \(-0.387276\pi\)
0.346776 + 0.937948i \(0.387276\pi\)
\(200\) 0 0
\(201\) 0.965105 5.53628i 0.0680733 0.390499i
\(202\) 0 0
\(203\) −25.7635 + 8.37108i −1.80825 + 0.587535i
\(204\) 0 0
\(205\) 11.5614 15.9129i 0.807481 1.11140i
\(206\) 0 0
\(207\) 6.53667 18.1789i 0.454330 1.26352i
\(208\) 0 0
\(209\) −8.25077 15.0690i −0.570718 1.04234i
\(210\) 0 0
\(211\) −6.99936 2.27423i −0.481856 0.156564i 0.0580092 0.998316i \(-0.481525\pi\)
−0.539865 + 0.841752i \(0.681525\pi\)
\(212\) 0 0
\(213\) −0.0811619 0.569464i −0.00556112 0.0390191i
\(214\) 0 0
\(215\) −10.9767 33.7829i −0.748606 2.30397i
\(216\) 0 0
\(217\) 8.40910 + 11.5741i 0.570847 + 0.785703i
\(218\) 0 0
\(219\) 16.4203 + 16.9377i 1.10958 + 1.14455i
\(220\) 0 0
\(221\) 1.33099i 0.0895319i
\(222\) 0 0
\(223\) 3.18505 2.31408i 0.213287 0.154962i −0.476013 0.879438i \(-0.657918\pi\)
0.689300 + 0.724476i \(0.257918\pi\)
\(224\) 0 0
\(225\) −12.5486 + 3.65111i −0.836576 + 0.243407i
\(226\) 0 0
\(227\) −23.2691 16.9060i −1.54442 1.12209i −0.947483 0.319805i \(-0.896382\pi\)
−0.596941 0.802285i \(-0.703618\pi\)
\(228\) 0 0
\(229\) 3.93271 12.1036i 0.259881 0.799830i −0.732948 0.680284i \(-0.761856\pi\)
0.992829 0.119546i \(-0.0381437\pi\)
\(230\) 0 0
\(231\) 12.5655 + 16.7883i 0.826748 + 1.10459i
\(232\) 0 0
\(233\) 5.88532 18.1131i 0.385560 1.18663i −0.550513 0.834826i \(-0.685568\pi\)
0.936073 0.351805i \(-0.114432\pi\)
\(234\) 0 0
\(235\) 7.88335 + 5.72759i 0.514253 + 0.373627i
\(236\) 0 0
\(237\) −1.07582 + 2.03285i −0.0698821 + 0.132048i
\(238\) 0 0
\(239\) −16.5847 + 12.0495i −1.07278 + 0.779418i −0.976409 0.215928i \(-0.930722\pi\)
−0.0963677 + 0.995346i \(0.530722\pi\)
\(240\) 0 0
\(241\) 18.9036i 1.21769i 0.793290 + 0.608845i \(0.208367\pi\)
−0.793290 + 0.608845i \(0.791633\pi\)
\(242\) 0 0
\(243\) 11.8435 10.1356i 0.759762 0.650201i
\(244\) 0 0
\(245\) −11.3727 15.6531i −0.726574 1.00004i
\(246\) 0 0
\(247\) 1.72955 + 5.32300i 0.110048 + 0.338694i
\(248\) 0 0
\(249\) 13.3943 1.90900i 0.848828 0.120978i
\(250\) 0 0
\(251\) 24.2657 + 7.88439i 1.53164 + 0.497659i 0.949054 0.315114i \(-0.102043\pi\)
0.582582 + 0.812772i \(0.302043\pi\)
\(252\) 0 0
\(253\) 2.71295 21.1843i 0.170562 1.33185i
\(254\) 0 0
\(255\) 5.86015 2.87230i 0.366977 0.179870i
\(256\) 0 0
\(257\) −3.99783 + 5.50254i −0.249378 + 0.343239i −0.915293 0.402788i \(-0.868041\pi\)
0.665915 + 0.746027i \(0.268041\pi\)
\(258\) 0 0
\(259\) −0.735032 + 0.238826i −0.0456726 + 0.0148399i
\(260\) 0 0
\(261\) 12.5208 + 18.4082i 0.775020 + 1.13944i
\(262\) 0 0
\(263\) 17.9177 1.10485 0.552426 0.833562i \(-0.313702\pi\)
0.552426 + 0.833562i \(0.313702\pi\)
\(264\) 0 0
\(265\) 25.0916 1.54137
\(266\) 0 0
\(267\) 17.7068 + 3.08671i 1.08364 + 0.188903i
\(268\) 0 0
\(269\) −27.2051 + 8.83946i −1.65872 + 0.538952i −0.980604 0.196001i \(-0.937204\pi\)
−0.678119 + 0.734952i \(0.737204\pi\)
\(270\) 0 0
\(271\) 1.87897 2.58618i 0.114139 0.157099i −0.748125 0.663558i \(-0.769046\pi\)
0.862264 + 0.506458i \(0.169046\pi\)
\(272\) 0 0
\(273\) −3.00674 6.13444i −0.181976 0.371273i
\(274\) 0 0
\(275\) −12.6730 + 6.93891i −0.764213 + 0.418432i
\(276\) 0 0
\(277\) −20.3821 6.62255i −1.22464 0.397911i −0.375872 0.926672i \(-0.622657\pi\)
−0.848771 + 0.528761i \(0.822657\pi\)
\(278\) 0 0
\(279\) 7.20251 9.29302i 0.431203 0.556358i
\(280\) 0 0
\(281\) 3.19044 + 9.81917i 0.190326 + 0.585763i 0.999999 0.00111782i \(-0.000355813\pi\)
−0.809674 + 0.586881i \(0.800356\pi\)
\(282\) 0 0
\(283\) −3.55539 4.89357i −0.211346 0.290893i 0.690162 0.723655i \(-0.257539\pi\)
−0.901508 + 0.432762i \(0.857539\pi\)
\(284\) 0 0
\(285\) 19.7040 19.1021i 1.16717 1.13151i
\(286\) 0 0
\(287\) 23.4735i 1.38560i
\(288\) 0 0
\(289\) 12.5257 9.10045i 0.736806 0.535321i
\(290\) 0 0
\(291\) −9.73083 5.14974i −0.570432 0.301883i
\(292\) 0 0
\(293\) −22.6690 16.4700i −1.32434 0.962186i −0.999867 0.0162899i \(-0.994815\pi\)
−0.324469 0.945896i \(-0.605185\pi\)
\(294\) 0 0
\(295\) 5.89274 18.1360i 0.343089 1.05592i
\(296\) 0 0
\(297\) 10.3628 13.7700i 0.601310 0.799016i
\(298\) 0 0
\(299\) −2.15010 + 6.61732i −0.124343 + 0.382690i
\(300\) 0 0
\(301\) −34.2954 24.9171i −1.97675 1.43620i
\(302\) 0 0
\(303\) −11.9583 6.32855i −0.686985 0.363566i
\(304\) 0 0
\(305\) −15.1116 + 10.9792i −0.865289 + 0.628669i
\(306\) 0 0
\(307\) 7.37725i 0.421042i −0.977589 0.210521i \(-0.932484\pi\)
0.977589 0.210521i \(-0.0675160\pi\)
\(308\) 0 0
\(309\) 0.545298 0.528640i 0.0310209 0.0300733i
\(310\) 0 0
\(311\) 6.66335 + 9.17131i 0.377844 + 0.520057i 0.955012 0.296568i \(-0.0958422\pi\)
−0.577168 + 0.816625i \(0.695842\pi\)
\(312\) 0 0
\(313\) 0.518846 + 1.59684i 0.0293269 + 0.0902589i 0.964649 0.263539i \(-0.0848899\pi\)
−0.935322 + 0.353798i \(0.884890\pi\)
\(314\) 0 0
\(315\) −20.5205 + 26.4765i −1.15620 + 1.49178i
\(316\) 0 0
\(317\) −0.811116 0.263548i −0.0455568 0.0148023i 0.286150 0.958185i \(-0.407624\pi\)
−0.331707 + 0.943383i \(0.607624\pi\)
\(318\) 0 0
\(319\) 17.9129 + 16.8790i 1.00293 + 0.945041i
\(320\) 0 0
\(321\) −7.94067 16.2008i −0.443205 0.904240i
\(322\) 0 0
\(323\) −3.75052 + 5.16214i −0.208684 + 0.287229i
\(324\) 0 0
\(325\) 4.47665 1.45455i 0.248320 0.0806841i
\(326\) 0 0
\(327\) −3.90897 0.681427i −0.216167 0.0376830i
\(328\) 0 0
\(329\) 11.6290 0.641125
\(330\) 0 0
\(331\) −21.1263 −1.16121 −0.580603 0.814187i \(-0.697183\pi\)
−0.580603 + 0.814187i \(0.697183\pi\)
\(332\) 0 0
\(333\) 0.357219 + 0.525183i 0.0195755 + 0.0287799i
\(334\) 0 0
\(335\) 9.43881 3.06686i 0.515697 0.167560i
\(336\) 0 0
\(337\) 7.08246 9.74817i 0.385806 0.531017i −0.571305 0.820738i \(-0.693563\pi\)
0.957111 + 0.289721i \(0.0935626\pi\)
\(338\) 0 0
\(339\) 18.6445 9.13843i 1.01263 0.496331i
\(340\) 0 0
\(341\) 5.55447 11.7517i 0.300791 0.636392i
\(342\) 0 0
\(343\) 2.34188 + 0.760921i 0.126449 + 0.0410859i
\(344\) 0 0
\(345\) 33.7751 4.81374i 1.81839 0.259163i
\(346\) 0 0
\(347\) 0.646694 + 1.99032i 0.0347164 + 0.106846i 0.966913 0.255106i \(-0.0821104\pi\)
−0.932197 + 0.361952i \(0.882110\pi\)
\(348\) 0 0
\(349\) 7.38093 + 10.1590i 0.395092 + 0.543798i 0.959504 0.281696i \(-0.0908969\pi\)
−0.564412 + 0.825493i \(0.690897\pi\)
\(350\) 0 0
\(351\) −4.15038 + 3.78107i −0.221531 + 0.201818i
\(352\) 0 0
\(353\) 11.9737i 0.637296i 0.947873 + 0.318648i \(0.103229\pi\)
−0.947873 + 0.318648i \(0.896771\pi\)
\(354\) 0 0
\(355\) 0.821832 0.597096i 0.0436183 0.0316906i
\(356\) 0 0
\(357\) 3.64307 6.88386i 0.192812 0.364333i
\(358\) 0 0
\(359\) −22.8386 16.5932i −1.20538 0.875758i −0.210575 0.977578i \(-0.567533\pi\)
−0.994803 + 0.101820i \(0.967533\pi\)
\(360\) 0 0
\(361\) −2.42014 + 7.44841i −0.127376 + 0.392022i
\(362\) 0 0
\(363\) 7.89621 17.3393i 0.414443 0.910075i
\(364\) 0 0
\(365\) −12.8740 + 39.6220i −0.673854 + 2.07391i
\(366\) 0 0
\(367\) −11.1605 8.10857i −0.582573 0.423264i 0.257078 0.966391i \(-0.417240\pi\)
−0.839651 + 0.543127i \(0.817240\pi\)
\(368\) 0 0
\(369\) −18.5231 + 5.38941i −0.964272 + 0.280561i
\(370\) 0 0
\(371\) 24.2256 17.6009i 1.25773 0.913795i
\(372\) 0 0
\(373\) 4.34739i 0.225099i 0.993646 + 0.112550i \(0.0359017\pi\)
−0.993646 + 0.112550i \(0.964098\pi\)
\(374\) 0 0
\(375\) 2.37365 + 2.44845i 0.122575 + 0.126437i
\(376\) 0 0
\(377\) −4.71306 6.48697i −0.242735 0.334096i
\(378\) 0 0
\(379\) −6.93091 21.3311i −0.356017 1.09571i −0.955418 0.295258i \(-0.904594\pi\)
0.599401 0.800449i \(-0.295406\pi\)
\(380\) 0 0
\(381\) 4.88632 + 34.2844i 0.250334 + 1.75644i
\(382\) 0 0
\(383\) −17.2752 5.61305i −0.882722 0.286814i −0.167635 0.985849i \(-0.553613\pi\)
−0.715087 + 0.699036i \(0.753613\pi\)
\(384\) 0 0
\(385\) −15.8251 + 33.4816i −0.806522 + 1.70638i
\(386\) 0 0
\(387\) −11.7881 + 32.7835i −0.599223 + 1.66648i
\(388\) 0 0
\(389\) 14.8824 20.4839i 0.754567 1.03857i −0.243079 0.970006i \(-0.578157\pi\)
0.997647 0.0685664i \(-0.0218425\pi\)
\(390\) 0 0
\(391\) −7.54405 + 2.45121i −0.381519 + 0.123963i
\(392\) 0 0
\(393\) 1.79882 10.3188i 0.0907385 0.520517i
\(394\) 0 0
\(395\) −4.06176 −0.204369
\(396\) 0 0
\(397\) −1.96507 −0.0986240 −0.0493120 0.998783i \(-0.515703\pi\)
−0.0493120 + 0.998783i \(0.515703\pi\)
\(398\) 0 0
\(399\) 5.62447 32.2645i 0.281576 1.61525i
\(400\) 0 0
\(401\) −17.6060 + 5.72055i −0.879204 + 0.285671i −0.713627 0.700526i \(-0.752949\pi\)
−0.165577 + 0.986197i \(0.552949\pi\)
\(402\) 0 0
\(403\) −2.48905 + 3.42589i −0.123989 + 0.170656i
\(404\) 0 0
\(405\) 25.6041 + 10.1139i 1.27228 + 0.502565i
\(406\) 0 0
\(407\) 0.511054 + 0.481556i 0.0253320 + 0.0238698i
\(408\) 0 0
\(409\) 11.0518 + 3.59093i 0.546474 + 0.177560i 0.569226 0.822181i \(-0.307243\pi\)
−0.0227521 + 0.999741i \(0.507243\pi\)
\(410\) 0 0
\(411\) 0.874803 + 6.13797i 0.0431508 + 0.302764i
\(412\) 0 0
\(413\) −7.03243 21.6436i −0.346043 1.06501i
\(414\) 0 0
\(415\) 14.0442 + 19.3302i 0.689403 + 0.948881i
\(416\) 0 0
\(417\) −7.98473 8.23633i −0.391014 0.403335i
\(418\) 0 0
\(419\) 29.2430i 1.42861i 0.699833 + 0.714306i \(0.253258\pi\)
−0.699833 + 0.714306i \(0.746742\pi\)
\(420\) 0 0
\(421\) −14.6602 + 10.6512i −0.714493 + 0.519109i −0.884620 0.466313i \(-0.845582\pi\)
0.170127 + 0.985422i \(0.445582\pi\)
\(422\) 0 0
\(423\) −2.66995 9.17646i −0.129818 0.446175i
\(424\) 0 0
\(425\) 4.34137 + 3.15419i 0.210587 + 0.153001i
\(426\) 0 0
\(427\) −6.88849 + 21.2006i −0.333357 + 1.02597i
\(428\) 0 0
\(429\) −3.57673 + 5.07288i −0.172686 + 0.244921i
\(430\) 0 0
\(431\) −4.44702 + 13.6865i −0.214205 + 0.659256i 0.785004 + 0.619491i \(0.212661\pi\)
−0.999209 + 0.0397652i \(0.987339\pi\)
\(432\) 0 0
\(433\) −16.4587 11.9579i −0.790954 0.574661i 0.117293 0.993097i \(-0.462578\pi\)
−0.908246 + 0.418436i \(0.862578\pi\)
\(434\) 0 0
\(435\) −18.3903 + 34.7500i −0.881750 + 1.66613i
\(436\) 0 0
\(437\) −26.9856 + 19.6062i −1.29090 + 0.937891i
\(438\) 0 0
\(439\) 4.46676i 0.213187i −0.994303 0.106593i \(-0.966006\pi\)
0.994303 0.106593i \(-0.0339943\pi\)
\(440\) 0 0
\(441\) −0.588545 + 18.9672i −0.0280259 + 0.903200i
\(442\) 0 0
\(443\) −7.33510 10.0959i −0.348501 0.479670i 0.598399 0.801198i \(-0.295804\pi\)
−0.946900 + 0.321528i \(0.895804\pi\)
\(444\) 0 0
\(445\) 9.80876 + 30.1883i 0.464980 + 1.43106i
\(446\) 0 0
\(447\) −26.5122 + 3.77860i −1.25398 + 0.178722i
\(448\) 0 0
\(449\) 12.9949 + 4.22230i 0.613268 + 0.199263i 0.599149 0.800638i \(-0.295506\pi\)
0.0141188 + 0.999900i \(0.495506\pi\)
\(450\) 0 0
\(451\) −18.7067 + 10.2425i −0.880863 + 0.482302i
\(452\) 0 0
\(453\) 10.1238 4.96209i 0.475658 0.233140i
\(454\) 0 0
\(455\) 7.09151 9.76062i 0.332455 0.457585i
\(456\) 0 0
\(457\) 8.47229 2.75281i 0.396317 0.128771i −0.104077 0.994569i \(-0.533189\pi\)
0.500393 + 0.865798i \(0.333189\pi\)
\(458\) 0 0
\(459\) −6.26852 1.29426i −0.292589 0.0604110i
\(460\) 0 0
\(461\) 12.5468 0.584365 0.292182 0.956363i \(-0.405619\pi\)
0.292182 + 0.956363i \(0.405619\pi\)
\(462\) 0 0
\(463\) 5.12033 0.237962 0.118981 0.992897i \(-0.462037\pi\)
0.118981 + 0.992897i \(0.462037\pi\)
\(464\) 0 0
\(465\) 20.4552 + 3.56582i 0.948585 + 0.165361i
\(466\) 0 0
\(467\) 20.4005 6.62854i 0.944024 0.306732i 0.203739 0.979025i \(-0.434691\pi\)
0.740285 + 0.672293i \(0.234691\pi\)
\(468\) 0 0
\(469\) 6.96174 9.58201i 0.321463 0.442456i
\(470\) 0 0
\(471\) 15.9154 + 32.4710i 0.733342 + 1.49619i
\(472\) 0 0
\(473\) −4.89248 + 38.2034i −0.224956 + 1.75659i
\(474\) 0 0
\(475\) 21.4611 + 6.97313i 0.984703 + 0.319949i
\(476\) 0 0
\(477\) −19.4511 15.0754i −0.890603 0.690257i
\(478\) 0 0
\(479\) 2.31222 + 7.11627i 0.105648 + 0.325151i 0.989882 0.141893i \(-0.0453189\pi\)
−0.884234 + 0.467044i \(0.845319\pi\)
\(480\) 0 0
\(481\) −0.134463 0.185073i −0.00613099 0.00843859i
\(482\) 0 0
\(483\) 29.2327 28.3397i 1.33013 1.28950i
\(484\) 0 0
\(485\) 19.4428i 0.882854i
\(486\) 0 0
\(487\) 9.11476 6.62226i 0.413029 0.300083i −0.361798 0.932257i \(-0.617837\pi\)
0.774827 + 0.632173i \(0.217837\pi\)
\(488\) 0 0
\(489\) 2.51129 + 1.32902i 0.113564 + 0.0601005i
\(490\) 0 0
\(491\) 11.1254 + 8.08305i 0.502081 + 0.364783i 0.809811 0.586691i \(-0.199570\pi\)
−0.307731 + 0.951474i \(0.599570\pi\)
\(492\) 0 0
\(493\) 2.82481 8.69386i 0.127223 0.391552i
\(494\) 0 0
\(495\) 30.0538 + 4.80045i 1.35082 + 0.215764i
\(496\) 0 0
\(497\) 0.374624 1.15297i 0.0168042 0.0517180i
\(498\) 0 0
\(499\) −21.2230 15.4194i −0.950070 0.690266i 0.000753422 1.00000i \(-0.499760\pi\)
−0.950823 + 0.309733i \(0.899760\pi\)
\(500\) 0 0
\(501\) 7.60750 + 4.02604i 0.339878 + 0.179870i
\(502\) 0 0
\(503\) −15.8081 + 11.4853i −0.704849 + 0.512103i −0.881508 0.472169i \(-0.843471\pi\)
0.176659 + 0.984272i \(0.443471\pi\)
\(504\) 0 0
\(505\) 23.8934i 1.06324i
\(506\) 0 0
\(507\) −14.7148 + 14.2653i −0.653508 + 0.633545i
\(508\) 0 0
\(509\) 0.170150 + 0.234192i 0.00754178 + 0.0103804i 0.812771 0.582583i \(-0.197958\pi\)
−0.805229 + 0.592963i \(0.797958\pi\)
\(510\) 0 0
\(511\) 15.3639 + 47.2851i 0.679657 + 2.09177i
\(512\) 0 0
\(513\) −26.7514 + 2.96948i −1.18110 + 0.131106i
\(514\) 0 0
\(515\) 1.27560 + 0.414468i 0.0562097 + 0.0182636i
\(516\) 0 0
\(517\) −5.07423 9.26743i −0.223164 0.407581i
\(518\) 0 0
\(519\) −5.55821 11.3400i −0.243978 0.497772i
\(520\) 0 0
\(521\) 21.6263 29.7661i 0.947467 1.30408i −0.00517663 0.999987i \(-0.501648\pi\)
0.952643 0.304090i \(-0.0983522\pi\)
\(522\) 0 0
\(523\) 4.82060 1.56631i 0.210790 0.0684899i −0.201719 0.979444i \(-0.564653\pi\)
0.412509 + 0.910954i \(0.364653\pi\)
\(524\) 0 0
\(525\) −27.1345 4.73019i −1.18425 0.206443i
\(526\) 0 0
\(527\) −4.82767 −0.210297
\(528\) 0 0
\(529\) −18.4668 −0.802903
\(530\) 0 0
\(531\) −15.4644 + 10.5186i −0.671099 + 0.456468i
\(532\) 0 0
\(533\) 6.60800 2.14707i 0.286224 0.0929998i
\(534\) 0 0
\(535\) 18.7284 25.7774i 0.809698 1.11445i
\(536\) 0 0
\(537\) −14.1598 + 6.94032i −0.611042 + 0.299497i
\(538\) 0 0
\(539\) 3.89591 + 20.6142i 0.167809 + 0.887917i
\(540\) 0 0
\(541\) 20.1681 + 6.55302i 0.867095 + 0.281736i 0.708589 0.705622i \(-0.249332\pi\)
0.158506 + 0.987358i \(0.449332\pi\)
\(542\) 0 0
\(543\) 37.8212 5.39039i 1.62306 0.231324i
\(544\) 0 0
\(545\) −2.16540 6.66441i −0.0927554 0.285472i
\(546\) 0 0
\(547\) 0.567465 + 0.781049i 0.0242631 + 0.0333952i 0.820976 0.570962i \(-0.193430\pi\)
−0.796713 + 0.604358i \(0.793430\pi\)
\(548\) 0 0
\(549\) 18.3110 + 0.568184i 0.781496 + 0.0242495i
\(550\) 0 0
\(551\) 38.4399i 1.63760i
\(552\) 0 0
\(553\) −3.92157 + 2.84919i −0.166762 + 0.121160i
\(554\) 0 0
\(555\) −0.524675 + 0.991414i −0.0222712 + 0.0420832i
\(556\) 0 0
\(557\) −11.4562 8.32342i −0.485415 0.352675i 0.318003 0.948090i \(-0.396988\pi\)
−0.803418 + 0.595415i \(0.796988\pi\)
\(558\) 0 0
\(559\) 3.87745 11.9336i 0.163999 0.504736i
\(560\) 0 0
\(561\) −7.07557 + 0.100473i −0.298731 + 0.00424196i
\(562\) 0 0
\(563\) 3.20574 9.86626i 0.135106 0.415813i −0.860501 0.509449i \(-0.829849\pi\)
0.995606 + 0.0936363i \(0.0298491\pi\)
\(564\) 0 0
\(565\) 29.6656 + 21.5533i 1.24804 + 0.906755i
\(566\) 0 0
\(567\) 31.8150 8.19558i 1.33610 0.344182i
\(568\) 0 0
\(569\) 10.4409 7.58577i 0.437706 0.318012i −0.347017 0.937859i \(-0.612805\pi\)
0.784723 + 0.619847i \(0.212805\pi\)
\(570\) 0 0
\(571\) 29.4474i 1.23234i 0.787614 + 0.616169i \(0.211316\pi\)
−0.787614 + 0.616169i \(0.788684\pi\)
\(572\) 0 0
\(573\) 11.6355 + 12.0021i 0.486079 + 0.501395i
\(574\) 0 0
\(575\) 16.4888 + 22.6949i 0.687632 + 0.946445i
\(576\) 0 0
\(577\) −1.24885 3.84357i −0.0519904 0.160010i 0.921690 0.387927i \(-0.126809\pi\)
−0.973681 + 0.227917i \(0.926809\pi\)
\(578\) 0 0
\(579\) −0.551584 3.87014i −0.0229231 0.160837i
\(580\) 0 0
\(581\) 27.1189 + 8.81148i 1.12508 + 0.365562i
\(582\) 0 0
\(583\) −24.5974 11.6260i −1.01872 0.481499i
\(584\) 0 0
\(585\) −9.33032 3.35495i −0.385761 0.138710i
\(586\) 0 0
\(587\) 12.2449 16.8536i 0.505400 0.695623i −0.477735 0.878504i \(-0.658542\pi\)
0.983135 + 0.182880i \(0.0585421\pi\)
\(588\) 0 0
\(589\) −19.3072 + 6.27330i −0.795541 + 0.258487i
\(590\) 0 0
\(591\) 1.51891 8.71316i 0.0624796 0.358411i
\(592\) 0 0
\(593\) −12.8061 −0.525882 −0.262941 0.964812i \(-0.584692\pi\)
−0.262941 + 0.964812i \(0.584692\pi\)
\(594\) 0 0
\(595\) 13.7544 0.563876
\(596\) 0 0
\(597\) 2.91019 16.6942i 0.119106 0.683248i
\(598\) 0 0
\(599\) −32.1018 + 10.4305i −1.31164 + 0.426178i −0.879617 0.475683i \(-0.842201\pi\)
−0.432026 + 0.901861i \(0.642201\pi\)
\(600\) 0 0
\(601\) 23.7848 32.7370i 0.970202 1.33537i 0.0282567 0.999601i \(-0.491004\pi\)
0.941945 0.335767i \(-0.108996\pi\)
\(602\) 0 0
\(603\) −9.15959 3.29355i −0.373007 0.134124i
\(604\) 0 0
\(605\) 33.5876 1.99805i 1.36553 0.0812321i
\(606\) 0 0
\(607\) −21.4525 6.97033i −0.870729 0.282917i −0.160626 0.987015i \(-0.551351\pi\)
−0.710102 + 0.704098i \(0.751351\pi\)
\(608\) 0 0
\(609\) 6.62032 + 46.4508i 0.268269 + 1.88228i
\(610\) 0 0
\(611\) 1.06367 + 3.27365i 0.0430316 + 0.132438i
\(612\) 0 0
\(613\) 16.0195 + 22.0489i 0.647020 + 0.890547i 0.998966 0.0454737i \(-0.0144797\pi\)
−0.351945 + 0.936021i \(0.614480\pi\)
\(614\) 0 0
\(615\) −23.7134 24.4607i −0.956218 0.986350i
\(616\) 0 0
\(617\) 6.44731i 0.259559i 0.991543 + 0.129779i \(0.0414269\pi\)
−0.991543 + 0.129779i \(0.958573\pi\)
\(618\) 0 0
\(619\) −37.8534 + 27.5021i −1.52146 + 1.10540i −0.560695 + 0.828022i \(0.689466\pi\)
−0.960760 + 0.277380i \(0.910534\pi\)
\(620\) 0 0
\(621\) −29.0747 16.5610i −1.16673 0.664570i
\(622\) 0 0
\(623\) 30.6463 + 22.2658i 1.22782 + 0.892061i
\(624\) 0 0
\(625\) −8.59191 + 26.4432i −0.343677 + 1.05773i
\(626\) 0 0
\(627\) −28.1667 + 9.59614i −1.12487 + 0.383233i
\(628\) 0 0
\(629\) 0.0805915 0.248035i 0.00321339 0.00988981i
\(630\) 0 0
\(631\) −9.89291 7.18762i −0.393831 0.286135i 0.373193 0.927754i \(-0.378263\pi\)
−0.767023 + 0.641619i \(0.778263\pi\)
\(632\) 0 0
\(633\) −5.96253 + 11.2667i −0.236989 + 0.447810i
\(634\) 0 0
\(635\) −49.4781 + 35.9479i −1.96348 + 1.42655i
\(636\) 0 0
\(637\) 6.83466i 0.270799i
\(638\) 0 0
\(639\) −0.995829 0.0309002i −0.0393944 0.00122239i
\(640\) 0 0
\(641\) 11.9388 + 16.4323i 0.471553 + 0.649038i 0.976854 0.213906i \(-0.0686185\pi\)
−0.505301 + 0.862943i \(0.668618\pi\)
\(642\) 0 0
\(643\) 7.34016 + 22.5907i 0.289468 + 0.890889i 0.985024 + 0.172418i \(0.0551580\pi\)
−0.695556 + 0.718472i \(0.744842\pi\)
\(644\) 0 0
\(645\) −60.9094 + 8.68101i −2.39831 + 0.341814i
\(646\) 0 0
\(647\) 1.85376 + 0.602324i 0.0728789 + 0.0236798i 0.345230 0.938518i \(-0.387801\pi\)
−0.272351 + 0.962198i \(0.587801\pi\)
\(648\) 0 0
\(649\) −14.1798 + 15.0484i −0.556606 + 0.590701i
\(650\) 0 0
\(651\) 22.2504 10.9058i 0.872064 0.427434i
\(652\) 0 0
\(653\) −13.5705 + 18.6781i −0.531053 + 0.730932i −0.987291 0.158926i \(-0.949197\pi\)
0.456237 + 0.889858i \(0.349197\pi\)
\(654\) 0 0
\(655\) 17.5926 5.71619i 0.687400 0.223350i
\(656\) 0 0
\(657\) 33.7854 22.9801i 1.31809 0.896540i
\(658\) 0 0
\(659\) −44.0671 −1.71661 −0.858305 0.513139i \(-0.828482\pi\)
−0.858305 + 0.513139i \(0.828482\pi\)
\(660\) 0 0
\(661\) −31.5126 −1.22570 −0.612848 0.790201i \(-0.709976\pi\)
−0.612848 + 0.790201i \(0.709976\pi\)
\(662\) 0 0
\(663\) 2.27109 + 0.395905i 0.0882018 + 0.0153757i
\(664\) 0 0
\(665\) 55.0078 17.8731i 2.13311 0.693090i
\(666\) 0 0
\(667\) 28.0884 38.6604i 1.08759 1.49694i
\(668\) 0 0
\(669\) −3.00115 6.12304i −0.116031 0.236730i
\(670\) 0 0
\(671\) 19.9011 3.76113i 0.768272 0.145197i
\(672\) 0 0
\(673\) −37.8385 12.2945i −1.45857 0.473918i −0.530936 0.847412i \(-0.678160\pi\)
−0.927633 + 0.373494i \(0.878160\pi\)
\(674\) 0 0
\(675\) 2.49734 + 22.4980i 0.0961227 + 0.865948i
\(676\) 0 0
\(677\) 12.2831 + 37.8035i 0.472078 + 1.45291i 0.849858 + 0.527012i \(0.176688\pi\)
−0.377780 + 0.925896i \(0.623312\pi\)
\(678\) 0 0
\(679\) −13.6385 18.7718i −0.523397 0.720395i
\(680\) 0 0
\(681\) −35.7684 + 34.6758i −1.37065 + 1.32878i
\(682\) 0 0
\(683\) 24.4150i 0.934216i 0.884200 + 0.467108i \(0.154704\pi\)
−0.884200 + 0.467108i \(0.845296\pi\)
\(684\) 0 0
\(685\) −8.85811 + 6.43579i −0.338451 + 0.245899i
\(686\) 0 0
\(687\) −19.4828 10.3107i −0.743317 0.393377i
\(688\) 0 0
\(689\) 7.17067 + 5.20980i 0.273181 + 0.198478i
\(690\) 0 0
\(691\) 9.30862 28.6490i 0.354117 1.08986i −0.602403 0.798192i \(-0.705790\pi\)
0.956520 0.291667i \(-0.0942099\pi\)
\(692\) 0 0
\(693\) 32.3839 16.4470i 1.23016 0.624769i
\(694\) 0 0
\(695\) 6.26024 19.2670i 0.237465 0.730841i
\(696\) 0 0
\(697\) 6.40830 + 4.65591i 0.242732 + 0.176355i
\(698\) 0 0
\(699\) −29.1562 15.4300i −1.10279 0.583617i
\(700\) 0 0
\(701\) 6.88933 5.00539i 0.260207 0.189051i −0.450032 0.893013i \(-0.648587\pi\)
0.710238 + 0.703962i \(0.248587\pi\)
\(702\) 0 0
\(703\) 1.09669i 0.0413624i
\(704\) 0 0
\(705\) 12.1180 11.7478i 0.456390 0.442448i
\(706\) 0 0
\(707\) −16.7604 23.0687i −0.630341 0.867589i
\(708\) 0 0
\(709\) −0.381815 1.17511i −0.0143394 0.0441320i 0.943631 0.331000i \(-0.107386\pi\)
−0.957970 + 0.286868i \(0.907386\pi\)
\(710\) 0 0
\(711\) 3.14868 + 2.44037i 0.118085 + 0.0915209i
\(712\) 0 0
\(713\) −24.0019 7.79870i −0.898879 0.292064i
\(714\) 0 0
\(715\) −10.8728 1.39242i −0.406621 0.0520735i
\(716\) 0 0
\(717\) 15.6271 + 31.8830i 0.583606 + 1.19069i
\(718\) 0 0
\(719\) 12.2944 16.9218i 0.458503 0.631075i −0.515694 0.856773i \(-0.672466\pi\)
0.974197 + 0.225697i \(0.0724660\pi\)
\(720\) 0 0
\(721\) 1.52231 0.494628i 0.0566937 0.0184209i
\(722\) 0 0
\(723\) 32.2556 + 5.62292i 1.19960 + 0.209119i
\(724\) 0 0
\(725\) −32.3281 −1.20063
\(726\) 0 0
\(727\) 5.62159 0.208493 0.104247 0.994551i \(-0.466757\pi\)
0.104247 + 0.994551i \(0.466757\pi\)
\(728\) 0 0
\(729\) −13.7717 23.2237i −0.510064 0.860136i
\(730\) 0 0
\(731\) 13.6048 4.42046i 0.503191 0.163497i
\(732\) 0 0
\(733\) −10.6432 + 14.6491i −0.393115 + 0.541076i −0.958999 0.283408i \(-0.908535\pi\)
0.565884 + 0.824485i \(0.308535\pi\)
\(734\) 0 0
\(735\) −30.0921 + 14.7494i −1.10996 + 0.544038i
\(736\) 0 0
\(737\) −10.6739 1.36694i −0.393177 0.0503519i
\(738\) 0 0
\(739\) −47.2943 15.3668i −1.73975 0.565279i −0.744948 0.667122i \(-0.767526\pi\)
−0.994800 + 0.101844i \(0.967526\pi\)
\(740\) 0 0
\(741\) 9.59719 1.36782i 0.352562 0.0502482i
\(742\) 0 0
\(743\) −4.72836 14.5524i −0.173467 0.533875i 0.826094 0.563533i \(-0.190558\pi\)
−0.999560 + 0.0296578i \(0.990558\pi\)
\(744\) 0 0
\(745\) −27.7986 38.2615i −1.01846 1.40179i
\(746\) 0 0
\(747\) 0.726798 23.4227i 0.0265922 0.856993i
\(748\) 0 0
\(749\) 38.0250i 1.38940i
\(750\) 0 0
\(751\) 0.955311 0.694074i 0.0348598 0.0253271i −0.570219 0.821493i \(-0.693142\pi\)
0.605079 + 0.796166i \(0.293142\pi\)
\(752\) 0 0
\(753\) 20.6712 39.0597i 0.753299 1.42342i
\(754\) 0 0
\(755\) 16.1082 + 11.7033i 0.586237 + 0.425926i
\(756\) 0 0
\(757\) 16.9914 52.2942i 0.617563 1.90066i 0.271667 0.962391i \(-0.412425\pi\)
0.345896 0.938273i \(-0.387575\pi\)
\(758\) 0 0
\(759\) −35.3402 10.9305i −1.28277 0.396751i
\(760\) 0 0
\(761\) 11.3528 34.9402i 0.411538 1.26658i −0.503774 0.863836i \(-0.668055\pi\)
0.915311 0.402747i \(-0.131945\pi\)
\(762\) 0 0
\(763\) −6.76552 4.91543i −0.244928 0.177951i
\(764\) 0 0
\(765\) −3.15794 10.8537i −0.114176 0.392415i
\(766\) 0 0
\(767\) 5.44961 3.95938i 0.196774 0.142965i
\(768\) 0 0
\(769\) 33.5717i 1.21063i −0.795988 0.605313i \(-0.793048\pi\)
0.795988 0.605313i \(-0.206952\pi\)
\(770\) 0 0
\(771\) 8.19993 + 8.45832i 0.295313 + 0.304619i
\(772\) 0 0
\(773\) −4.68913 6.45403i −0.168656 0.232135i 0.716320 0.697772i \(-0.245825\pi\)
−0.884976 + 0.465637i \(0.845825\pi\)
\(774\) 0 0
\(775\) 5.27586 + 16.2374i 0.189515 + 0.583266i
\(776\) 0 0
\(777\) 0.188877 + 1.32524i 0.00677593 + 0.0475426i
\(778\) 0 0
\(779\) 31.6788 + 10.2931i 1.13501 + 0.368787i
\(780\) 0 0
\(781\) −1.08230 + 0.204546i −0.0387278 + 0.00731923i
\(782\) 0 0
\(783\) 35.1345 15.8890i 1.25561 0.567826i
\(784\) 0 0
\(785\) −37.5370 + 51.6653i −1.33975 + 1.84401i
\(786\) 0 0
\(787\) 22.2647 7.23422i 0.793649 0.257872i 0.115992 0.993250i \(-0.462995\pi\)
0.677657 + 0.735378i \(0.262995\pi\)
\(788\) 0 0
\(789\) 5.32965 30.5733i 0.189741 1.08844i
\(790\) 0 0
\(791\) 43.7606 1.55595
\(792\) 0 0
\(793\) −6.59822 −0.234310
\(794\) 0 0
\(795\) 7.46356 42.8143i 0.264705 1.51847i
\(796\) 0 0
\(797\) 10.1288 3.29105i 0.358780 0.116575i −0.124080 0.992272i \(-0.539598\pi\)
0.482860 + 0.875697i \(0.339598\pi\)
\(798\) 0 0
\(799\) −2.30657 + 3.17472i −0.0816006 + 0.112314i
\(800\) 0 0
\(801\) 10.5338 29.2952i 0.372194 1.03510i
\(802\) 0 0
\(803\) 30.9788 32.8764i 1.09322 1.16018i
\(804\) 0 0
\(805\) 68.3833 + 22.2191i 2.41020 + 0.783120i
\(806\) 0 0
\(807\) 6.99074 + 49.0498i 0.246086 + 1.72664i
\(808\) 0 0
\(809\) −12.2662 37.7515i −0.431257 1.32727i −0.896874 0.442286i \(-0.854168\pi\)
0.465618 0.884986i \(-0.345832\pi\)
\(810\) 0 0
\(811\) 23.3622 + 32.1553i 0.820357 + 1.12912i 0.989642 + 0.143558i \(0.0458542\pi\)
−0.169285 + 0.985567i \(0.554146\pi\)
\(812\) 0 0
\(813\) −3.85395 3.97539i −0.135164 0.139423i
\(814\) 0 0
\(815\) 5.01772i 0.175763i
\(816\) 0 0
\(817\) 48.6653 35.3574i 1.70258 1.23700i
\(818\) 0 0
\(819\) −11.3617 + 3.30575i −0.397009 + 0.115512i
\(820\) 0 0
\(821\) 29.4898 + 21.4256i 1.02920 + 0.747758i 0.968148 0.250377i \(-0.0805545\pi\)
0.0610520 + 0.998135i \(0.480554\pi\)
\(822\) 0 0
\(823\) −12.3254 + 37.9338i −0.429637 + 1.32229i 0.468846 + 0.883280i \(0.344670\pi\)
−0.898483 + 0.439008i \(0.855330\pi\)
\(824\) 0 0
\(825\) 8.07038 + 23.6882i 0.280974 + 0.824718i
\(826\) 0 0
\(827\) 4.37961 13.4790i 0.152294 0.468712i −0.845583 0.533844i \(-0.820747\pi\)
0.997877 + 0.0651319i \(0.0207468\pi\)
\(828\) 0 0
\(829\) 31.9573 + 23.2184i 1.10992 + 0.806407i 0.982652 0.185460i \(-0.0593776\pi\)
0.127273 + 0.991868i \(0.459378\pi\)
\(830\) 0 0
\(831\) −17.3629 + 32.8085i −0.602312 + 1.13811i
\(832\) 0 0
\(833\) 6.30372 4.57992i 0.218411 0.158685i
\(834\) 0 0
\(835\) 15.2003i 0.526028i
\(836\) 0 0
\(837\) −13.7144 15.0540i −0.474041 0.520342i
\(838\) 0 0
\(839\) −10.2091 14.0516i −0.352457 0.485115i 0.595571 0.803303i \(-0.296926\pi\)
−0.948028 + 0.318187i \(0.896926\pi\)
\(840\) 0 0
\(841\) 8.05612 + 24.7942i 0.277797 + 0.854972i
\(842\) 0 0
\(843\) 17.7036 2.52318i 0.609746 0.0869029i
\(844\) 0 0
\(845\) −34.4220 11.1844i −1.18415 0.384755i
\(846\) 0 0
\(847\) 31.0267 25.4896i 1.06609 0.875834i
\(848\) 0 0
\(849\) −9.40755 + 4.61102i −0.322866 + 0.158250i
\(850\) 0 0
\(851\) 0.801360 1.10298i 0.0274703 0.0378096i
\(852\) 0 0
\(853\) 8.78978 2.85597i 0.300956 0.0977867i −0.154646 0.987970i \(-0.549424\pi\)
0.455603 + 0.890183i \(0.349424\pi\)
\(854\) 0 0
\(855\) −26.7333 39.3033i −0.914259 1.34415i
\(856\) 0 0
\(857\) −56.2505 −1.92148 −0.960740 0.277449i \(-0.910511\pi\)
−0.960740 + 0.277449i \(0.910511\pi\)
\(858\) 0 0
\(859\) 38.7547 1.32229 0.661147 0.750257i \(-0.270070\pi\)
0.661147 + 0.750257i \(0.270070\pi\)
\(860\) 0 0
\(861\) −40.0533 6.98224i −1.36501 0.237954i
\(862\) 0 0
\(863\) −5.32524 + 1.73028i −0.181273 + 0.0588993i −0.398247 0.917278i \(-0.630381\pi\)
0.216974 + 0.976177i \(0.430381\pi\)
\(864\) 0 0
\(865\) 13.1092 18.0433i 0.445728 0.613491i
\(866\) 0 0
\(867\) −11.8025 24.0798i −0.400833 0.817792i
\(868\) 0 0
\(869\) 3.98174 + 1.88198i 0.135071 + 0.0638417i
\(870\) 0 0
\(871\) 3.33419 + 1.08334i 0.112975 + 0.0367077i
\(872\) 0 0
\(873\) −11.6816 + 15.0721i −0.395361 + 0.510113i
\(874\) 0 0
\(875\) 2.22093 + 6.83533i 0.0750813 + 0.231076i
\(876\) 0 0
\(877\) −20.2476 27.8684i −0.683712 0.941049i 0.316259 0.948673i \(-0.397573\pi\)
−0.999971 + 0.00762378i \(0.997573\pi\)
\(878\) 0 0
\(879\) −34.8460 + 33.7815i −1.17532 + 1.13942i
\(880\) 0 0
\(881\) 8.23935i 0.277591i −0.990321 0.138795i \(-0.955677\pi\)
0.990321 0.138795i \(-0.0443231\pi\)
\(882\) 0 0
\(883\) 6.22787 4.52481i 0.209585 0.152272i −0.478041 0.878337i \(-0.658653\pi\)
0.687626 + 0.726065i \(0.258653\pi\)
\(884\) 0 0
\(885\) −29.1930 15.4495i −0.981311 0.519328i
\(886\) 0 0
\(887\) 10.2713 + 7.46250i 0.344875 + 0.250566i 0.746716 0.665143i \(-0.231629\pi\)
−0.401841 + 0.915710i \(0.631629\pi\)
\(888\) 0 0
\(889\) −22.5541 + 69.4144i −0.756441 + 2.32808i
\(890\) 0 0
\(891\) −20.4136 21.7781i −0.683880 0.729594i
\(892\) 0 0
\(893\) −5.09925 + 15.6939i −0.170640 + 0.525176i
\(894\) 0 0
\(895\) −22.5300 16.3690i −0.753094 0.547155i
\(896\) 0 0
\(897\) 10.6517 + 5.63709i 0.355650 + 0.188217i
\(898\) 0 0
\(899\) 23.5291 17.0949i 0.784740 0.570147i
\(900\) 0 0
\(901\) 10.1047i 0.336637i
\(902\) 0 0
\(903\) −52.7177 + 51.1073i −1.75434 + 1.70074i
\(904\) 0 0
\(905\) 39.6563 + 54.5823i 1.31822 + 1.81438i
\(906\) 0 0
\(907\) −13.7515 42.3228i −0.456612 1.40531i −0.869233 0.494403i \(-0.835387\pi\)
0.412621 0.910903i \(-0.364613\pi\)
\(908\) 0 0
\(909\) −14.3555 + 18.5222i −0.476143 + 0.614342i
\(910\) 0 0
\(911\) −49.5522 16.1005i −1.64174 0.533433i −0.664811 0.747012i \(-0.731488\pi\)
−0.976926 + 0.213579i \(0.931488\pi\)
\(912\) 0 0
\(913\) −4.81109 25.4566i −0.159224 0.842492i
\(914\) 0 0
\(915\) 14.2391 + 29.0510i 0.470730 + 0.960397i
\(916\) 0 0
\(917\) 12.9757 17.8595i 0.428495 0.589773i
\(918\) 0 0
\(919\) 43.5280 14.1431i 1.43586 0.466538i 0.515253 0.857038i \(-0.327698\pi\)
0.920603 + 0.390500i \(0.127698\pi\)
\(920\) 0 0
\(921\) −12.5879 2.19438i −0.414787 0.0723072i
\(922\) 0 0
\(923\) 0.358838 0.0118113
\(924\) 0 0
\(925\) −0.922317 −0.0303256
\(926\) 0 0
\(927\) −0.739828 1.08770i −0.0242991 0.0357246i
\(928\) 0 0
\(929\) 23.7662 7.72210i 0.779743 0.253354i 0.108013 0.994150i \(-0.465551\pi\)
0.671731 + 0.740796i \(0.265551\pi\)
\(930\) 0 0
\(931\) 19.2590 26.5078i 0.631189 0.868757i
\(932\) 0 0
\(933\) 17.6312 8.64177i 0.577220 0.282919i
\(934\) 0 0
\(935\) −6.00165 10.9613i −0.196275 0.358471i
\(936\) 0 0
\(937\) −6.47451 2.10370i −0.211513 0.0687248i 0.201344 0.979521i \(-0.435469\pi\)
−0.412857 + 0.910796i \(0.635469\pi\)
\(938\) 0 0
\(939\) 2.87906 0.410332i 0.0939544 0.0133907i
\(940\) 0 0
\(941\) 0.0824070 + 0.253623i 0.00268639 + 0.00826787i 0.952391 0.304880i \(-0.0986164\pi\)
−0.949704 + 0.313148i \(0.898616\pi\)
\(942\) 0 0
\(943\) 24.3392 + 33.5000i 0.792593 + 1.09091i
\(944\) 0 0
\(945\) 39.0735 + 42.8900i 1.27106 + 1.39521i
\(946\) 0 0
\(947\) 33.2727i 1.08122i −0.841274 0.540609i \(-0.818194\pi\)
0.841274 0.540609i \(-0.181806\pi\)
\(948\) 0 0
\(949\) −11.9059 + 8.65011i −0.386481 + 0.280795i
\(950\) 0 0
\(951\) −0.690964 + 1.30563i −0.0224061 + 0.0423379i
\(952\) 0 0
\(953\) −28.2860 20.5509i −0.916272 0.665710i 0.0263214 0.999654i \(-0.491621\pi\)
−0.942593 + 0.333943i \(0.891621\pi\)
\(954\) 0 0
\(955\) −9.12252 + 28.0762i −0.295198 + 0.908526i
\(956\) 0 0
\(957\) 34.1291 25.5444i 1.10324 0.825734i
\(958\) 0 0
\(959\) −4.03788 + 12.4273i −0.130390 + 0.401299i
\(960\) 0 0
\(961\) 12.6534 + 9.19320i 0.408173 + 0.296555i
\(962\) 0 0
\(963\) −30.0057 + 8.73035i −0.966920 + 0.281332i
\(964\) 0 0
\(965\) 5.58525 4.05792i 0.179796 0.130629i
\(966\) 0 0
\(967\) 28.9143i 0.929821i 0.885358 + 0.464910i \(0.153913\pi\)
−0.885358 + 0.464910i \(0.846087\pi\)
\(968\) 0 0
\(969\) 7.69266 + 7.93506i 0.247124 + 0.254911i
\(970\) 0 0
\(971\) 17.7091 + 24.3745i 0.568312 + 0.782214i 0.992353 0.123429i \(-0.0393890\pi\)
−0.424042 + 0.905643i \(0.639389\pi\)
\(972\) 0 0
\(973\) −7.47101 22.9934i −0.239509 0.737134i
\(974\) 0 0
\(975\) −1.15034 8.07126i −0.0368404 0.258487i
\(976\) 0 0
\(977\) −20.3315 6.60611i −0.650463 0.211348i −0.0348447 0.999393i \(-0.511094\pi\)
−0.615618 + 0.788045i \(0.711094\pi\)
\(978\) 0 0
\(979\) 4.37190 34.1384i 0.139727 1.09107i
\(980\) 0 0
\(981\) −2.32546 + 6.46726i −0.0742463 + 0.206484i
\(982\) 0 0
\(983\) −29.5552 + 40.6793i −0.942665 + 1.29747i 0.0120443 + 0.999927i \(0.496166\pi\)
−0.954709 + 0.297540i \(0.903834\pi\)
\(984\) 0 0
\(985\) 14.8551 4.82670i 0.473322 0.153792i
\(986\) 0 0
\(987\) 3.45906 19.8427i 0.110103 0.631600i
\(988\) 0 0
\(989\) 74.7804 2.37788
\(990\) 0 0
\(991\) −26.0847 −0.828609 −0.414305 0.910138i \(-0.635975\pi\)
−0.414305 + 0.910138i \(0.635975\pi\)
\(992\) 0 0
\(993\) −6.28405 + 36.0482i −0.199418 + 1.14395i
\(994\) 0 0
\(995\) 28.4619 9.24785i 0.902304 0.293176i
\(996\) 0 0
\(997\) −13.2782 + 18.2759i −0.420525 + 0.578803i −0.965746 0.259490i \(-0.916446\pi\)
0.545221 + 0.838292i \(0.316446\pi\)
\(998\) 0 0
\(999\) 1.00239 0.453312i 0.0317141 0.0143421i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.2.bn.d.497.3 16
3.2 odd 2 inner 528.2.bn.d.497.4 16
4.3 odd 2 132.2.p.a.101.2 yes 16
11.6 odd 10 inner 528.2.bn.d.17.4 16
12.11 even 2 132.2.p.a.101.1 yes 16
33.17 even 10 inner 528.2.bn.d.17.3 16
44.7 even 10 1452.2.b.e.725.10 16
44.15 odd 10 1452.2.b.e.725.9 16
44.39 even 10 132.2.p.a.17.1 16
132.59 even 10 1452.2.b.e.725.11 16
132.83 odd 10 132.2.p.a.17.2 yes 16
132.95 odd 10 1452.2.b.e.725.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.p.a.17.1 16 44.39 even 10
132.2.p.a.17.2 yes 16 132.83 odd 10
132.2.p.a.101.1 yes 16 12.11 even 2
132.2.p.a.101.2 yes 16 4.3 odd 2
528.2.bn.d.17.3 16 33.17 even 10 inner
528.2.bn.d.17.4 16 11.6 odd 10 inner
528.2.bn.d.497.3 16 1.1 even 1 trivial
528.2.bn.d.497.4 16 3.2 odd 2 inner
1452.2.b.e.725.9 16 44.15 odd 10
1452.2.b.e.725.10 16 44.7 even 10
1452.2.b.e.725.11 16 132.59 even 10
1452.2.b.e.725.12 16 132.95 odd 10