L(s) = 1 | + (0.297 − 1.70i)3-s + (2.90 − 0.945i)5-s + (2.14 − 2.95i)7-s + (−2.82 − 1.01i)9-s + (−3.28 − 0.421i)11-s + (1.02 + 0.333i)13-s + (−0.747 − 5.24i)15-s + (0.380 + 1.17i)17-s + (3.04 + 4.19i)19-s + (−4.40 − 4.53i)21-s + 6.43i·23-s + (3.52 − 2.56i)25-s + (−2.57 + 4.51i)27-s + (−6.00 − 4.36i)29-s + (−1.21 + 3.72i)31-s + ⋯ |
L(s) = 1 | + (0.171 − 0.985i)3-s + (1.30 − 0.422i)5-s + (0.810 − 1.11i)7-s + (−0.941 − 0.338i)9-s + (−0.991 − 0.127i)11-s + (0.285 + 0.0926i)13-s + (−0.193 − 1.35i)15-s + (0.0923 + 0.284i)17-s + (0.698 + 0.961i)19-s + (−0.960 − 0.990i)21-s + 1.34i·23-s + (0.704 − 0.512i)25-s + (−0.494 + 0.868i)27-s + (−1.11 − 0.809i)29-s + (−0.217 + 0.669i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00778 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.00778 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32645 - 1.33682i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32645 - 1.33682i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.297 + 1.70i)T \) |
| 11 | \( 1 + (3.28 + 0.421i)T \) |
good | 5 | \( 1 + (-2.90 + 0.945i)T + (4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (-2.14 + 2.95i)T + (-2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.02 - 0.333i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.380 - 1.17i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-3.04 - 4.19i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 6.43iT - 23T^{2} \) |
| 29 | \( 1 + (6.00 + 4.36i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (1.21 - 3.72i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.171 + 0.124i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-5.20 + 3.77i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 11.6iT - 43T^{2} \) |
| 47 | \( 1 + (-1.87 - 2.57i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-7.80 - 2.53i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-3.66 + 5.04i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (5.80 - 1.88i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 3.24T + 67T^{2} \) |
| 71 | \( 1 + (-0.315 + 0.102i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (8.00 - 11.0i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (1.26 + 0.410i)T + (63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.41 - 7.42i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 10.3iT - 89T^{2} \) |
| 97 | \( 1 + (-1.96 + 6.04i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61172841577308567424490852676, −9.775133811955557458728660426770, −8.752755181150298920123175210382, −7.76311690322225303418200402005, −7.23440683586067148689256872850, −5.80050924424512254156917189403, −5.38922657653578371319617581850, −3.73252467530313761288603081216, −2.11866864719527678776081056042, −1.20984120322950661451071095049,
2.22308651942711498055499880190, 2.91704491844580606783659739702, 4.71471520612224125311183798058, 5.41149714833348844657752421245, 6.12228410637333257407042237839, 7.63444930857576181652511152870, 8.720013389165096992667551191817, 9.322075950242920341013543676179, 10.16832370309013651311319248917, 10.92071174257340900334221452942