Properties

Label 528.497
Modulus $528$
Conductor $33$
Order $10$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(528, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([0,0,5,1]))
 
Copy content pari:[g,chi] = znchar(Mod(497,528))
 

Basic properties

Modulus: \(528\)
Conductor: \(33\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{33}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 528.bn

\(\chi_{528}(17,\cdot)\) \(\chi_{528}(161,\cdot)\) \(\chi_{528}(305,\cdot)\) \(\chi_{528}(497,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{33})^+\)

Values on generators

\((463,133,353,145)\) → \((1,1,-1,e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 528 }(497, a) \) \(1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(-1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 528 }(497,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 528 }(497,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 528 }(497,·),\chi_{ 528 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 528 }(497,·)) \;\) at \(\; a,b = \) e.g. 1,2