Properties

Label 528.2.bn.d.17.4
Level $528$
Weight $2$
Character 528.17
Analytic conductor $4.216$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [528,2,Mod(17,528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(528, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 5, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("528.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 528.bn (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-1,0,0,0,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.21610122672\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 23 x^{12} - 72 x^{11} + 146 x^{10} - 176 x^{9} + 223 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 17.4
Root \(-1.53089 + 0.810175i\) of defining polynomial
Character \(\chi\) \(=\) 528.17
Dual form 528.2.bn.d.497.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71472 - 0.244388i) q^{3} +(-2.90910 - 0.945225i) q^{5} +(2.14565 + 2.95324i) q^{7} +(2.88055 - 0.838115i) q^{9} +(3.28976 - 0.421300i) q^{11} +(1.02762 - 0.333894i) q^{13} +(-5.21931 - 0.909850i) q^{15} +(-0.380654 + 1.17153i) q^{17} +(3.04469 - 4.19066i) q^{19} +(4.40094 + 4.53961i) q^{21} +6.43947i q^{23} +(3.52435 + 2.56059i) q^{25} +(4.73452 - 2.14111i) q^{27} +(6.00366 - 4.36191i) q^{29} +(-1.21108 - 3.72731i) q^{31} +(5.53806 - 1.52639i) q^{33} +(-3.45045 - 10.6194i) q^{35} +(-0.171284 + 0.124445i) q^{37} +(1.68048 - 0.823673i) q^{39} +(-5.20230 - 3.77969i) q^{41} +11.6128i q^{43} +(-9.17202 - 0.284604i) q^{45} +(-1.87249 + 2.57726i) q^{47} +(-1.95467 + 6.01586i) q^{49} +(-0.366408 + 2.10188i) q^{51} +(-7.80158 + 2.53489i) q^{53} +(-9.96847 - 1.88396i) q^{55} +(4.19665 - 7.92990i) q^{57} +(-3.66438 - 5.04359i) q^{59} +(-5.80774 - 1.88705i) q^{61} +(8.65581 + 6.70864i) q^{63} -3.30506 q^{65} +3.24458 q^{67} +(1.57373 + 11.0419i) q^{69} +(-0.315849 - 0.102625i) q^{71} +(-8.00563 - 11.0188i) q^{73} +(6.66906 + 3.52939i) q^{75} +(8.30288 + 8.81148i) q^{77} +(-1.26290 + 0.410340i) q^{79} +(7.59513 - 4.82846i) q^{81} +(-2.41384 + 7.42902i) q^{83} +(2.21472 - 3.04831i) q^{85} +(9.22861 - 8.94669i) q^{87} +10.3772i q^{89} +(3.19098 + 2.31838i) q^{91} +(-2.98757 - 6.09534i) q^{93} +(-12.8184 + 9.31313i) q^{95} +(1.96422 + 6.04523i) q^{97} +(9.12321 - 3.97077i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{3} + 5 q^{9} - 9 q^{15} + 30 q^{19} - 12 q^{25} - q^{27} + 10 q^{31} - 41 q^{33} - 24 q^{37} + 35 q^{39} + 2 q^{45} + 12 q^{49} + 15 q^{51} - 62 q^{55} + 35 q^{57} + 40 q^{61} - 55 q^{63} - 44 q^{67}+ \cdots + 101 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71472 0.244388i 0.989996 0.141097i
\(4\) 0 0
\(5\) −2.90910 0.945225i −1.30099 0.422718i −0.425065 0.905163i \(-0.639749\pi\)
−0.875926 + 0.482445i \(0.839749\pi\)
\(6\) 0 0
\(7\) 2.14565 + 2.95324i 0.810981 + 1.11622i 0.991171 + 0.132588i \(0.0423286\pi\)
−0.180191 + 0.983632i \(0.557671\pi\)
\(8\) 0 0
\(9\) 2.88055 0.838115i 0.960183 0.279372i
\(10\) 0 0
\(11\) 3.28976 0.421300i 0.991899 0.127027i
\(12\) 0 0
\(13\) 1.02762 0.333894i 0.285010 0.0926055i −0.163023 0.986622i \(-0.552125\pi\)
0.448033 + 0.894017i \(0.352125\pi\)
\(14\) 0 0
\(15\) −5.21931 0.909850i −1.34762 0.234922i
\(16\) 0 0
\(17\) −0.380654 + 1.17153i −0.0923222 + 0.284138i −0.986547 0.163481i \(-0.947728\pi\)
0.894224 + 0.447619i \(0.147728\pi\)
\(18\) 0 0
\(19\) 3.04469 4.19066i 0.698500 0.961402i −0.301469 0.953476i \(-0.597477\pi\)
0.999969 0.00792623i \(-0.00252302\pi\)
\(20\) 0 0
\(21\) 4.40094 + 4.53961i 0.960363 + 0.990625i
\(22\) 0 0
\(23\) 6.43947i 1.34272i 0.741130 + 0.671361i \(0.234290\pi\)
−0.741130 + 0.671361i \(0.765710\pi\)
\(24\) 0 0
\(25\) 3.52435 + 2.56059i 0.704870 + 0.512118i
\(26\) 0 0
\(27\) 4.73452 2.14111i 0.911159 0.412056i
\(28\) 0 0
\(29\) 6.00366 4.36191i 1.11485 0.809987i 0.131430 0.991325i \(-0.458043\pi\)
0.983421 + 0.181339i \(0.0580430\pi\)
\(30\) 0 0
\(31\) −1.21108 3.72731i −0.217516 0.669446i −0.998965 0.0454768i \(-0.985519\pi\)
0.781449 0.623969i \(-0.214481\pi\)
\(32\) 0 0
\(33\) 5.53806 1.52639i 0.964053 0.265710i
\(34\) 0 0
\(35\) −3.45045 10.6194i −0.583233 1.79501i
\(36\) 0 0
\(37\) −0.171284 + 0.124445i −0.0281589 + 0.0204586i −0.601776 0.798665i \(-0.705540\pi\)
0.573617 + 0.819124i \(0.305540\pi\)
\(38\) 0 0
\(39\) 1.68048 0.823673i 0.269093 0.131893i
\(40\) 0 0
\(41\) −5.20230 3.77969i −0.812462 0.590288i 0.102081 0.994776i \(-0.467450\pi\)
−0.914543 + 0.404488i \(0.867450\pi\)
\(42\) 0 0
\(43\) 11.6128i 1.77094i 0.464699 + 0.885469i \(0.346163\pi\)
−0.464699 + 0.885469i \(0.653837\pi\)
\(44\) 0 0
\(45\) −9.17202 0.284604i −1.36728 0.0424263i
\(46\) 0 0
\(47\) −1.87249 + 2.57726i −0.273130 + 0.375932i −0.923443 0.383735i \(-0.874638\pi\)
0.650313 + 0.759666i \(0.274638\pi\)
\(48\) 0 0
\(49\) −1.95467 + 6.01586i −0.279239 + 0.859408i
\(50\) 0 0
\(51\) −0.366408 + 2.10188i −0.0513074 + 0.294322i
\(52\) 0 0
\(53\) −7.80158 + 2.53489i −1.07163 + 0.348194i −0.791122 0.611658i \(-0.790503\pi\)
−0.280508 + 0.959852i \(0.590503\pi\)
\(54\) 0 0
\(55\) −9.96847 1.88396i −1.34415 0.254033i
\(56\) 0 0
\(57\) 4.19665 7.92990i 0.555860 1.05034i
\(58\) 0 0
\(59\) −3.66438 5.04359i −0.477062 0.656619i 0.500875 0.865520i \(-0.333012\pi\)
−0.977937 + 0.208900i \(0.933012\pi\)
\(60\) 0 0
\(61\) −5.80774 1.88705i −0.743604 0.241612i −0.0873774 0.996175i \(-0.527849\pi\)
−0.656227 + 0.754564i \(0.727849\pi\)
\(62\) 0 0
\(63\) 8.65581 + 6.70864i 1.09053 + 0.845210i
\(64\) 0 0
\(65\) −3.30506 −0.409942
\(66\) 0 0
\(67\) 3.24458 0.396388 0.198194 0.980163i \(-0.436492\pi\)
0.198194 + 0.980163i \(0.436492\pi\)
\(68\) 0 0
\(69\) 1.57373 + 11.0419i 0.189455 + 1.32929i
\(70\) 0 0
\(71\) −0.315849 0.102625i −0.0374843 0.0121794i 0.290215 0.956962i \(-0.406273\pi\)
−0.327699 + 0.944782i \(0.606273\pi\)
\(72\) 0 0
\(73\) −8.00563 11.0188i −0.936989 1.28965i −0.957070 0.289856i \(-0.906393\pi\)
0.0200816 0.999798i \(-0.493607\pi\)
\(74\) 0 0
\(75\) 6.66906 + 3.52939i 0.770077 + 0.407539i
\(76\) 0 0
\(77\) 8.30288 + 8.81148i 0.946201 + 1.00416i
\(78\) 0 0
\(79\) −1.26290 + 0.410340i −0.142087 + 0.0461668i −0.379197 0.925316i \(-0.623800\pi\)
0.237110 + 0.971483i \(0.423800\pi\)
\(80\) 0 0
\(81\) 7.59513 4.82846i 0.843903 0.536496i
\(82\) 0 0
\(83\) −2.41384 + 7.42902i −0.264953 + 0.815441i 0.726751 + 0.686901i \(0.241029\pi\)
−0.991704 + 0.128541i \(0.958971\pi\)
\(84\) 0 0
\(85\) 2.21472 3.04831i 0.240221 0.330635i
\(86\) 0 0
\(87\) 9.22861 8.94669i 0.989411 0.959186i
\(88\) 0 0
\(89\) 10.3772i 1.09998i 0.835172 + 0.549989i \(0.185368\pi\)
−0.835172 + 0.549989i \(0.814632\pi\)
\(90\) 0 0
\(91\) 3.19098 + 2.31838i 0.334506 + 0.243033i
\(92\) 0 0
\(93\) −2.98757 6.09534i −0.309797 0.632057i
\(94\) 0 0
\(95\) −12.8184 + 9.31313i −1.31514 + 0.955507i
\(96\) 0 0
\(97\) 1.96422 + 6.04523i 0.199436 + 0.613801i 0.999896 + 0.0144147i \(0.00458849\pi\)
−0.800460 + 0.599386i \(0.795412\pi\)
\(98\) 0 0
\(99\) 9.12321 3.97077i 0.916917 0.399077i
\(100\) 0 0
\(101\) −2.41384 7.42902i −0.240186 0.739215i −0.996391 0.0848812i \(-0.972949\pi\)
0.756205 0.654334i \(-0.227051\pi\)
\(102\) 0 0
\(103\) 0.354742 0.257735i 0.0349538 0.0253954i −0.570171 0.821526i \(-0.693123\pi\)
0.605125 + 0.796130i \(0.293123\pi\)
\(104\) 0 0
\(105\) −8.51182 17.3661i −0.830669 1.69476i
\(106\) 0 0
\(107\) −8.42725 6.12275i −0.814693 0.591909i 0.100494 0.994938i \(-0.467958\pi\)
−0.915187 + 0.403029i \(0.867958\pi\)
\(108\) 0 0
\(109\) 2.29088i 0.219427i 0.993963 + 0.109713i \(0.0349933\pi\)
−0.993963 + 0.109713i \(0.965007\pi\)
\(110\) 0 0
\(111\) −0.263292 + 0.255248i −0.0249905 + 0.0242271i
\(112\) 0 0
\(113\) −7.04630 + 9.69840i −0.662860 + 0.912349i −0.999572 0.0292588i \(-0.990685\pi\)
0.336711 + 0.941608i \(0.390685\pi\)
\(114\) 0 0
\(115\) 6.08675 18.7331i 0.567592 1.74687i
\(116\) 0 0
\(117\) 2.68027 1.82306i 0.247791 0.168542i
\(118\) 0 0
\(119\) −4.27657 + 1.38954i −0.392032 + 0.127379i
\(120\) 0 0
\(121\) 10.6450 2.77195i 0.967728 0.251995i
\(122\) 0 0
\(123\) −9.84421 5.20974i −0.887622 0.469747i
\(124\) 0 0
\(125\) 1.15726 + 1.59283i 0.103509 + 0.142467i
\(126\) 0 0
\(127\) −19.0155 6.17852i −1.68736 0.548255i −0.701041 0.713121i \(-0.747281\pi\)
−0.986316 + 0.164866i \(0.947281\pi\)
\(128\) 0 0
\(129\) 2.83803 + 19.9128i 0.249875 + 1.75322i
\(130\) 0 0
\(131\) −6.04743 −0.528367 −0.264183 0.964472i \(-0.585102\pi\)
−0.264183 + 0.964472i \(0.585102\pi\)
\(132\) 0 0
\(133\) 18.9089 1.63961
\(134\) 0 0
\(135\) −15.7970 + 1.75351i −1.35959 + 0.150918i
\(136\) 0 0
\(137\) 3.40437 + 1.10615i 0.290855 + 0.0945045i 0.450810 0.892620i \(-0.351135\pi\)
−0.159955 + 0.987124i \(0.551135\pi\)
\(138\) 0 0
\(139\) 3.89291 + 5.35813i 0.330192 + 0.454471i 0.941545 0.336888i \(-0.109374\pi\)
−0.611352 + 0.791358i \(0.709374\pi\)
\(140\) 0 0
\(141\) −2.58095 + 4.87689i −0.217355 + 0.410709i
\(142\) 0 0
\(143\) 3.23995 1.53137i 0.270938 0.128059i
\(144\) 0 0
\(145\) −21.5882 + 7.01445i −1.79281 + 0.582518i
\(146\) 0 0
\(147\) −1.88152 + 10.7932i −0.155185 + 0.890210i
\(148\) 0 0
\(149\) 4.77786 14.7048i 0.391418 1.20466i −0.540298 0.841473i \(-0.681689\pi\)
0.931716 0.363187i \(-0.118311\pi\)
\(150\) 0 0
\(151\) 3.82609 5.26616i 0.311363 0.428554i −0.624443 0.781070i \(-0.714674\pi\)
0.935806 + 0.352517i \(0.114674\pi\)
\(152\) 0 0
\(153\) −0.114614 + 3.69369i −0.00926597 + 0.298617i
\(154\) 0 0
\(155\) 11.9879i 0.962890i
\(156\) 0 0
\(157\) −16.8906 12.2718i −1.34802 0.979393i −0.999108 0.0422371i \(-0.986552\pi\)
−0.348911 0.937156i \(-0.613448\pi\)
\(158\) 0 0
\(159\) −12.7581 + 6.25324i −1.01178 + 0.495914i
\(160\) 0 0
\(161\) −19.0173 + 13.8169i −1.49877 + 1.08892i
\(162\) 0 0
\(163\) −0.506916 1.56013i −0.0397047 0.122199i 0.929240 0.369478i \(-0.120463\pi\)
−0.968944 + 0.247279i \(0.920463\pi\)
\(164\) 0 0
\(165\) −17.5536 0.794291i −1.36654 0.0618354i
\(166\) 0 0
\(167\) 1.53561 + 4.72613i 0.118829 + 0.365719i 0.992726 0.120392i \(-0.0384152\pi\)
−0.873897 + 0.486111i \(0.838415\pi\)
\(168\) 0 0
\(169\) −9.57270 + 6.95498i −0.736362 + 0.534998i
\(170\) 0 0
\(171\) 5.25813 14.6232i 0.402099 1.11826i
\(172\) 0 0
\(173\) −5.89880 4.28573i −0.448477 0.325838i 0.340517 0.940238i \(-0.389398\pi\)
−0.788994 + 0.614400i \(0.789398\pi\)
\(174\) 0 0
\(175\) 15.9024i 1.20211i
\(176\) 0 0
\(177\) −7.51599 7.75283i −0.564937 0.582738i
\(178\) 0 0
\(179\) 5.35142 7.36560i 0.399984 0.550531i −0.560756 0.827981i \(-0.689489\pi\)
0.960740 + 0.277450i \(0.0894894\pi\)
\(180\) 0 0
\(181\) 6.81590 20.9772i 0.506622 1.55922i −0.291405 0.956600i \(-0.594123\pi\)
0.798027 0.602622i \(-0.205877\pi\)
\(182\) 0 0
\(183\) −10.4198 1.81642i −0.770256 0.134274i
\(184\) 0 0
\(185\) 0.615911 0.200122i 0.0452827 0.0147132i
\(186\) 0 0
\(187\) −0.758693 + 4.01443i −0.0554811 + 0.293564i
\(188\) 0 0
\(189\) 16.4818 + 9.38809i 1.19888 + 0.682883i
\(190\) 0 0
\(191\) 5.67281 + 7.80795i 0.410470 + 0.564964i 0.963333 0.268309i \(-0.0864647\pi\)
−0.552863 + 0.833272i \(0.686465\pi\)
\(192\) 0 0
\(193\) 2.14654 + 0.697453i 0.154511 + 0.0502037i 0.385251 0.922812i \(-0.374115\pi\)
−0.230740 + 0.973015i \(0.574115\pi\)
\(194\) 0 0
\(195\) −5.66726 + 0.807716i −0.405841 + 0.0578417i
\(196\) 0 0
\(197\) −5.10641 −0.363816 −0.181908 0.983316i \(-0.558227\pi\)
−0.181908 + 0.983316i \(0.558227\pi\)
\(198\) 0 0
\(199\) 9.78375 0.693552 0.346776 0.937948i \(-0.387276\pi\)
0.346776 + 0.937948i \(0.387276\pi\)
\(200\) 0 0
\(201\) 5.56355 0.792935i 0.392423 0.0559293i
\(202\) 0 0
\(203\) 25.7635 + 8.37108i 1.80825 + 0.587535i
\(204\) 0 0
\(205\) 11.5614 + 15.9129i 0.807481 + 1.11140i
\(206\) 0 0
\(207\) 5.39702 + 18.5492i 0.375119 + 1.28926i
\(208\) 0 0
\(209\) 8.25077 15.0690i 0.570718 1.04234i
\(210\) 0 0
\(211\) −6.99936 + 2.27423i −0.481856 + 0.156564i −0.539865 0.841752i \(-0.681525\pi\)
0.0580092 + 0.998316i \(0.481525\pi\)
\(212\) 0 0
\(213\) −0.566673 0.0987846i −0.0388278 0.00676861i
\(214\) 0 0
\(215\) 10.9767 33.7829i 0.748606 2.30397i
\(216\) 0 0
\(217\) 8.40910 11.5741i 0.570847 0.785703i
\(218\) 0 0
\(219\) −16.4203 16.9377i −1.10958 1.14455i
\(220\) 0 0
\(221\) 1.33099i 0.0895319i
\(222\) 0 0
\(223\) 3.18505 + 2.31408i 0.213287 + 0.154962i 0.689300 0.724476i \(-0.257918\pi\)
−0.476013 + 0.879438i \(0.657918\pi\)
\(224\) 0 0
\(225\) 12.2981 + 4.42209i 0.819875 + 0.294806i
\(226\) 0 0
\(227\) 23.2691 16.9060i 1.54442 1.12209i 0.596941 0.802285i \(-0.296382\pi\)
0.947483 0.319805i \(-0.103618\pi\)
\(228\) 0 0
\(229\) 3.93271 + 12.1036i 0.259881 + 0.799830i 0.992829 + 0.119546i \(0.0381437\pi\)
−0.732948 + 0.680284i \(0.761856\pi\)
\(230\) 0 0
\(231\) 16.3906 + 13.0801i 1.07842 + 0.860609i
\(232\) 0 0
\(233\) −5.88532 18.1131i −0.385560 1.18663i −0.936073 0.351805i \(-0.885568\pi\)
0.550513 0.834826i \(-0.314432\pi\)
\(234\) 0 0
\(235\) 7.88335 5.72759i 0.514253 0.373627i
\(236\) 0 0
\(237\) −2.06523 + 1.01226i −0.134151 + 0.0657530i
\(238\) 0 0
\(239\) 16.5847 + 12.0495i 1.07278 + 0.779418i 0.976409 0.215928i \(-0.0692775\pi\)
0.0963677 + 0.995346i \(0.469278\pi\)
\(240\) 0 0
\(241\) 18.9036i 1.21769i −0.793290 0.608845i \(-0.791633\pi\)
0.793290 0.608845i \(-0.208367\pi\)
\(242\) 0 0
\(243\) 11.8435 10.1356i 0.759762 0.650201i
\(244\) 0 0
\(245\) 11.3727 15.6531i 0.726574 1.00004i
\(246\) 0 0
\(247\) 1.72955 5.32300i 0.110048 0.338694i
\(248\) 0 0
\(249\) −2.32350 + 13.3286i −0.147246 + 0.844668i
\(250\) 0 0
\(251\) −24.2657 + 7.88439i −1.53164 + 0.497659i −0.949054 0.315114i \(-0.897957\pi\)
−0.582582 + 0.812772i \(0.697957\pi\)
\(252\) 0 0
\(253\) 2.71295 + 21.1843i 0.170562 + 1.33185i
\(254\) 0 0
\(255\) 3.05267 5.76825i 0.191166 0.361222i
\(256\) 0 0
\(257\) 3.99783 + 5.50254i 0.249378 + 0.343239i 0.915293 0.402788i \(-0.131959\pi\)
−0.665915 + 0.746027i \(0.731959\pi\)
\(258\) 0 0
\(259\) −0.735032 0.238826i −0.0456726 0.0148399i
\(260\) 0 0
\(261\) 13.6380 17.5965i 0.844174 1.08919i
\(262\) 0 0
\(263\) −17.9177 −1.10485 −0.552426 0.833562i \(-0.686298\pi\)
−0.552426 + 0.833562i \(0.686298\pi\)
\(264\) 0 0
\(265\) 25.0916 1.54137
\(266\) 0 0
\(267\) 2.53605 + 17.7940i 0.155204 + 1.08897i
\(268\) 0 0
\(269\) 27.2051 + 8.83946i 1.65872 + 0.538952i 0.980604 0.196001i \(-0.0627956\pi\)
0.678119 + 0.734952i \(0.262796\pi\)
\(270\) 0 0
\(271\) 1.87897 + 2.58618i 0.114139 + 0.157099i 0.862264 0.506458i \(-0.169046\pi\)
−0.748125 + 0.663558i \(0.769046\pi\)
\(272\) 0 0
\(273\) 6.03824 + 3.19555i 0.365451 + 0.193403i
\(274\) 0 0
\(275\) 12.6730 + 6.93891i 0.764213 + 0.418432i
\(276\) 0 0
\(277\) −20.3821 + 6.62255i −1.22464 + 0.397911i −0.848771 0.528761i \(-0.822657\pi\)
−0.375872 + 0.926672i \(0.622657\pi\)
\(278\) 0 0
\(279\) −6.61249 9.72169i −0.395879 0.582022i
\(280\) 0 0
\(281\) −3.19044 + 9.81917i −0.190326 + 0.585763i −0.999999 0.00111782i \(-0.999644\pi\)
0.809674 + 0.586881i \(0.199644\pi\)
\(282\) 0 0
\(283\) −3.55539 + 4.89357i −0.211346 + 0.290893i −0.901508 0.432762i \(-0.857539\pi\)
0.690162 + 0.723655i \(0.257539\pi\)
\(284\) 0 0
\(285\) −19.7040 + 19.1021i −1.16717 + 1.13151i
\(286\) 0 0
\(287\) 23.4735i 1.38560i
\(288\) 0 0
\(289\) 12.5257 + 9.10045i 0.736806 + 0.535321i
\(290\) 0 0
\(291\) 4.84547 + 9.88587i 0.284046 + 0.579520i
\(292\) 0 0
\(293\) 22.6690 16.4700i 1.32434 0.962186i 0.324469 0.945896i \(-0.394815\pi\)
0.999867 0.0162899i \(-0.00518546\pi\)
\(294\) 0 0
\(295\) 5.89274 + 18.1360i 0.343089 + 1.05592i
\(296\) 0 0
\(297\) 14.6734 9.03837i 0.851435 0.524460i
\(298\) 0 0
\(299\) 2.15010 + 6.61732i 0.124343 + 0.382690i
\(300\) 0 0
\(301\) −34.2954 + 24.9171i −1.97675 + 1.43620i
\(302\) 0 0
\(303\) −5.95462 12.1488i −0.342084 0.697931i
\(304\) 0 0
\(305\) 15.1116 + 10.9792i 0.865289 + 0.628669i
\(306\) 0 0
\(307\) 7.37725i 0.421042i 0.977589 + 0.210521i \(0.0675160\pi\)
−0.977589 + 0.210521i \(0.932484\pi\)
\(308\) 0 0
\(309\) 0.545298 0.528640i 0.0310209 0.0300733i
\(310\) 0 0
\(311\) −6.66335 + 9.17131i −0.377844 + 0.520057i −0.955012 0.296568i \(-0.904158\pi\)
0.577168 + 0.816625i \(0.304158\pi\)
\(312\) 0 0
\(313\) 0.518846 1.59684i 0.0293269 0.0902589i −0.935322 0.353798i \(-0.884890\pi\)
0.964649 + 0.263539i \(0.0848899\pi\)
\(314\) 0 0
\(315\) −18.8395 27.6978i −1.06148 1.56060i
\(316\) 0 0
\(317\) 0.811116 0.263548i 0.0455568 0.0148023i −0.286150 0.958185i \(-0.592376\pi\)
0.331707 + 0.943383i \(0.392376\pi\)
\(318\) 0 0
\(319\) 17.9129 16.8790i 1.00293 0.945041i
\(320\) 0 0
\(321\) −15.9467 8.43931i −0.890059 0.471036i
\(322\) 0 0
\(323\) 3.75052 + 5.16214i 0.208684 + 0.287229i
\(324\) 0 0
\(325\) 4.47665 + 1.45455i 0.248320 + 0.0806841i
\(326\) 0 0
\(327\) 0.559863 + 3.92822i 0.0309605 + 0.217231i
\(328\) 0 0
\(329\) −11.6290 −0.641125
\(330\) 0 0
\(331\) −21.1263 −1.16121 −0.580603 0.814187i \(-0.697183\pi\)
−0.580603 + 0.814187i \(0.697183\pi\)
\(332\) 0 0
\(333\) −0.389092 + 0.502026i −0.0213221 + 0.0275108i
\(334\) 0 0
\(335\) −9.43881 3.06686i −0.515697 0.167560i
\(336\) 0 0
\(337\) 7.08246 + 9.74817i 0.385806 + 0.531017i 0.957111 0.289721i \(-0.0935626\pi\)
−0.571305 + 0.820738i \(0.693563\pi\)
\(338\) 0 0
\(339\) −9.71229 + 18.3521i −0.527499 + 0.996750i
\(340\) 0 0
\(341\) −5.55447 11.7517i −0.300791 0.636392i
\(342\) 0 0
\(343\) 2.34188 0.760921i 0.126449 0.0410859i
\(344\) 0 0
\(345\) 5.85895 33.6096i 0.315435 1.80948i
\(346\) 0 0
\(347\) −0.646694 + 1.99032i −0.0347164 + 0.106846i −0.966913 0.255106i \(-0.917890\pi\)
0.932197 + 0.361952i \(0.117890\pi\)
\(348\) 0 0
\(349\) 7.38093 10.1590i 0.395092 0.543798i −0.564412 0.825493i \(-0.690897\pi\)
0.959504 + 0.281696i \(0.0908969\pi\)
\(350\) 0 0
\(351\) 4.15038 3.78107i 0.221531 0.201818i
\(352\) 0 0
\(353\) 11.9737i 0.637296i 0.947873 + 0.318648i \(0.103229\pi\)
−0.947873 + 0.318648i \(0.896771\pi\)
\(354\) 0 0
\(355\) 0.821832 + 0.597096i 0.0436183 + 0.0316906i
\(356\) 0 0
\(357\) −6.99354 + 3.42782i −0.370137 + 0.181419i
\(358\) 0 0
\(359\) 22.8386 16.5932i 1.20538 0.875758i 0.210575 0.977578i \(-0.432467\pi\)
0.994803 + 0.101820i \(0.0324665\pi\)
\(360\) 0 0
\(361\) −2.42014 7.44841i −0.127376 0.392022i
\(362\) 0 0
\(363\) 17.5758 7.35464i 0.922491 0.386018i
\(364\) 0 0
\(365\) 12.8740 + 39.6220i 0.673854 + 2.07391i
\(366\) 0 0
\(367\) −11.1605 + 8.10857i −0.582573 + 0.423264i −0.839651 0.543127i \(-0.817240\pi\)
0.257078 + 0.966391i \(0.417240\pi\)
\(368\) 0 0
\(369\) −18.1533 6.52746i −0.945022 0.339806i
\(370\) 0 0
\(371\) −24.2256 17.6009i −1.25773 0.913795i
\(372\) 0 0
\(373\) 4.34739i 0.225099i −0.993646 0.112550i \(-0.964098\pi\)
0.993646 0.112550i \(-0.0359017\pi\)
\(374\) 0 0
\(375\) 2.37365 + 2.44845i 0.122575 + 0.126437i
\(376\) 0 0
\(377\) 4.71306 6.48697i 0.242735 0.334096i
\(378\) 0 0
\(379\) −6.93091 + 21.3311i −0.356017 + 1.09571i 0.599401 + 0.800449i \(0.295406\pi\)
−0.955418 + 0.295258i \(0.904594\pi\)
\(380\) 0 0
\(381\) −34.1163 5.94729i −1.74783 0.304689i
\(382\) 0 0
\(383\) 17.2752 5.61305i 0.882722 0.286814i 0.167635 0.985849i \(-0.446387\pi\)
0.715087 + 0.699036i \(0.246387\pi\)
\(384\) 0 0
\(385\) −15.8251 33.4816i −0.806522 1.70638i
\(386\) 0 0
\(387\) 9.73287 + 33.4513i 0.494750 + 1.70042i
\(388\) 0 0
\(389\) −14.8824 20.4839i −0.754567 1.03857i −0.997647 0.0685664i \(-0.978157\pi\)
0.243079 0.970006i \(-0.421843\pi\)
\(390\) 0 0
\(391\) −7.54405 2.45121i −0.381519 0.123963i
\(392\) 0 0
\(393\) −10.3697 + 1.47792i −0.523081 + 0.0745512i
\(394\) 0 0
\(395\) 4.06176 0.204369
\(396\) 0 0
\(397\) −1.96507 −0.0986240 −0.0493120 0.998783i \(-0.515703\pi\)
−0.0493120 + 0.998783i \(0.515703\pi\)
\(398\) 0 0
\(399\) 32.4234 4.62109i 1.62320 0.231344i
\(400\) 0 0
\(401\) 17.6060 + 5.72055i 0.879204 + 0.285671i 0.713627 0.700526i \(-0.247051\pi\)
0.165577 + 0.986197i \(0.447051\pi\)
\(402\) 0 0
\(403\) −2.48905 3.42589i −0.123989 0.170656i
\(404\) 0 0
\(405\) −26.6590 + 6.86739i −1.32470 + 0.341244i
\(406\) 0 0
\(407\) −0.511054 + 0.481556i −0.0253320 + 0.0238698i
\(408\) 0 0
\(409\) 11.0518 3.59093i 0.546474 0.177560i −0.0227521 0.999741i \(-0.507243\pi\)
0.569226 + 0.822181i \(0.307243\pi\)
\(410\) 0 0
\(411\) 6.10788 + 1.06475i 0.301280 + 0.0525202i
\(412\) 0 0
\(413\) 7.03243 21.6436i 0.346043 1.06501i
\(414\) 0 0
\(415\) 14.0442 19.3302i 0.689403 0.948881i
\(416\) 0 0
\(417\) 7.98473 + 8.23633i 0.391014 + 0.403335i
\(418\) 0 0
\(419\) 29.2430i 1.42861i 0.699833 + 0.714306i \(0.253258\pi\)
−0.699833 + 0.714306i \(0.746742\pi\)
\(420\) 0 0
\(421\) −14.6602 10.6512i −0.714493 0.519109i 0.170127 0.985422i \(-0.445582\pi\)
−0.884620 + 0.466313i \(0.845582\pi\)
\(422\) 0 0
\(423\) −3.23375 + 8.99327i −0.157230 + 0.437268i
\(424\) 0 0
\(425\) −4.34137 + 3.15419i −0.210587 + 0.153001i
\(426\) 0 0
\(427\) −6.88849 21.2006i −0.333357 1.02597i
\(428\) 0 0
\(429\) 5.18137 3.41767i 0.250159 0.165007i
\(430\) 0 0
\(431\) 4.44702 + 13.6865i 0.214205 + 0.659256i 0.999209 + 0.0397652i \(0.0126610\pi\)
−0.785004 + 0.619491i \(0.787339\pi\)
\(432\) 0 0
\(433\) −16.4587 + 11.9579i −0.790954 + 0.574661i −0.908246 0.418436i \(-0.862578\pi\)
0.117293 + 0.993097i \(0.462578\pi\)
\(434\) 0 0
\(435\) −35.3036 + 17.3037i −1.69268 + 0.829651i
\(436\) 0 0
\(437\) 26.9856 + 19.6062i 1.29090 + 0.937891i
\(438\) 0 0
\(439\) 4.46676i 0.213187i 0.994303 + 0.106593i \(0.0339943\pi\)
−0.994303 + 0.106593i \(0.966006\pi\)
\(440\) 0 0
\(441\) −0.588545 + 18.9672i −0.0280259 + 0.903200i
\(442\) 0 0
\(443\) 7.33510 10.0959i 0.348501 0.479670i −0.598399 0.801198i \(-0.704196\pi\)
0.946900 + 0.321528i \(0.104196\pi\)
\(444\) 0 0
\(445\) 9.80876 30.1883i 0.464980 1.43106i
\(446\) 0 0
\(447\) 4.59905 26.3822i 0.217528 1.24784i
\(448\) 0 0
\(449\) −12.9949 + 4.22230i −0.613268 + 0.199263i −0.599149 0.800638i \(-0.704494\pi\)
−0.0141188 + 0.999900i \(0.504494\pi\)
\(450\) 0 0
\(451\) −18.7067 10.2425i −0.880863 0.482302i
\(452\) 0 0
\(453\) 5.27369 9.96505i 0.247780 0.468199i
\(454\) 0 0
\(455\) −7.09151 9.76062i −0.332455 0.457585i
\(456\) 0 0
\(457\) 8.47229 + 2.75281i 0.396317 + 0.128771i 0.500393 0.865798i \(-0.333189\pi\)
−0.104077 + 0.994569i \(0.533189\pi\)
\(458\) 0 0
\(459\) 0.706162 + 6.36166i 0.0329608 + 0.296937i
\(460\) 0 0
\(461\) −12.5468 −0.584365 −0.292182 0.956363i \(-0.594381\pi\)
−0.292182 + 0.956363i \(0.594381\pi\)
\(462\) 0 0
\(463\) 5.12033 0.237962 0.118981 0.992897i \(-0.462037\pi\)
0.118981 + 0.992897i \(0.462037\pi\)
\(464\) 0 0
\(465\) 2.92969 + 20.5559i 0.135861 + 0.953257i
\(466\) 0 0
\(467\) −20.4005 6.62854i −0.944024 0.306732i −0.203739 0.979025i \(-0.565309\pi\)
−0.740285 + 0.672293i \(0.765309\pi\)
\(468\) 0 0
\(469\) 6.96174 + 9.58201i 0.321463 + 0.442456i
\(470\) 0 0
\(471\) −31.9618 16.9148i −1.47272 0.779393i
\(472\) 0 0
\(473\) 4.89248 + 38.2034i 0.224956 + 1.75659i
\(474\) 0 0
\(475\) 21.4611 6.97313i 0.984703 0.319949i
\(476\) 0 0
\(477\) −20.3483 + 13.8405i −0.931685 + 0.633712i
\(478\) 0 0
\(479\) −2.31222 + 7.11627i −0.105648 + 0.325151i −0.989882 0.141893i \(-0.954681\pi\)
0.884234 + 0.467044i \(0.154681\pi\)
\(480\) 0 0
\(481\) −0.134463 + 0.185073i −0.00613099 + 0.00843859i
\(482\) 0 0
\(483\) −29.2327 + 28.3397i −1.33013 + 1.28950i
\(484\) 0 0
\(485\) 19.4428i 0.882854i
\(486\) 0 0
\(487\) 9.11476 + 6.62226i 0.413029 + 0.300083i 0.774827 0.632173i \(-0.217837\pi\)
−0.361798 + 0.932257i \(0.617837\pi\)
\(488\) 0 0
\(489\) −1.25050 2.55130i −0.0565494 0.115374i
\(490\) 0 0
\(491\) −11.1254 + 8.08305i −0.502081 + 0.364783i −0.809811 0.586691i \(-0.800430\pi\)
0.307731 + 0.951474i \(0.400430\pi\)
\(492\) 0 0
\(493\) 2.82481 + 8.69386i 0.127223 + 0.391552i
\(494\) 0 0
\(495\) −30.2936 + 2.92789i −1.36160 + 0.131599i
\(496\) 0 0
\(497\) −0.374624 1.15297i −0.0168042 0.0517180i
\(498\) 0 0
\(499\) −21.2230 + 15.4194i −0.950070 + 0.690266i −0.950823 0.309733i \(-0.899760\pi\)
0.000753422 1.00000i \(0.499760\pi\)
\(500\) 0 0
\(501\) 3.78816 + 7.72871i 0.169242 + 0.345293i
\(502\) 0 0
\(503\) 15.8081 + 11.4853i 0.704849 + 0.512103i 0.881508 0.472169i \(-0.156529\pi\)
−0.176659 + 0.984272i \(0.556529\pi\)
\(504\) 0 0
\(505\) 23.8934i 1.06324i
\(506\) 0 0
\(507\) −14.7148 + 14.2653i −0.653508 + 0.633545i
\(508\) 0 0
\(509\) −0.170150 + 0.234192i −0.00754178 + 0.0103804i −0.812771 0.582583i \(-0.802042\pi\)
0.805229 + 0.592963i \(0.202042\pi\)
\(510\) 0 0
\(511\) 15.3639 47.2851i 0.679657 2.09177i
\(512\) 0 0
\(513\) 5.44250 26.3597i 0.240292 1.16381i
\(514\) 0 0
\(515\) −1.27560 + 0.414468i −0.0562097 + 0.0182636i
\(516\) 0 0
\(517\) −5.07423 + 9.26743i −0.223164 + 0.407581i
\(518\) 0 0
\(519\) −11.1622 5.90724i −0.489966 0.259299i
\(520\) 0 0
\(521\) −21.6263 29.7661i −0.947467 1.30408i −0.952643 0.304090i \(-0.901648\pi\)
0.00517663 0.999987i \(-0.498352\pi\)
\(522\) 0 0
\(523\) 4.82060 + 1.56631i 0.210790 + 0.0684899i 0.412509 0.910954i \(-0.364653\pi\)
−0.201719 + 0.979444i \(0.564653\pi\)
\(524\) 0 0
\(525\) 3.88635 + 27.2682i 0.169614 + 1.19008i
\(526\) 0 0
\(527\) 4.82767 0.210297
\(528\) 0 0
\(529\) −18.4668 −0.802903
\(530\) 0 0
\(531\) −14.7825 11.4571i −0.641508 0.497197i
\(532\) 0 0
\(533\) −6.60800 2.14707i −0.286224 0.0929998i
\(534\) 0 0
\(535\) 18.7284 + 25.7774i 0.809698 + 1.11445i
\(536\) 0 0
\(537\) 7.37614 13.9378i 0.318304 0.601460i
\(538\) 0 0
\(539\) −3.89591 + 20.6142i −0.167809 + 0.887917i
\(540\) 0 0
\(541\) 20.1681 6.55302i 0.867095 0.281736i 0.158506 0.987358i \(-0.449332\pi\)
0.708589 + 0.705622i \(0.249332\pi\)
\(542\) 0 0
\(543\) 6.56081 37.6358i 0.281551 1.61511i
\(544\) 0 0
\(545\) 2.16540 6.66441i 0.0927554 0.285472i
\(546\) 0 0
\(547\) 0.567465 0.781049i 0.0242631 0.0333952i −0.796713 0.604358i \(-0.793430\pi\)
0.820976 + 0.570962i \(0.193430\pi\)
\(548\) 0 0
\(549\) −18.3110 0.568184i −0.781496 0.0242495i
\(550\) 0 0
\(551\) 38.4399i 1.63760i
\(552\) 0 0
\(553\) −3.92157 2.84919i −0.166762 0.121160i
\(554\) 0 0
\(555\) 1.00721 0.493674i 0.0427537 0.0209553i
\(556\) 0 0
\(557\) 11.4562 8.32342i 0.485415 0.352675i −0.318003 0.948090i \(-0.603012\pi\)
0.803418 + 0.595415i \(0.203012\pi\)
\(558\) 0 0
\(559\) 3.87745 + 11.9336i 0.163999 + 0.504736i
\(560\) 0 0
\(561\) −0.319871 + 7.06905i −0.0135050 + 0.298455i
\(562\) 0 0
\(563\) −3.20574 9.86626i −0.135106 0.415813i 0.860501 0.509449i \(-0.170151\pi\)
−0.995606 + 0.0936363i \(0.970151\pi\)
\(564\) 0 0
\(565\) 29.6656 21.5533i 1.24804 0.906755i
\(566\) 0 0
\(567\) 30.5561 + 12.0700i 1.28324 + 0.506893i
\(568\) 0 0
\(569\) −10.4409 7.58577i −0.437706 0.318012i 0.347017 0.937859i \(-0.387195\pi\)
−0.784723 + 0.619847i \(0.787195\pi\)
\(570\) 0 0
\(571\) 29.4474i 1.23234i −0.787614 0.616169i \(-0.788684\pi\)
0.787614 0.616169i \(-0.211316\pi\)
\(572\) 0 0
\(573\) 11.6355 + 12.0021i 0.486079 + 0.501395i
\(574\) 0 0
\(575\) −16.4888 + 22.6949i −0.687632 + 0.946445i
\(576\) 0 0
\(577\) −1.24885 + 3.84357i −0.0519904 + 0.160010i −0.973681 0.227917i \(-0.926809\pi\)
0.921690 + 0.387927i \(0.126809\pi\)
\(578\) 0 0
\(579\) 3.85117 + 0.671350i 0.160049 + 0.0279004i
\(580\) 0 0
\(581\) −27.1189 + 8.81148i −1.12508 + 0.365562i
\(582\) 0 0
\(583\) −24.5974 + 11.6260i −1.01872 + 0.481499i
\(584\) 0 0
\(585\) −9.52038 + 2.77002i −0.393619 + 0.114526i
\(586\) 0 0
\(587\) −12.2449 16.8536i −0.505400 0.695623i 0.477735 0.878504i \(-0.341458\pi\)
−0.983135 + 0.182880i \(0.941458\pi\)
\(588\) 0 0
\(589\) −19.3072 6.27330i −0.795541 0.258487i
\(590\) 0 0
\(591\) −8.75607 + 1.24794i −0.360177 + 0.0513335i
\(592\) 0 0
\(593\) 12.8061 0.525882 0.262941 0.964812i \(-0.415308\pi\)
0.262941 + 0.964812i \(0.415308\pi\)
\(594\) 0 0
\(595\) 13.7544 0.563876
\(596\) 0 0
\(597\) 16.7764 2.39103i 0.686613 0.0978583i
\(598\) 0 0
\(599\) 32.1018 + 10.4305i 1.31164 + 0.426178i 0.879617 0.475683i \(-0.157799\pi\)
0.432026 + 0.901861i \(0.357799\pi\)
\(600\) 0 0
\(601\) 23.7848 + 32.7370i 0.970202 + 1.33537i 0.941945 + 0.335767i \(0.108996\pi\)
0.0282567 + 0.999601i \(0.491004\pi\)
\(602\) 0 0
\(603\) 9.34616 2.71933i 0.380605 0.110740i
\(604\) 0 0
\(605\) −33.5876 1.99805i −1.36553 0.0812321i
\(606\) 0 0
\(607\) −21.4525 + 6.97033i −0.870729 + 0.282917i −0.710102 0.704098i \(-0.751351\pi\)
−0.160626 + 0.987015i \(0.551351\pi\)
\(608\) 0 0
\(609\) 46.2231 + 8.05779i 1.87305 + 0.326518i
\(610\) 0 0
\(611\) −1.06367 + 3.27365i −0.0430316 + 0.132438i
\(612\) 0 0
\(613\) 16.0195 22.0489i 0.647020 0.890547i −0.351945 0.936021i \(-0.614480\pi\)
0.998966 + 0.0454737i \(0.0144797\pi\)
\(614\) 0 0
\(615\) 23.7134 + 24.4607i 0.956218 + 0.986350i
\(616\) 0 0
\(617\) 6.44731i 0.259559i 0.991543 + 0.129779i \(0.0414269\pi\)
−0.991543 + 0.129779i \(0.958573\pi\)
\(618\) 0 0
\(619\) −37.8534 27.5021i −1.52146 1.10540i −0.960760 0.277380i \(-0.910534\pi\)
−0.560695 0.828022i \(-0.689466\pi\)
\(620\) 0 0
\(621\) 13.7876 + 30.4878i 0.553277 + 1.22343i
\(622\) 0 0
\(623\) −30.6463 + 22.2658i −1.22782 + 0.892061i
\(624\) 0 0
\(625\) −8.59191 26.4432i −0.343677 1.05773i
\(626\) 0 0
\(627\) 10.4651 27.8555i 0.417936 1.11244i
\(628\) 0 0
\(629\) −0.0805915 0.248035i −0.00321339 0.00988981i
\(630\) 0 0
\(631\) −9.89291 + 7.18762i −0.393831 + 0.286135i −0.767023 0.641619i \(-0.778263\pi\)
0.373193 + 0.927754i \(0.378263\pi\)
\(632\) 0 0
\(633\) −11.4462 + 5.61023i −0.454944 + 0.222987i
\(634\) 0 0
\(635\) 49.4781 + 35.9479i 1.96348 + 1.42655i
\(636\) 0 0
\(637\) 6.83466i 0.270799i
\(638\) 0 0
\(639\) −0.995829 0.0309002i −0.0393944 0.00122239i
\(640\) 0 0
\(641\) −11.9388 + 16.4323i −0.471553 + 0.649038i −0.976854 0.213906i \(-0.931382\pi\)
0.505301 + 0.862943i \(0.331382\pi\)
\(642\) 0 0
\(643\) 7.34016 22.5907i 0.289468 0.890889i −0.695556 0.718472i \(-0.744842\pi\)
0.985024 0.172418i \(-0.0551580\pi\)
\(644\) 0 0
\(645\) 10.5659 60.6109i 0.416033 2.38655i
\(646\) 0 0
\(647\) −1.85376 + 0.602324i −0.0728789 + 0.0236798i −0.345230 0.938518i \(-0.612199\pi\)
0.272351 + 0.962198i \(0.412199\pi\)
\(648\) 0 0
\(649\) −14.1798 15.0484i −0.556606 0.590701i
\(650\) 0 0
\(651\) 11.5907 21.9015i 0.454275 0.858388i
\(652\) 0 0
\(653\) 13.5705 + 18.6781i 0.531053 + 0.730932i 0.987291 0.158926i \(-0.0508031\pi\)
−0.456237 + 0.889858i \(0.650803\pi\)
\(654\) 0 0
\(655\) 17.5926 + 5.71619i 0.687400 + 0.223350i
\(656\) 0 0
\(657\) −32.2957 25.0306i −1.25997 0.976536i
\(658\) 0 0
\(659\) 44.0671 1.71661 0.858305 0.513139i \(-0.171518\pi\)
0.858305 + 0.513139i \(0.171518\pi\)
\(660\) 0 0
\(661\) −31.5126 −1.22570 −0.612848 0.790201i \(-0.709976\pi\)
−0.612848 + 0.790201i \(0.709976\pi\)
\(662\) 0 0
\(663\) 0.325277 + 2.28227i 0.0126327 + 0.0886362i
\(664\) 0 0
\(665\) −55.0078 17.8731i −2.13311 0.693090i
\(666\) 0 0
\(667\) 28.0884 + 38.6604i 1.08759 + 1.49694i
\(668\) 0 0
\(669\) 6.02701 + 3.18961i 0.233018 + 0.123317i
\(670\) 0 0
\(671\) −19.9011 3.76113i −0.768272 0.145197i
\(672\) 0 0
\(673\) −37.8385 + 12.2945i −1.45857 + 0.473918i −0.927633 0.373494i \(-0.878160\pi\)
−0.530936 + 0.847412i \(0.678160\pi\)
\(674\) 0 0
\(675\) 22.1686 + 4.57715i 0.853269 + 0.176175i
\(676\) 0 0
\(677\) −12.2831 + 37.8035i −0.472078 + 1.45291i 0.377780 + 0.925896i \(0.376688\pi\)
−0.849858 + 0.527012i \(0.823312\pi\)
\(678\) 0 0
\(679\) −13.6385 + 18.7718i −0.523397 + 0.720395i
\(680\) 0 0
\(681\) 35.7684 34.6758i 1.37065 1.32878i
\(682\) 0 0
\(683\) 24.4150i 0.934216i 0.884200 + 0.467108i \(0.154704\pi\)
−0.884200 + 0.467108i \(0.845296\pi\)
\(684\) 0 0
\(685\) −8.85811 6.43579i −0.338451 0.245899i
\(686\) 0 0
\(687\) 9.70148 + 19.7933i 0.370135 + 0.755160i
\(688\) 0 0
\(689\) −7.17067 + 5.20980i −0.273181 + 0.198478i
\(690\) 0 0
\(691\) 9.30862 + 28.6490i 0.354117 + 1.08986i 0.956520 + 0.291667i \(0.0942099\pi\)
−0.602403 + 0.798192i \(0.705790\pi\)
\(692\) 0 0
\(693\) 31.3019 + 18.4231i 1.18906 + 0.699837i
\(694\) 0 0
\(695\) −6.26024 19.2670i −0.237465 0.730841i
\(696\) 0 0
\(697\) 6.40830 4.65591i 0.242732 0.176355i
\(698\) 0 0
\(699\) −14.5183 29.6207i −0.549133 1.12036i
\(700\) 0 0
\(701\) −6.88933 5.00539i −0.260207 0.189051i 0.450032 0.893013i \(-0.351413\pi\)
−0.710238 + 0.703962i \(0.751413\pi\)
\(702\) 0 0
\(703\) 1.09669i 0.0413624i
\(704\) 0 0
\(705\) 12.1180 11.7478i 0.456390 0.442448i
\(706\) 0 0
\(707\) 16.7604 23.0687i 0.630341 0.867589i
\(708\) 0 0
\(709\) −0.381815 + 1.17511i −0.0143394 + 0.0441320i −0.957970 0.286868i \(-0.907386\pi\)
0.943631 + 0.331000i \(0.107386\pi\)
\(710\) 0 0
\(711\) −3.29392 + 2.24046i −0.123532 + 0.0840236i
\(712\) 0 0
\(713\) 24.0019 7.79870i 0.898879 0.292064i
\(714\) 0 0
\(715\) −10.8728 + 1.39242i −0.406621 + 0.0520735i
\(716\) 0 0
\(717\) 31.3830 + 16.6085i 1.17202 + 0.620255i
\(718\) 0 0
\(719\) −12.2944 16.9218i −0.458503 0.631075i 0.515694 0.856773i \(-0.327534\pi\)
−0.974197 + 0.225697i \(0.927534\pi\)
\(720\) 0 0
\(721\) 1.52231 + 0.494628i 0.0566937 + 0.0184209i
\(722\) 0 0
\(723\) −4.61982 32.4145i −0.171813 1.20551i
\(724\) 0 0
\(725\) 32.3281 1.20063
\(726\) 0 0
\(727\) 5.62159 0.208493 0.104247 0.994551i \(-0.466757\pi\)
0.104247 + 0.994551i \(0.466757\pi\)
\(728\) 0 0
\(729\) 17.8313 20.2742i 0.660420 0.750897i
\(730\) 0 0
\(731\) −13.6048 4.42046i −0.503191 0.163497i
\(732\) 0 0
\(733\) −10.6432 14.6491i −0.393115 0.541076i 0.565884 0.824485i \(-0.308535\pi\)
−0.958999 + 0.283408i \(0.908535\pi\)
\(734\) 0 0
\(735\) 15.6756 29.6202i 0.578201 1.09256i
\(736\) 0 0
\(737\) 10.6739 1.36694i 0.393177 0.0503519i
\(738\) 0 0
\(739\) −47.2943 + 15.3668i −1.73975 + 0.565279i −0.994800 0.101844i \(-0.967526\pi\)
−0.744948 + 0.667122i \(0.767526\pi\)
\(740\) 0 0
\(741\) 1.66482 9.55015i 0.0611586 0.350834i
\(742\) 0 0
\(743\) 4.72836 14.5524i 0.173467 0.533875i −0.826094 0.563533i \(-0.809442\pi\)
0.999560 + 0.0296578i \(0.00944174\pi\)
\(744\) 0 0
\(745\) −27.7986 + 38.2615i −1.01846 + 1.40179i
\(746\) 0 0
\(747\) −0.726798 + 23.4227i −0.0265922 + 0.856993i
\(748\) 0 0
\(749\) 38.0250i 1.38940i
\(750\) 0 0
\(751\) 0.955311 + 0.694074i 0.0348598 + 0.0253271i 0.605079 0.796166i \(-0.293142\pi\)
−0.570219 + 0.821493i \(0.693142\pi\)
\(752\) 0 0
\(753\) −39.6820 + 19.4498i −1.44609 + 0.708790i
\(754\) 0 0
\(755\) −16.1082 + 11.7033i −0.586237 + 0.425926i
\(756\) 0 0
\(757\) 16.9914 + 52.2942i 0.617563 + 1.90066i 0.345896 + 0.938273i \(0.387575\pi\)
0.271667 + 0.962391i \(0.412425\pi\)
\(758\) 0 0
\(759\) 9.82914 + 35.6622i 0.356775 + 1.29446i
\(760\) 0 0
\(761\) −11.3528 34.9402i −0.411538 1.26658i −0.915311 0.402747i \(-0.868055\pi\)
0.503774 0.863836i \(-0.331945\pi\)
\(762\) 0 0
\(763\) −6.76552 + 4.91543i −0.244928 + 0.177951i
\(764\) 0 0
\(765\) 3.82479 10.6370i 0.138286 0.384581i
\(766\) 0 0
\(767\) −5.44961 3.95938i −0.196774 0.142965i
\(768\) 0 0
\(769\) 33.5717i 1.21063i 0.795988 + 0.605313i \(0.206952\pi\)
−0.795988 + 0.605313i \(0.793048\pi\)
\(770\) 0 0
\(771\) 8.19993 + 8.45832i 0.295313 + 0.304619i
\(772\) 0 0
\(773\) 4.68913 6.45403i 0.168656 0.232135i −0.716320 0.697772i \(-0.754175\pi\)
0.884976 + 0.465637i \(0.154175\pi\)
\(774\) 0 0
\(775\) 5.27586 16.2374i 0.189515 0.583266i
\(776\) 0 0
\(777\) −1.31874 0.229888i −0.0473096 0.00824719i
\(778\) 0 0
\(779\) −31.6788 + 10.2931i −1.13501 + 0.368787i
\(780\) 0 0
\(781\) −1.08230 0.204546i −0.0387278 0.00731923i
\(782\) 0 0
\(783\) 19.0851 33.5060i 0.682046 1.19741i
\(784\) 0 0
\(785\) 37.5370 + 51.6653i 1.33975 + 1.84401i
\(786\) 0 0
\(787\) 22.2647 + 7.23422i 0.793649 + 0.257872i 0.677657 0.735378i \(-0.262995\pi\)
0.115992 + 0.993250i \(0.462995\pi\)
\(788\) 0 0
\(789\) −30.7239 + 4.37886i −1.09380 + 0.155892i
\(790\) 0 0
\(791\) −43.7606 −1.55595
\(792\) 0 0
\(793\) −6.59822 −0.234310
\(794\) 0 0
\(795\) 43.0252 6.13209i 1.52595 0.217483i
\(796\) 0 0
\(797\) −10.1288 3.29105i −0.358780 0.116575i 0.124080 0.992272i \(-0.460402\pi\)
−0.482860 + 0.875697i \(0.660402\pi\)
\(798\) 0 0
\(799\) −2.30657 3.17472i −0.0816006 0.112314i
\(800\) 0 0
\(801\) 8.69726 + 29.8919i 0.307303 + 1.05618i
\(802\) 0 0
\(803\) −30.9788 32.8764i −1.09322 1.16018i
\(804\) 0 0
\(805\) 68.3833 22.2191i 2.41020 0.783120i
\(806\) 0 0
\(807\) 48.8094 + 8.50864i 1.71817 + 0.299518i
\(808\) 0 0
\(809\) 12.2662 37.7515i 0.431257 1.32727i −0.465618 0.884986i \(-0.654168\pi\)
0.896874 0.442286i \(-0.145832\pi\)
\(810\) 0 0
\(811\) 23.3622 32.1553i 0.820357 1.12912i −0.169285 0.985567i \(-0.554146\pi\)
0.989642 0.143558i \(-0.0458542\pi\)
\(812\) 0 0
\(813\) 3.85395 + 3.97539i 0.135164 + 0.139423i
\(814\) 0 0
\(815\) 5.01772i 0.175763i
\(816\) 0 0
\(817\) 48.6653 + 35.3574i 1.70258 + 1.23700i
\(818\) 0 0
\(819\) 11.1349 + 4.00381i 0.389083 + 0.139904i
\(820\) 0 0
\(821\) −29.4898 + 21.4256i −1.02920 + 0.747758i −0.968148 0.250377i \(-0.919446\pi\)
−0.0610520 + 0.998135i \(0.519446\pi\)
\(822\) 0 0
\(823\) −12.3254 37.9338i −0.429637 1.32229i −0.898483 0.439008i \(-0.855330\pi\)
0.468846 0.883280i \(-0.344670\pi\)
\(824\) 0 0
\(825\) 23.4265 + 8.80118i 0.815607 + 0.306418i
\(826\) 0 0
\(827\) −4.37961 13.4790i −0.152294 0.468712i 0.845583 0.533844i \(-0.179253\pi\)
−0.997877 + 0.0651319i \(0.979253\pi\)
\(828\) 0 0
\(829\) 31.9573 23.2184i 1.10992 0.806407i 0.127273 0.991868i \(-0.459378\pi\)
0.982652 + 0.185460i \(0.0593776\pi\)
\(830\) 0 0
\(831\) −33.3312 + 16.3370i −1.15625 + 0.566724i
\(832\) 0 0
\(833\) −6.30372 4.57992i −0.218411 0.158685i
\(834\) 0 0
\(835\) 15.2003i 0.526028i
\(836\) 0 0
\(837\) −13.7144 15.0540i −0.474041 0.520342i
\(838\) 0 0
\(839\) 10.2091 14.0516i 0.352457 0.485115i −0.595571 0.803303i \(-0.703074\pi\)
0.948028 + 0.318187i \(0.103074\pi\)
\(840\) 0 0
\(841\) 8.05612 24.7942i 0.277797 0.854972i
\(842\) 0 0
\(843\) −3.07104 + 17.6169i −0.105772 + 0.606757i
\(844\) 0 0
\(845\) 34.4220 11.1844i 1.18415 0.384755i
\(846\) 0 0
\(847\) 31.0267 + 25.4896i 1.06609 + 0.875834i
\(848\) 0 0
\(849\) −4.90058 + 9.26002i −0.168187 + 0.317803i
\(850\) 0 0
\(851\) −0.801360 1.10298i −0.0274703 0.0378096i
\(852\) 0 0
\(853\) 8.78978 + 2.85597i 0.300956 + 0.0977867i 0.455603 0.890183i \(-0.349424\pi\)
−0.154646 + 0.987970i \(0.549424\pi\)
\(854\) 0 0
\(855\) −29.1186 + 37.5703i −0.995836 + 1.28488i
\(856\) 0 0
\(857\) 56.2505 1.92148 0.960740 0.277449i \(-0.0894889\pi\)
0.960740 + 0.277449i \(0.0894889\pi\)
\(858\) 0 0
\(859\) 38.7547 1.32229 0.661147 0.750257i \(-0.270070\pi\)
0.661147 + 0.750257i \(0.270070\pi\)
\(860\) 0 0
\(861\) −5.73664 40.2506i −0.195504 1.37174i
\(862\) 0 0
\(863\) 5.32524 + 1.73028i 0.181273 + 0.0588993i 0.398247 0.917278i \(-0.369619\pi\)
−0.216974 + 0.976177i \(0.569619\pi\)
\(864\) 0 0
\(865\) 13.1092 + 18.0433i 0.445728 + 0.613491i
\(866\) 0 0
\(867\) 23.7021 + 12.5436i 0.804967 + 0.426004i
\(868\) 0 0
\(869\) −3.98174 + 1.88198i −0.135071 + 0.0638417i
\(870\) 0 0
\(871\) 3.33419 1.08334i 0.112975 0.0367077i
\(872\) 0 0
\(873\) 10.7246 + 15.7674i 0.362973 + 0.533644i
\(874\) 0 0
\(875\) −2.22093 + 6.83533i −0.0750813 + 0.231076i
\(876\) 0 0
\(877\) −20.2476 + 27.8684i −0.683712 + 0.941049i −0.999971 0.00762378i \(-0.997573\pi\)
0.316259 + 0.948673i \(0.397573\pi\)
\(878\) 0 0
\(879\) 34.8460 33.7815i 1.17532 1.13942i
\(880\) 0 0
\(881\) 8.23935i 0.277591i −0.990321 0.138795i \(-0.955677\pi\)
0.990321 0.138795i \(-0.0443231\pi\)
\(882\) 0 0
\(883\) 6.22787 + 4.52481i 0.209585 + 0.152272i 0.687626 0.726065i \(-0.258653\pi\)
−0.478041 + 0.878337i \(0.658653\pi\)
\(884\) 0 0
\(885\) 14.5366 + 29.6581i 0.488644 + 0.996946i
\(886\) 0 0
\(887\) −10.2713 + 7.46250i −0.344875 + 0.250566i −0.746716 0.665143i \(-0.768371\pi\)
0.401841 + 0.915710i \(0.368371\pi\)
\(888\) 0 0
\(889\) −22.5541 69.4144i −0.756441 2.32808i
\(890\) 0 0
\(891\) 22.9519 19.0843i 0.768917 0.639348i
\(892\) 0 0
\(893\) 5.09925 + 15.6939i 0.170640 + 0.525176i
\(894\) 0 0
\(895\) −22.5300 + 16.3690i −0.753094 + 0.547155i
\(896\) 0 0
\(897\) 5.30402 + 10.8214i 0.177096 + 0.361317i
\(898\) 0 0
\(899\) −23.5291 17.0949i −0.784740 0.570147i
\(900\) 0 0
\(901\) 10.1047i 0.336637i
\(902\) 0 0
\(903\) −52.7177 + 51.1073i −1.75434 + 1.70074i
\(904\) 0 0
\(905\) −39.6563 + 54.5823i −1.31822 + 1.81438i
\(906\) 0 0
\(907\) −13.7515 + 42.3228i −0.456612 + 1.40531i 0.412621 + 0.910903i \(0.364613\pi\)
−0.869233 + 0.494403i \(0.835387\pi\)
\(908\) 0 0
\(909\) −13.1795 19.3766i −0.437138 0.642681i
\(910\) 0 0
\(911\) 49.5522 16.1005i 1.64174 0.533433i 0.664811 0.747012i \(-0.268512\pi\)
0.976926 + 0.213579i \(0.0685121\pi\)
\(912\) 0 0
\(913\) −4.81109 + 25.4566i −0.159224 + 0.842492i
\(914\) 0 0
\(915\) 28.5954 + 15.1333i 0.945336 + 0.500290i
\(916\) 0 0
\(917\) −12.9757 17.8595i −0.428495 0.589773i
\(918\) 0 0
\(919\) 43.5280 + 14.1431i 1.43586 + 0.466538i 0.920603 0.390500i \(-0.127698\pi\)
0.515253 + 0.857038i \(0.327698\pi\)
\(920\) 0 0
\(921\) 1.80291 + 12.6499i 0.0594079 + 0.416830i
\(922\) 0 0
\(923\) −0.358838 −0.0118113
\(924\) 0 0
\(925\) −0.922317 −0.0303256
\(926\) 0 0
\(927\) 0.805841 1.03973i 0.0264673 0.0341494i
\(928\) 0 0
\(929\) −23.7662 7.72210i −0.779743 0.253354i −0.108013 0.994150i \(-0.534449\pi\)
−0.671731 + 0.740796i \(0.734449\pi\)
\(930\) 0 0
\(931\) 19.2590 + 26.5078i 0.631189 + 0.868757i
\(932\) 0 0
\(933\) −9.18444 + 17.3547i −0.300685 + 0.568167i
\(934\) 0 0
\(935\) 6.00165 10.9613i 0.196275 0.358471i
\(936\) 0 0
\(937\) −6.47451 + 2.10370i −0.211513 + 0.0687248i −0.412857 0.910796i \(-0.635469\pi\)
0.201344 + 0.979521i \(0.435469\pi\)
\(938\) 0 0
\(939\) 0.499428 2.86494i 0.0162982 0.0934939i
\(940\) 0 0
\(941\) −0.0824070 + 0.253623i −0.00268639 + 0.00826787i −0.952391 0.304880i \(-0.901384\pi\)
0.949704 + 0.313148i \(0.101384\pi\)
\(942\) 0 0
\(943\) 24.3392 33.5000i 0.792593 1.09091i
\(944\) 0 0
\(945\) −39.0735 42.8900i −1.27106 1.39521i
\(946\) 0 0
\(947\) 33.2727i 1.08122i −0.841274 0.540609i \(-0.818194\pi\)
0.841274 0.540609i \(-0.181806\pi\)
\(948\) 0 0
\(949\) −11.9059 8.65011i −0.386481 0.280795i
\(950\) 0 0
\(951\) 1.32643 0.650138i 0.0430125 0.0210822i
\(952\) 0 0
\(953\) 28.2860 20.5509i 0.916272 0.665710i −0.0263214 0.999654i \(-0.508379\pi\)
0.942593 + 0.333943i \(0.108379\pi\)
\(954\) 0 0
\(955\) −9.12252 28.0762i −0.295198 0.908526i
\(956\) 0 0
\(957\) 26.5906 33.3205i 0.859554 1.07710i
\(958\) 0 0
\(959\) 4.03788 + 12.4273i 0.130390 + 0.401299i
\(960\) 0 0
\(961\) 12.6534 9.19320i 0.408173 0.296555i
\(962\) 0 0
\(963\) −29.4067 10.5739i −0.947617 0.340739i
\(964\) 0 0
\(965\) −5.58525 4.05792i −0.179796 0.130629i
\(966\) 0 0
\(967\) 28.9143i 0.929821i −0.885358 0.464910i \(-0.846087\pi\)
0.885358 0.464910i \(-0.153913\pi\)
\(968\) 0 0
\(969\) 7.69266 + 7.93506i 0.247124 + 0.254911i
\(970\) 0 0
\(971\) −17.7091 + 24.3745i −0.568312 + 0.782214i −0.992353 0.123429i \(-0.960611\pi\)
0.424042 + 0.905643i \(0.360611\pi\)
\(972\) 0 0
\(973\) −7.47101 + 22.9934i −0.239509 + 0.737134i
\(974\) 0 0
\(975\) 8.03170 + 1.40012i 0.257220 + 0.0448396i
\(976\) 0 0
\(977\) 20.3315 6.60611i 0.650463 0.211348i 0.0348447 0.999393i \(-0.488906\pi\)
0.615618 + 0.788045i \(0.288906\pi\)
\(978\) 0 0
\(979\) 4.37190 + 34.1384i 0.139727 + 1.09107i
\(980\) 0 0
\(981\) 1.92002 + 6.59899i 0.0613015 + 0.210690i
\(982\) 0 0
\(983\) 29.5552 + 40.6793i 0.942665 + 1.29747i 0.954709 + 0.297540i \(0.0961661\pi\)
−0.0120443 + 0.999927i \(0.503834\pi\)
\(984\) 0 0
\(985\) 14.8551 + 4.82670i 0.473322 + 0.153792i
\(986\) 0 0
\(987\) −19.9404 + 2.84198i −0.634711 + 0.0904611i
\(988\) 0 0
\(989\) −74.7804 −2.37788
\(990\) 0 0
\(991\) −26.0847 −0.828609 −0.414305 0.910138i \(-0.635975\pi\)
−0.414305 + 0.910138i \(0.635975\pi\)
\(992\) 0 0
\(993\) −36.2257 + 5.16301i −1.14959 + 0.163843i
\(994\) 0 0
\(995\) −28.4619 9.24785i −0.902304 0.293176i
\(996\) 0 0
\(997\) −13.2782 18.2759i −0.420525 0.578803i 0.545221 0.838292i \(-0.316446\pi\)
−0.965746 + 0.259490i \(0.916446\pi\)
\(998\) 0 0
\(999\) −0.544497 + 0.955924i −0.0172271 + 0.0302441i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.2.bn.d.17.4 16
3.2 odd 2 inner 528.2.bn.d.17.3 16
4.3 odd 2 132.2.p.a.17.1 16
11.2 odd 10 inner 528.2.bn.d.497.3 16
12.11 even 2 132.2.p.a.17.2 yes 16
33.2 even 10 inner 528.2.bn.d.497.4 16
44.3 odd 10 1452.2.b.e.725.10 16
44.19 even 10 1452.2.b.e.725.9 16
44.35 even 10 132.2.p.a.101.2 yes 16
132.35 odd 10 132.2.p.a.101.1 yes 16
132.47 even 10 1452.2.b.e.725.12 16
132.107 odd 10 1452.2.b.e.725.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.p.a.17.1 16 4.3 odd 2
132.2.p.a.17.2 yes 16 12.11 even 2
132.2.p.a.101.1 yes 16 132.35 odd 10
132.2.p.a.101.2 yes 16 44.35 even 10
528.2.bn.d.17.3 16 3.2 odd 2 inner
528.2.bn.d.17.4 16 1.1 even 1 trivial
528.2.bn.d.497.3 16 11.2 odd 10 inner
528.2.bn.d.497.4 16 33.2 even 10 inner
1452.2.b.e.725.9 16 44.19 even 10
1452.2.b.e.725.10 16 44.3 odd 10
1452.2.b.e.725.11 16 132.107 odd 10
1452.2.b.e.725.12 16 132.47 even 10