Properties

Label 1450.2.j.h.1293.3
Level $1450$
Weight $2$
Character 1450.1293
Analytic conductor $11.578$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1450,2,Mod(157,1450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1450.157"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,0,0,4,0,28,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 346x^{6} + 397x^{4} + 80x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 290)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1293.3
Root \(1.64632i\) of defining polynomial
Character \(\chi\) \(=\) 1450.1293
Dual form 1450.2.j.h.157.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -0.289618 q^{3} -1.00000 q^{4} -0.289618i q^{6} +(-0.632503 + 0.632503i) q^{7} -1.00000i q^{8} -2.91612 q^{9} +(3.25374 - 3.25374i) q^{11} +0.289618 q^{12} +(-0.198612 + 0.198612i) q^{13} +(-0.632503 - 0.632503i) q^{14} +1.00000 q^{16} +0.476804i q^{17} -2.91612i q^{18} +(1.79299 + 1.79299i) q^{19} +(0.183184 - 0.183184i) q^{21} +(3.25374 + 3.25374i) q^{22} +(3.88864 + 3.88864i) q^{23} +0.289618i q^{24} +(-0.198612 - 0.198612i) q^{26} +1.71341 q^{27} +(0.632503 - 0.632503i) q^{28} +(5.30631 + 0.918177i) q^{29} +(-5.65569 + 5.65569i) q^{31} +1.00000i q^{32} +(-0.942340 + 0.942340i) q^{33} -0.476804 q^{34} +2.91612 q^{36} -6.58530 q^{37} +(-1.79299 + 1.79299i) q^{38} +(0.0575215 - 0.0575215i) q^{39} +(6.47983 + 6.47983i) q^{41} +(0.183184 + 0.183184i) q^{42} +8.57318 q^{43} +(-3.25374 + 3.25374i) q^{44} +(-3.88864 + 3.88864i) q^{46} +1.36150 q^{47} -0.289618 q^{48} +6.19988i q^{49} -0.138091i q^{51} +(0.198612 - 0.198612i) q^{52} +(-5.65569 - 5.65569i) q^{53} +1.71341i q^{54} +(0.632503 + 0.632503i) q^{56} +(-0.519282 - 0.519282i) q^{57} +(-0.918177 + 5.30631i) q^{58} +9.89258i q^{59} +(3.88864 - 3.88864i) q^{61} +(-5.65569 - 5.65569i) q^{62} +(1.84446 - 1.84446i) q^{63} -1.00000 q^{64} +(-0.942340 - 0.942340i) q^{66} +(-7.85685 - 7.85685i) q^{67} -0.476804i q^{68} +(-1.12622 - 1.12622i) q^{69} +8.63547i q^{71} +2.91612i q^{72} +8.56068i q^{73} -6.58530i q^{74} +(-1.79299 - 1.79299i) q^{76} +4.11600i q^{77} +(0.0575215 + 0.0575215i) q^{78} +(-0.0428537 - 0.0428537i) q^{79} +8.25213 q^{81} +(-6.47983 + 6.47983i) q^{82} +(1.00000 + 1.00000i) q^{83} +(-0.183184 + 0.183184i) q^{84} +8.57318i q^{86} +(-1.53680 - 0.265920i) q^{87} +(-3.25374 - 3.25374i) q^{88} +(5.88779 + 5.88779i) q^{89} -0.251245i q^{91} +(-3.88864 - 3.88864i) q^{92} +(1.63799 - 1.63799i) q^{93} +1.36150i q^{94} -0.289618i q^{96} +11.8026 q^{97} -6.19988 q^{98} +(-9.48830 + 9.48830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} + 4 q^{7} + 28 q^{9} + 10 q^{11} - 2 q^{13} + 4 q^{14} + 12 q^{16} - 16 q^{19} - 16 q^{21} + 10 q^{22} - 4 q^{23} - 2 q^{26} - 12 q^{27} - 4 q^{28} + 20 q^{29} + 18 q^{31} + 6 q^{33} - 28 q^{36}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −0.289618 −0.167211 −0.0836054 0.996499i \(-0.526644\pi\)
−0.0836054 + 0.996499i \(0.526644\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0.289618i 0.118236i
\(7\) −0.632503 + 0.632503i −0.239064 + 0.239064i −0.816462 0.577399i \(-0.804068\pi\)
0.577399 + 0.816462i \(0.304068\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.91612 −0.972041
\(10\) 0 0
\(11\) 3.25374 3.25374i 0.981039 0.981039i −0.0187847 0.999824i \(-0.505980\pi\)
0.999824 + 0.0187847i \(0.00597971\pi\)
\(12\) 0.289618 0.0836054
\(13\) −0.198612 + 0.198612i −0.0550850 + 0.0550850i −0.734113 0.679028i \(-0.762402\pi\)
0.679028 + 0.734113i \(0.262402\pi\)
\(14\) −0.632503 0.632503i −0.169044 0.169044i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.476804i 0.115642i 0.998327 + 0.0578210i \(0.0184153\pi\)
−0.998327 + 0.0578210i \(0.981585\pi\)
\(18\) 2.91612i 0.687336i
\(19\) 1.79299 + 1.79299i 0.411341 + 0.411341i 0.882205 0.470865i \(-0.156058\pi\)
−0.470865 + 0.882205i \(0.656058\pi\)
\(20\) 0 0
\(21\) 0.183184 0.183184i 0.0399740 0.0399740i
\(22\) 3.25374 + 3.25374i 0.693699 + 0.693699i
\(23\) 3.88864 + 3.88864i 0.810837 + 0.810837i 0.984759 0.173923i \(-0.0556442\pi\)
−0.173923 + 0.984759i \(0.555644\pi\)
\(24\) 0.289618i 0.0591179i
\(25\) 0 0
\(26\) −0.198612 0.198612i −0.0389510 0.0389510i
\(27\) 1.71341 0.329746
\(28\) 0.632503 0.632503i 0.119532 0.119532i
\(29\) 5.30631 + 0.918177i 0.985357 + 0.170501i
\(30\) 0 0
\(31\) −5.65569 + 5.65569i −1.01579 + 1.01579i −0.0159192 + 0.999873i \(0.505067\pi\)
−0.999873 + 0.0159192i \(0.994933\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −0.942340 + 0.942340i −0.164040 + 0.164040i
\(34\) −0.476804 −0.0817713
\(35\) 0 0
\(36\) 2.91612 0.486020
\(37\) −6.58530 −1.08262 −0.541308 0.840824i \(-0.682071\pi\)
−0.541308 + 0.840824i \(0.682071\pi\)
\(38\) −1.79299 + 1.79299i −0.290862 + 0.290862i
\(39\) 0.0575215 0.0575215i 0.00921081 0.00921081i
\(40\) 0 0
\(41\) 6.47983 + 6.47983i 1.01198 + 1.01198i 0.999927 + 0.0120528i \(0.00383661\pi\)
0.0120528 + 0.999927i \(0.496163\pi\)
\(42\) 0.183184 + 0.183184i 0.0282659 + 0.0282659i
\(43\) 8.57318 1.30740 0.653699 0.756755i \(-0.273216\pi\)
0.653699 + 0.756755i \(0.273216\pi\)
\(44\) −3.25374 + 3.25374i −0.490519 + 0.490519i
\(45\) 0 0
\(46\) −3.88864 + 3.88864i −0.573348 + 0.573348i
\(47\) 1.36150 0.198595 0.0992974 0.995058i \(-0.468340\pi\)
0.0992974 + 0.995058i \(0.468340\pi\)
\(48\) −0.289618 −0.0418027
\(49\) 6.19988i 0.885697i
\(50\) 0 0
\(51\) 0.138091i 0.0193366i
\(52\) 0.198612 0.198612i 0.0275425 0.0275425i
\(53\) −5.65569 5.65569i −0.776869 0.776869i 0.202428 0.979297i \(-0.435117\pi\)
−0.979297 + 0.202428i \(0.935117\pi\)
\(54\) 1.71341i 0.233166i
\(55\) 0 0
\(56\) 0.632503 + 0.632503i 0.0845218 + 0.0845218i
\(57\) −0.519282 0.519282i −0.0687806 0.0687806i
\(58\) −0.918177 + 5.30631i −0.120563 + 0.696753i
\(59\) 9.89258i 1.28790i 0.765066 + 0.643952i \(0.222706\pi\)
−0.765066 + 0.643952i \(0.777294\pi\)
\(60\) 0 0
\(61\) 3.88864 3.88864i 0.497889 0.497889i −0.412891 0.910780i \(-0.635481\pi\)
0.910780 + 0.412891i \(0.135481\pi\)
\(62\) −5.65569 5.65569i −0.718274 0.718274i
\(63\) 1.84446 1.84446i 0.232380 0.232380i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −0.942340 0.942340i −0.115994 0.115994i
\(67\) −7.85685 7.85685i −0.959867 0.959867i 0.0393577 0.999225i \(-0.487469\pi\)
−0.999225 + 0.0393577i \(0.987469\pi\)
\(68\) 0.476804i 0.0578210i
\(69\) −1.12622 1.12622i −0.135581 0.135581i
\(70\) 0 0
\(71\) 8.63547i 1.02484i 0.858734 + 0.512421i \(0.171251\pi\)
−0.858734 + 0.512421i \(0.828749\pi\)
\(72\) 2.91612i 0.343668i
\(73\) 8.56068i 1.00195i 0.865461 + 0.500976i \(0.167026\pi\)
−0.865461 + 0.500976i \(0.832974\pi\)
\(74\) 6.58530i 0.765525i
\(75\) 0 0
\(76\) −1.79299 1.79299i −0.205670 0.205670i
\(77\) 4.11600i 0.469062i
\(78\) 0.0575215 + 0.0575215i 0.00651302 + 0.00651302i
\(79\) −0.0428537 0.0428537i −0.00482142 0.00482142i 0.704692 0.709513i \(-0.251085\pi\)
−0.709513 + 0.704692i \(0.751085\pi\)
\(80\) 0 0
\(81\) 8.25213 0.916903
\(82\) −6.47983 + 6.47983i −0.715578 + 0.715578i
\(83\) 1.00000 + 1.00000i 0.109764 + 0.109764i 0.759856 0.650092i \(-0.225269\pi\)
−0.650092 + 0.759856i \(0.725269\pi\)
\(84\) −0.183184 + 0.183184i −0.0199870 + 0.0199870i
\(85\) 0 0
\(86\) 8.57318i 0.924469i
\(87\) −1.53680 0.265920i −0.164762 0.0285096i
\(88\) −3.25374 3.25374i −0.346850 0.346850i
\(89\) 5.88779 + 5.88779i 0.624104 + 0.624104i 0.946578 0.322474i \(-0.104514\pi\)
−0.322474 + 0.946578i \(0.604514\pi\)
\(90\) 0 0
\(91\) 0.251245i 0.0263377i
\(92\) −3.88864 3.88864i −0.405418 0.405418i
\(93\) 1.63799 1.63799i 0.169851 0.169851i
\(94\) 1.36150i 0.140428i
\(95\) 0 0
\(96\) 0.289618i 0.0295590i
\(97\) 11.8026 1.19838 0.599188 0.800608i \(-0.295490\pi\)
0.599188 + 0.800608i \(0.295490\pi\)
\(98\) −6.19988 −0.626282
\(99\) −9.48830 + 9.48830i −0.953610 + 0.953610i
\(100\) 0 0
\(101\) −0.605077 + 0.605077i −0.0602074 + 0.0602074i −0.736569 0.676362i \(-0.763556\pi\)
0.676362 + 0.736569i \(0.263556\pi\)
\(102\) 0.138091 0.0136730
\(103\) 10.9674 + 10.9674i 1.08065 + 1.08065i 0.996449 + 0.0841981i \(0.0268328\pi\)
0.0841981 + 0.996449i \(0.473167\pi\)
\(104\) 0.198612 + 0.198612i 0.0194755 + 0.0194755i
\(105\) 0 0
\(106\) 5.65569 5.65569i 0.549330 0.549330i
\(107\) −0.674656 + 0.674656i −0.0652215 + 0.0652215i −0.738965 0.673744i \(-0.764685\pi\)
0.673744 + 0.738965i \(0.264685\pi\)
\(108\) −1.71341 −0.164873
\(109\) −10.4345 −0.999445 −0.499723 0.866185i \(-0.666565\pi\)
−0.499723 + 0.866185i \(0.666565\pi\)
\(110\) 0 0
\(111\) 1.90722 0.181025
\(112\) −0.632503 + 0.632503i −0.0597660 + 0.0597660i
\(113\) 3.11631i 0.293158i −0.989199 0.146579i \(-0.953174\pi\)
0.989199 0.146579i \(-0.0468262\pi\)
\(114\) 0.519282 0.519282i 0.0486353 0.0486353i
\(115\) 0 0
\(116\) −5.30631 0.918177i −0.492679 0.0852506i
\(117\) 0.579176 0.579176i 0.0535449 0.0535449i
\(118\) −9.89258 −0.910686
\(119\) −0.301580 0.301580i −0.0276458 0.0276458i
\(120\) 0 0
\(121\) 10.1736i 0.924874i
\(122\) 3.88864 + 3.88864i 0.352061 + 0.352061i
\(123\) −1.87667 1.87667i −0.169214 0.169214i
\(124\) 5.65569 5.65569i 0.507896 0.507896i
\(125\) 0 0
\(126\) 1.84446 + 1.84446i 0.164317 + 0.164317i
\(127\) 2.18915i 0.194255i −0.995272 0.0971277i \(-0.969034\pi\)
0.995272 0.0971277i \(-0.0309655\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −2.48294 −0.218611
\(130\) 0 0
\(131\) −4.28463 4.28463i −0.374350 0.374350i 0.494709 0.869059i \(-0.335275\pi\)
−0.869059 + 0.494709i \(0.835275\pi\)
\(132\) 0.942340 0.942340i 0.0820201 0.0820201i
\(133\) −2.26815 −0.196673
\(134\) 7.85685 7.85685i 0.678729 0.678729i
\(135\) 0 0
\(136\) 0.476804 0.0408856
\(137\) 14.1260i 1.20687i 0.797413 + 0.603435i \(0.206202\pi\)
−0.797413 + 0.603435i \(0.793798\pi\)
\(138\) 1.12622 1.12622i 0.0958700 0.0958700i
\(139\) 2.52250i 0.213956i −0.994261 0.106978i \(-0.965883\pi\)
0.994261 0.106978i \(-0.0341174\pi\)
\(140\) 0 0
\(141\) −0.394314 −0.0332072
\(142\) −8.63547 −0.724673
\(143\) 1.29246i 0.108081i
\(144\) −2.91612 −0.243010
\(145\) 0 0
\(146\) −8.56068 −0.708487
\(147\) 1.79559i 0.148098i
\(148\) 6.58530 0.541308
\(149\) 2.94004 0.240858 0.120429 0.992722i \(-0.461573\pi\)
0.120429 + 0.992722i \(0.461573\pi\)
\(150\) 0 0
\(151\) 10.8414i 0.882262i −0.897443 0.441131i \(-0.854577\pi\)
0.897443 0.441131i \(-0.145423\pi\)
\(152\) 1.79299 1.79299i 0.145431 0.145431i
\(153\) 1.39042i 0.112409i
\(154\) −4.11600 −0.331677
\(155\) 0 0
\(156\) −0.0575215 + 0.0575215i −0.00460540 + 0.00460540i
\(157\) 7.88212 0.629061 0.314531 0.949247i \(-0.398153\pi\)
0.314531 + 0.949247i \(0.398153\pi\)
\(158\) 0.0428537 0.0428537i 0.00340926 0.00340926i
\(159\) 1.63799 + 1.63799i 0.129901 + 0.129901i
\(160\) 0 0
\(161\) −4.91915 −0.387683
\(162\) 8.25213i 0.648349i
\(163\) 22.3121i 1.74762i 0.486266 + 0.873811i \(0.338359\pi\)
−0.486266 + 0.873811i \(0.661641\pi\)
\(164\) −6.47983 6.47983i −0.505990 0.505990i
\(165\) 0 0
\(166\) −1.00000 + 1.00000i −0.0776151 + 0.0776151i
\(167\) −7.60605 7.60605i −0.588574 0.588574i 0.348671 0.937245i \(-0.386633\pi\)
−0.937245 + 0.348671i \(0.886633\pi\)
\(168\) −0.183184 0.183184i −0.0141330 0.0141330i
\(169\) 12.9211i 0.993931i
\(170\) 0 0
\(171\) −5.22859 5.22859i −0.399840 0.399840i
\(172\) −8.57318 −0.653699
\(173\) 2.00873 2.00873i 0.152721 0.152721i −0.626611 0.779332i \(-0.715558\pi\)
0.779332 + 0.626611i \(0.215558\pi\)
\(174\) 0.265920 1.53680i 0.0201594 0.116505i
\(175\) 0 0
\(176\) 3.25374 3.25374i 0.245260 0.245260i
\(177\) 2.86506i 0.215351i
\(178\) −5.88779 + 5.88779i −0.441308 + 0.441308i
\(179\) −23.6028 −1.76415 −0.882077 0.471106i \(-0.843855\pi\)
−0.882077 + 0.471106i \(0.843855\pi\)
\(180\) 0 0
\(181\) 20.7780 1.54442 0.772210 0.635368i \(-0.219152\pi\)
0.772210 + 0.635368i \(0.219152\pi\)
\(182\) 0.251245 0.0186235
\(183\) −1.12622 + 1.12622i −0.0832524 + 0.0832524i
\(184\) 3.88864 3.88864i 0.286674 0.286674i
\(185\) 0 0
\(186\) 1.63799 + 1.63799i 0.120103 + 0.120103i
\(187\) 1.55140 + 1.55140i 0.113449 + 0.113449i
\(188\) −1.36150 −0.0992974
\(189\) −1.08374 + 1.08374i −0.0788304 + 0.0788304i
\(190\) 0 0
\(191\) 6.90356 6.90356i 0.499524 0.499524i −0.411766 0.911290i \(-0.635088\pi\)
0.911290 + 0.411766i \(0.135088\pi\)
\(192\) 0.289618 0.0209013
\(193\) 24.3879 1.75548 0.877741 0.479135i \(-0.159050\pi\)
0.877741 + 0.479135i \(0.159050\pi\)
\(194\) 11.8026i 0.847380i
\(195\) 0 0
\(196\) 6.19988i 0.442848i
\(197\) −2.47207 + 2.47207i −0.176128 + 0.176128i −0.789666 0.613538i \(-0.789746\pi\)
0.613538 + 0.789666i \(0.289746\pi\)
\(198\) −9.48830 9.48830i −0.674304 0.674304i
\(199\) 11.3378i 0.803712i −0.915703 0.401856i \(-0.868365\pi\)
0.915703 0.401856i \(-0.131635\pi\)
\(200\) 0 0
\(201\) 2.27548 + 2.27548i 0.160500 + 0.160500i
\(202\) −0.605077 0.605077i −0.0425731 0.0425731i
\(203\) −3.93701 + 2.77551i −0.276324 + 0.194803i
\(204\) 0.138091i 0.00966830i
\(205\) 0 0
\(206\) −10.9674 + 10.9674i −0.764133 + 0.764133i
\(207\) −11.3397 11.3397i −0.788166 0.788166i
\(208\) −0.198612 + 0.198612i −0.0137713 + 0.0137713i
\(209\) 11.6679 0.807083
\(210\) 0 0
\(211\) −11.8850 11.8850i −0.818199 0.818199i 0.167648 0.985847i \(-0.446383\pi\)
−0.985847 + 0.167648i \(0.946383\pi\)
\(212\) 5.65569 + 5.65569i 0.388435 + 0.388435i
\(213\) 2.50099i 0.171365i
\(214\) −0.674656 0.674656i −0.0461185 0.0461185i
\(215\) 0 0
\(216\) 1.71341i 0.116583i
\(217\) 7.15449i 0.485678i
\(218\) 10.4345i 0.706715i
\(219\) 2.47932i 0.167537i
\(220\) 0 0
\(221\) −0.0946990 0.0946990i −0.00637014 0.00637014i
\(222\) 1.90722i 0.128004i
\(223\) −10.2691 10.2691i −0.687668 0.687668i 0.274048 0.961716i \(-0.411637\pi\)
−0.961716 + 0.274048i \(0.911637\pi\)
\(224\) −0.632503 0.632503i −0.0422609 0.0422609i
\(225\) 0 0
\(226\) 3.11631 0.207294
\(227\) 11.4326 11.4326i 0.758806 0.758806i −0.217299 0.976105i \(-0.569725\pi\)
0.976105 + 0.217299i \(0.0697246\pi\)
\(228\) 0.519282 + 0.519282i 0.0343903 + 0.0343903i
\(229\) 11.1122 11.1122i 0.734316 0.734316i −0.237156 0.971472i \(-0.576215\pi\)
0.971472 + 0.237156i \(0.0762151\pi\)
\(230\) 0 0
\(231\) 1.19207i 0.0784322i
\(232\) 0.918177 5.30631i 0.0602813 0.348376i
\(233\) −14.5816 14.5816i −0.955273 0.955273i 0.0437692 0.999042i \(-0.486063\pi\)
−0.999042 + 0.0437692i \(0.986063\pi\)
\(234\) 0.579176 + 0.579176i 0.0378619 + 0.0378619i
\(235\) 0 0
\(236\) 9.89258i 0.643952i
\(237\) 0.0124112 + 0.0124112i 0.000806194 + 0.000806194i
\(238\) 0.301580 0.301580i 0.0195486 0.0195486i
\(239\) 1.20088i 0.0776785i −0.999245 0.0388392i \(-0.987634\pi\)
0.999245 0.0388392i \(-0.0123660\pi\)
\(240\) 0 0
\(241\) 22.6204i 1.45711i 0.684987 + 0.728555i \(0.259808\pi\)
−0.684987 + 0.728555i \(0.740192\pi\)
\(242\) 10.1736 0.653985
\(243\) −7.53020 −0.483063
\(244\) −3.88864 + 3.88864i −0.248944 + 0.248944i
\(245\) 0 0
\(246\) 1.87667 1.87667i 0.119652 0.119652i
\(247\) −0.712219 −0.0453174
\(248\) 5.65569 + 5.65569i 0.359137 + 0.359137i
\(249\) −0.289618 0.289618i −0.0183538 0.0183538i
\(250\) 0 0
\(251\) −4.26661 + 4.26661i −0.269306 + 0.269306i −0.828821 0.559514i \(-0.810988\pi\)
0.559514 + 0.828821i \(0.310988\pi\)
\(252\) −1.84446 + 1.84446i −0.116190 + 0.116190i
\(253\) 25.3052 1.59092
\(254\) 2.18915 0.137359
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.892241 + 0.892241i −0.0556564 + 0.0556564i −0.734387 0.678731i \(-0.762530\pi\)
0.678731 + 0.734387i \(0.262530\pi\)
\(258\) 2.48294i 0.154581i
\(259\) 4.16522 4.16522i 0.258814 0.258814i
\(260\) 0 0
\(261\) −15.4739 2.67752i −0.957807 0.165734i
\(262\) 4.28463 4.28463i 0.264705 0.264705i
\(263\) −20.3198 −1.25297 −0.626486 0.779433i \(-0.715507\pi\)
−0.626486 + 0.779433i \(0.715507\pi\)
\(264\) 0.942340 + 0.942340i 0.0579970 + 0.0579970i
\(265\) 0 0
\(266\) 2.26815i 0.139069i
\(267\) −1.70521 1.70521i −0.104357 0.104357i
\(268\) 7.85685 + 7.85685i 0.479934 + 0.479934i
\(269\) 20.2449 20.2449i 1.23436 1.23436i 0.272081 0.962274i \(-0.412288\pi\)
0.962274 0.272081i \(-0.0877118\pi\)
\(270\) 0 0
\(271\) −3.61114 3.61114i −0.219361 0.219361i 0.588868 0.808229i \(-0.299574\pi\)
−0.808229 + 0.588868i \(0.799574\pi\)
\(272\) 0.476804i 0.0289105i
\(273\) 0.0727650i 0.00440394i
\(274\) −14.1260 −0.853385
\(275\) 0 0
\(276\) 1.12622 + 1.12622i 0.0677903 + 0.0677903i
\(277\) −1.15866 + 1.15866i −0.0696169 + 0.0696169i −0.741058 0.671441i \(-0.765676\pi\)
0.671441 + 0.741058i \(0.265676\pi\)
\(278\) 2.52250 0.151290
\(279\) 16.4927 16.4927i 0.987392 0.987392i
\(280\) 0 0
\(281\) −8.88875 −0.530258 −0.265129 0.964213i \(-0.585415\pi\)
−0.265129 + 0.964213i \(0.585415\pi\)
\(282\) 0.394314i 0.0234810i
\(283\) 22.9390 22.9390i 1.36358 1.36358i 0.494284 0.869301i \(-0.335430\pi\)
0.869301 0.494284i \(-0.164570\pi\)
\(284\) 8.63547i 0.512421i
\(285\) 0 0
\(286\) −1.29246 −0.0764248
\(287\) −8.19704 −0.483856
\(288\) 2.91612i 0.171834i
\(289\) 16.7727 0.986627
\(290\) 0 0
\(291\) −3.41825 −0.200382
\(292\) 8.56068i 0.500976i
\(293\) −15.7998 −0.923035 −0.461517 0.887131i \(-0.652695\pi\)
−0.461517 + 0.887131i \(0.652695\pi\)
\(294\) 1.79559 0.104721
\(295\) 0 0
\(296\) 6.58530i 0.382763i
\(297\) 5.57500 5.57500i 0.323494 0.323494i
\(298\) 2.94004i 0.170312i
\(299\) −1.54466 −0.0893299
\(300\) 0 0
\(301\) −5.42256 + 5.42256i −0.312551 + 0.312551i
\(302\) 10.8414 0.623853
\(303\) 0.175241 0.175241i 0.0100673 0.0100673i
\(304\) 1.79299 + 1.79299i 0.102835 + 0.102835i
\(305\) 0 0
\(306\) 1.39042 0.0794850
\(307\) 15.9584i 0.910794i −0.890289 0.455397i \(-0.849497\pi\)
0.890289 0.455397i \(-0.150503\pi\)
\(308\) 4.11600i 0.234531i
\(309\) −3.17634 3.17634i −0.180696 0.180696i
\(310\) 0 0
\(311\) −5.09331 + 5.09331i −0.288815 + 0.288815i −0.836612 0.547797i \(-0.815467\pi\)
0.547797 + 0.836612i \(0.315467\pi\)
\(312\) −0.0575215 0.0575215i −0.00325651 0.00325651i
\(313\) 9.62217 + 9.62217i 0.543877 + 0.543877i 0.924663 0.380786i \(-0.124347\pi\)
−0.380786 + 0.924663i \(0.624347\pi\)
\(314\) 7.88212i 0.444814i
\(315\) 0 0
\(316\) 0.0428537 + 0.0428537i 0.00241071 + 0.00241071i
\(317\) 22.6925 1.27454 0.637269 0.770641i \(-0.280064\pi\)
0.637269 + 0.770641i \(0.280064\pi\)
\(318\) −1.63799 + 1.63799i −0.0918538 + 0.0918538i
\(319\) 20.2529 14.2778i 1.13394 0.799406i
\(320\) 0 0
\(321\) 0.195392 0.195392i 0.0109057 0.0109057i
\(322\) 4.91915i 0.274134i
\(323\) −0.854907 + 0.854907i −0.0475683 + 0.0475683i
\(324\) −8.25213 −0.458452
\(325\) 0 0
\(326\) −22.3121 −1.23576
\(327\) 3.02202 0.167118
\(328\) 6.47983 6.47983i 0.357789 0.357789i
\(329\) −0.861152 + 0.861152i −0.0474768 + 0.0474768i
\(330\) 0 0
\(331\) 3.40255 + 3.40255i 0.187021 + 0.187021i 0.794407 0.607386i \(-0.207782\pi\)
−0.607386 + 0.794407i \(0.707782\pi\)
\(332\) −1.00000 1.00000i −0.0548821 0.0548821i
\(333\) 19.2035 1.05235
\(334\) 7.60605 7.60605i 0.416185 0.416185i
\(335\) 0 0
\(336\) 0.183184 0.183184i 0.00999351 0.00999351i
\(337\) 20.6557 1.12519 0.562593 0.826734i \(-0.309804\pi\)
0.562593 + 0.826734i \(0.309804\pi\)
\(338\) −12.9211 −0.702816
\(339\) 0.902538i 0.0490191i
\(340\) 0 0
\(341\) 36.8043i 1.99306i
\(342\) 5.22859 5.22859i 0.282730 0.282730i
\(343\) −8.34897 8.34897i −0.450802 0.450802i
\(344\) 8.57318i 0.462235i
\(345\) 0 0
\(346\) 2.00873 + 2.00873i 0.107990 + 0.107990i
\(347\) 23.4372 + 23.4372i 1.25818 + 1.25818i 0.951963 + 0.306213i \(0.0990621\pi\)
0.306213 + 0.951963i \(0.400938\pi\)
\(348\) 1.53680 + 0.265920i 0.0823812 + 0.0142548i
\(349\) 25.2886i 1.35367i 0.736136 + 0.676834i \(0.236649\pi\)
−0.736136 + 0.676834i \(0.763351\pi\)
\(350\) 0 0
\(351\) −0.340304 + 0.340304i −0.0181641 + 0.0181641i
\(352\) 3.25374 + 3.25374i 0.173425 + 0.173425i
\(353\) −6.88469 + 6.88469i −0.366435 + 0.366435i −0.866175 0.499740i \(-0.833429\pi\)
0.499740 + 0.866175i \(0.333429\pi\)
\(354\) 2.86506 0.152276
\(355\) 0 0
\(356\) −5.88779 5.88779i −0.312052 0.312052i
\(357\) 0.0873430 + 0.0873430i 0.00462268 + 0.00462268i
\(358\) 23.6028i 1.24745i
\(359\) 22.2072 + 22.2072i 1.17205 + 1.17205i 0.981720 + 0.190330i \(0.0609559\pi\)
0.190330 + 0.981720i \(0.439044\pi\)
\(360\) 0 0
\(361\) 12.5703i 0.661597i
\(362\) 20.7780i 1.09207i
\(363\) 2.94646i 0.154649i
\(364\) 0.251245i 0.0131688i
\(365\) 0 0
\(366\) −1.12622 1.12622i −0.0588683 0.0588683i
\(367\) 1.97873i 0.103289i 0.998666 + 0.0516445i \(0.0164463\pi\)
−0.998666 + 0.0516445i \(0.983554\pi\)
\(368\) 3.88864 + 3.88864i 0.202709 + 0.202709i
\(369\) −18.8960 18.8960i −0.983686 0.983686i
\(370\) 0 0
\(371\) 7.15449 0.371443
\(372\) −1.63799 + 1.63799i −0.0849257 + 0.0849257i
\(373\) −19.0279 19.0279i −0.985225 0.985225i 0.0146674 0.999892i \(-0.495331\pi\)
−0.999892 + 0.0146674i \(0.995331\pi\)
\(374\) −1.55140 + 1.55140i −0.0802208 + 0.0802208i
\(375\) 0 0
\(376\) 1.36150i 0.0702139i
\(377\) −1.23626 + 0.871535i −0.0636705 + 0.0448864i
\(378\) −1.08374 1.08374i −0.0557415 0.0557415i
\(379\) −10.8552 10.8552i −0.557595 0.557595i 0.371027 0.928622i \(-0.379006\pi\)
−0.928622 + 0.371027i \(0.879006\pi\)
\(380\) 0 0
\(381\) 0.634016i 0.0324816i
\(382\) 6.90356 + 6.90356i 0.353217 + 0.353217i
\(383\) −22.6747 + 22.6747i −1.15862 + 1.15862i −0.173848 + 0.984772i \(0.555620\pi\)
−0.984772 + 0.173848i \(0.944380\pi\)
\(384\) 0.289618i 0.0147795i
\(385\) 0 0
\(386\) 24.3879i 1.24131i
\(387\) −25.0004 −1.27084
\(388\) −11.8026 −0.599188
\(389\) 8.76850 8.76850i 0.444581 0.444581i −0.448967 0.893548i \(-0.648208\pi\)
0.893548 + 0.448967i \(0.148208\pi\)
\(390\) 0 0
\(391\) −1.85412 + 1.85412i −0.0937668 + 0.0937668i
\(392\) 6.19988 0.313141
\(393\) 1.24090 + 1.24090i 0.0625953 + 0.0625953i
\(394\) −2.47207 2.47207i −0.124541 0.124541i
\(395\) 0 0
\(396\) 9.48830 9.48830i 0.476805 0.476805i
\(397\) 18.3875 18.3875i 0.922841 0.922841i −0.0743886 0.997229i \(-0.523701\pi\)
0.997229 + 0.0743886i \(0.0237005\pi\)
\(398\) 11.3378 0.568310
\(399\) 0.656896 0.0328859
\(400\) 0 0
\(401\) 5.87124 0.293196 0.146598 0.989196i \(-0.453168\pi\)
0.146598 + 0.989196i \(0.453168\pi\)
\(402\) −2.27548 + 2.27548i −0.113491 + 0.113491i
\(403\) 2.24657i 0.111910i
\(404\) 0.605077 0.605077i 0.0301037 0.0301037i
\(405\) 0 0
\(406\) −2.77551 3.93701i −0.137746 0.195391i
\(407\) −21.4268 + 21.4268i −1.06209 + 1.06209i
\(408\) −0.138091 −0.00683652
\(409\) −11.7879 11.7879i −0.582876 0.582876i 0.352816 0.935693i \(-0.385224\pi\)
−0.935693 + 0.352816i \(0.885224\pi\)
\(410\) 0 0
\(411\) 4.09115i 0.201802i
\(412\) −10.9674 10.9674i −0.540324 0.540324i
\(413\) −6.25709 6.25709i −0.307891 0.307891i
\(414\) 11.3397 11.3397i 0.557318 0.557318i
\(415\) 0 0
\(416\) −0.198612 0.198612i −0.00973774 0.00973774i
\(417\) 0.730562i 0.0357758i
\(418\) 11.6679i 0.570694i
\(419\) −18.7077 −0.913929 −0.456964 0.889485i \(-0.651063\pi\)
−0.456964 + 0.889485i \(0.651063\pi\)
\(420\) 0 0
\(421\) −4.16276 4.16276i −0.202880 0.202880i 0.598353 0.801233i \(-0.295822\pi\)
−0.801233 + 0.598353i \(0.795822\pi\)
\(422\) 11.8850 11.8850i 0.578554 0.578554i
\(423\) −3.97029 −0.193042
\(424\) −5.65569 + 5.65569i −0.274665 + 0.274665i
\(425\) 0 0
\(426\) 2.50099 0.121173
\(427\) 4.91915i 0.238054i
\(428\) 0.674656 0.674656i 0.0326107 0.0326107i
\(429\) 0.374320i 0.0180723i
\(430\) 0 0
\(431\) 0.757725 0.0364983 0.0182492 0.999833i \(-0.494191\pi\)
0.0182492 + 0.999833i \(0.494191\pi\)
\(432\) 1.71341 0.0824366
\(433\) 10.8919i 0.523431i −0.965145 0.261716i \(-0.915712\pi\)
0.965145 0.261716i \(-0.0842882\pi\)
\(434\) 7.15449 0.343427
\(435\) 0 0
\(436\) 10.4345 0.499723
\(437\) 13.9446i 0.667061i
\(438\) 2.47932 0.118467
\(439\) −16.0340 −0.765261 −0.382631 0.923901i \(-0.624982\pi\)
−0.382631 + 0.923901i \(0.624982\pi\)
\(440\) 0 0
\(441\) 18.0796i 0.860933i
\(442\) 0.0946990 0.0946990i 0.00450437 0.00450437i
\(443\) 21.8127i 1.03635i 0.855274 + 0.518176i \(0.173389\pi\)
−0.855274 + 0.518176i \(0.826611\pi\)
\(444\) −1.90722 −0.0905125
\(445\) 0 0
\(446\) 10.2691 10.2691i 0.486255 0.486255i
\(447\) −0.851488 −0.0402740
\(448\) 0.632503 0.632503i 0.0298830 0.0298830i
\(449\) −11.8820 11.8820i −0.560748 0.560748i 0.368772 0.929520i \(-0.379778\pi\)
−0.929520 + 0.368772i \(0.879778\pi\)
\(450\) 0 0
\(451\) 42.1674 1.98558
\(452\) 3.11631i 0.146579i
\(453\) 3.13986i 0.147524i
\(454\) 11.4326 + 11.4326i 0.536557 + 0.536557i
\(455\) 0 0
\(456\) −0.519282 + 0.519282i −0.0243176 + 0.0243176i
\(457\) 25.4126 + 25.4126i 1.18875 + 1.18875i 0.977413 + 0.211340i \(0.0677828\pi\)
0.211340 + 0.977413i \(0.432217\pi\)
\(458\) 11.1122 + 11.1122i 0.519240 + 0.519240i
\(459\) 0.816963i 0.0381325i
\(460\) 0 0
\(461\) −26.1001 26.1001i −1.21560 1.21560i −0.969156 0.246449i \(-0.920736\pi\)
−0.246449 0.969156i \(-0.579264\pi\)
\(462\) 1.19207 0.0554599
\(463\) 3.00076 3.00076i 0.139457 0.139457i −0.633932 0.773389i \(-0.718560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(464\) 5.30631 + 0.918177i 0.246339 + 0.0426253i
\(465\) 0 0
\(466\) 14.5816 14.5816i 0.675480 0.675480i
\(467\) 4.86798i 0.225263i 0.993637 + 0.112632i \(0.0359280\pi\)
−0.993637 + 0.112632i \(0.964072\pi\)
\(468\) −0.579176 + 0.579176i −0.0267724 + 0.0267724i
\(469\) 9.93897 0.458939
\(470\) 0 0
\(471\) −2.28280 −0.105186
\(472\) 9.89258 0.455343
\(473\) 27.8949 27.8949i 1.28261 1.28261i
\(474\) −0.0124112 + 0.0124112i −0.000570065 + 0.000570065i
\(475\) 0 0
\(476\) 0.301580 + 0.301580i 0.0138229 + 0.0138229i
\(477\) 16.4927 + 16.4927i 0.755148 + 0.755148i
\(478\) 1.20088 0.0549270
\(479\) −4.92833 + 4.92833i −0.225181 + 0.225181i −0.810676 0.585495i \(-0.800900\pi\)
0.585495 + 0.810676i \(0.300900\pi\)
\(480\) 0 0
\(481\) 1.30792 1.30792i 0.0596359 0.0596359i
\(482\) −22.6204 −1.03033
\(483\) 1.42467 0.0648249
\(484\) 10.1736i 0.462437i
\(485\) 0 0
\(486\) 7.53020i 0.341577i
\(487\) −2.73756 + 2.73756i −0.124050 + 0.124050i −0.766406 0.642356i \(-0.777957\pi\)
0.642356 + 0.766406i \(0.277957\pi\)
\(488\) −3.88864 3.88864i −0.176030 0.176030i
\(489\) 6.46199i 0.292221i
\(490\) 0 0
\(491\) −16.0568 16.0568i −0.724631 0.724631i 0.244914 0.969545i \(-0.421240\pi\)
−0.969545 + 0.244914i \(0.921240\pi\)
\(492\) 1.87667 + 1.87667i 0.0846070 + 0.0846070i
\(493\) −0.437791 + 2.53007i −0.0197171 + 0.113949i
\(494\) 0.712219i 0.0320443i
\(495\) 0 0
\(496\) −5.65569 + 5.65569i −0.253948 + 0.253948i
\(497\) −5.46197 5.46197i −0.245003 0.245003i
\(498\) 0.289618 0.289618i 0.0129781 0.0129781i
\(499\) −11.0768 −0.495867 −0.247934 0.968777i \(-0.579751\pi\)
−0.247934 + 0.968777i \(0.579751\pi\)
\(500\) 0 0
\(501\) 2.20285 + 2.20285i 0.0984159 + 0.0984159i
\(502\) −4.26661 4.26661i −0.190428 0.190428i
\(503\) 8.08426i 0.360459i −0.983625 0.180230i \(-0.942316\pi\)
0.983625 0.180230i \(-0.0576841\pi\)
\(504\) −1.84446 1.84446i −0.0821586 0.0821586i
\(505\) 0 0
\(506\) 25.3052i 1.12495i
\(507\) 3.74218i 0.166196i
\(508\) 2.18915i 0.0971277i
\(509\) 12.9806i 0.575354i −0.957728 0.287677i \(-0.907117\pi\)
0.957728 0.287677i \(-0.0928829\pi\)
\(510\) 0 0
\(511\) −5.41466 5.41466i −0.239531 0.239531i
\(512\) 1.00000i 0.0441942i
\(513\) 3.07214 + 3.07214i 0.135638 + 0.135638i
\(514\) −0.892241 0.892241i −0.0393550 0.0393550i
\(515\) 0 0
\(516\) 2.48294 0.109305
\(517\) 4.42996 4.42996i 0.194829 0.194829i
\(518\) 4.16522 + 4.16522i 0.183009 + 0.183009i
\(519\) −0.581765 + 0.581765i −0.0255366 + 0.0255366i
\(520\) 0 0
\(521\) 18.4390i 0.807827i 0.914797 + 0.403914i \(0.132350\pi\)
−0.914797 + 0.403914i \(0.867650\pi\)
\(522\) 2.67752 15.4739i 0.117192 0.677272i
\(523\) −13.6216 13.6216i −0.595631 0.595631i 0.343516 0.939147i \(-0.388382\pi\)
−0.939147 + 0.343516i \(0.888382\pi\)
\(524\) 4.28463 + 4.28463i 0.187175 + 0.187175i
\(525\) 0 0
\(526\) 20.3198i 0.885984i
\(527\) −2.69666 2.69666i −0.117468 0.117468i
\(528\) −0.942340 + 0.942340i −0.0410101 + 0.0410101i
\(529\) 7.24299i 0.314913i
\(530\) 0 0
\(531\) 28.8480i 1.25190i
\(532\) 2.26815 0.0983367
\(533\) −2.57394 −0.111490
\(534\) 1.70521 1.70521i 0.0737915 0.0737915i
\(535\) 0 0
\(536\) −7.85685 + 7.85685i −0.339364 + 0.339364i
\(537\) 6.83578 0.294986
\(538\) 20.2449 + 20.2449i 0.872821 + 0.872821i
\(539\) 20.1728 + 20.1728i 0.868903 + 0.868903i
\(540\) 0 0
\(541\) −16.5747 + 16.5747i −0.712602 + 0.712602i −0.967079 0.254477i \(-0.918097\pi\)
0.254477 + 0.967079i \(0.418097\pi\)
\(542\) 3.61114 3.61114i 0.155112 0.155112i
\(543\) −6.01768 −0.258244
\(544\) −0.476804 −0.0204428
\(545\) 0 0
\(546\) −0.0727650 −0.00311406
\(547\) 8.23169 8.23169i 0.351961 0.351961i −0.508877 0.860839i \(-0.669939\pi\)
0.860839 + 0.508877i \(0.169939\pi\)
\(548\) 14.1260i 0.603435i
\(549\) −11.3397 + 11.3397i −0.483968 + 0.483968i
\(550\) 0 0
\(551\) 7.86790 + 11.1605i 0.335184 + 0.475452i
\(552\) −1.12622 + 1.12622i −0.0479350 + 0.0479350i
\(553\) 0.0542103 0.00230526
\(554\) −1.15866 1.15866i −0.0492266 0.0492266i
\(555\) 0 0
\(556\) 2.52250i 0.106978i
\(557\) −23.6717 23.6717i −1.00300 1.00300i −0.999995 0.00300753i \(-0.999043\pi\)
−0.00300753 0.999995i \(-0.500957\pi\)
\(558\) 16.4927 + 16.4927i 0.698191 + 0.698191i
\(559\) −1.70273 + 1.70273i −0.0720180 + 0.0720180i
\(560\) 0 0
\(561\) −0.449312 0.449312i −0.0189700 0.0189700i
\(562\) 8.88875i 0.374949i
\(563\) 38.2332i 1.61134i −0.592365 0.805670i \(-0.701806\pi\)
0.592365 0.805670i \(-0.298194\pi\)
\(564\) 0.394314 0.0166036
\(565\) 0 0
\(566\) 22.9390 + 22.9390i 0.964200 + 0.964200i
\(567\) −5.21950 + 5.21950i −0.219198 + 0.219198i
\(568\) 8.63547 0.362336
\(569\) 10.6612 10.6612i 0.446939 0.446939i −0.447397 0.894336i \(-0.647649\pi\)
0.894336 + 0.447397i \(0.147649\pi\)
\(570\) 0 0
\(571\) −12.7145 −0.532085 −0.266042 0.963961i \(-0.585716\pi\)
−0.266042 + 0.963961i \(0.585716\pi\)
\(572\) 1.29246i 0.0540405i
\(573\) −1.99939 + 1.99939i −0.0835258 + 0.0835258i
\(574\) 8.19704i 0.342138i
\(575\) 0 0
\(576\) 2.91612 0.121505
\(577\) −24.2872 −1.01109 −0.505545 0.862800i \(-0.668709\pi\)
−0.505545 + 0.862800i \(0.668709\pi\)
\(578\) 16.7727i 0.697651i
\(579\) −7.06318 −0.293536
\(580\) 0 0
\(581\) −1.26501 −0.0524813
\(582\) 3.41825i 0.141691i
\(583\) −36.8043 −1.52428
\(584\) 8.56068 0.354244
\(585\) 0 0
\(586\) 15.7998i 0.652684i
\(587\) −5.49283 + 5.49283i −0.226714 + 0.226714i −0.811318 0.584605i \(-0.801250\pi\)
0.584605 + 0.811318i \(0.301250\pi\)
\(588\) 1.79559i 0.0740490i
\(589\) −20.2812 −0.835674
\(590\) 0 0
\(591\) 0.715956 0.715956i 0.0294505 0.0294505i
\(592\) −6.58530 −0.270654
\(593\) −28.1924 + 28.1924i −1.15772 + 1.15772i −0.172761 + 0.984964i \(0.555269\pi\)
−0.984964 + 0.172761i \(0.944731\pi\)
\(594\) 5.57500 + 5.57500i 0.228745 + 0.228745i
\(595\) 0 0
\(596\) −2.94004 −0.120429
\(597\) 3.28361i 0.134389i
\(598\) 1.54466i 0.0631658i
\(599\) −20.0950 20.0950i −0.821059 0.821059i 0.165201 0.986260i \(-0.447173\pi\)
−0.986260 + 0.165201i \(0.947173\pi\)
\(600\) 0 0
\(601\) −2.21091 + 2.21091i −0.0901848 + 0.0901848i −0.750760 0.660575i \(-0.770313\pi\)
0.660575 + 0.750760i \(0.270313\pi\)
\(602\) −5.42256 5.42256i −0.221007 0.221007i
\(603\) 22.9115 + 22.9115i 0.933030 + 0.933030i
\(604\) 10.8414i 0.441131i
\(605\) 0 0
\(606\) 0.175241 + 0.175241i 0.00711868 + 0.00711868i
\(607\) −37.1113 −1.50630 −0.753150 0.657849i \(-0.771467\pi\)
−0.753150 + 0.657849i \(0.771467\pi\)
\(608\) −1.79299 + 1.79299i −0.0727155 + 0.0727155i
\(609\) 1.14023 0.803837i 0.0462043 0.0325731i
\(610\) 0 0
\(611\) −0.270409 + 0.270409i −0.0109396 + 0.0109396i
\(612\) 1.39042i 0.0562044i
\(613\) 20.5386 20.5386i 0.829547 0.829547i −0.157907 0.987454i \(-0.550475\pi\)
0.987454 + 0.157907i \(0.0504745\pi\)
\(614\) 15.9584 0.644028
\(615\) 0 0
\(616\) 4.11600 0.165838
\(617\) −1.48087 −0.0596176 −0.0298088 0.999556i \(-0.509490\pi\)
−0.0298088 + 0.999556i \(0.509490\pi\)
\(618\) 3.17634 3.17634i 0.127771 0.127771i
\(619\) −31.9416 + 31.9416i −1.28384 + 1.28384i −0.345380 + 0.938463i \(0.612250\pi\)
−0.938463 + 0.345380i \(0.887750\pi\)
\(620\) 0 0
\(621\) 6.66284 + 6.66284i 0.267371 + 0.267371i
\(622\) −5.09331 5.09331i −0.204223 0.204223i
\(623\) −7.44809 −0.298402
\(624\) 0.0575215 0.0575215i 0.00230270 0.00230270i
\(625\) 0 0
\(626\) −9.62217 + 9.62217i −0.384579 + 0.384579i
\(627\) −3.37922 −0.134953
\(628\) −7.88212 −0.314531
\(629\) 3.13990i 0.125196i
\(630\) 0 0
\(631\) 32.1454i 1.27969i 0.768505 + 0.639844i \(0.221001\pi\)
−0.768505 + 0.639844i \(0.778999\pi\)
\(632\) −0.0428537 + 0.0428537i −0.00170463 + 0.00170463i
\(633\) 3.44211 + 3.44211i 0.136812 + 0.136812i
\(634\) 22.6925i 0.901235i
\(635\) 0 0
\(636\) −1.63799 1.63799i −0.0649505 0.0649505i
\(637\) −1.23137 1.23137i −0.0487886 0.0487886i
\(638\) 14.2778 + 20.2529i 0.565265 + 0.801818i
\(639\) 25.1821i 0.996188i
\(640\) 0 0
\(641\) −30.2409 + 30.2409i −1.19444 + 1.19444i −0.218636 + 0.975806i \(0.570161\pi\)
−0.975806 + 0.218636i \(0.929839\pi\)
\(642\) 0.195392 + 0.195392i 0.00771152 + 0.00771152i
\(643\) −7.79835 + 7.79835i −0.307537 + 0.307537i −0.843953 0.536417i \(-0.819778\pi\)
0.536417 + 0.843953i \(0.319778\pi\)
\(644\) 4.91915 0.193842
\(645\) 0 0
\(646\) −0.854907 0.854907i −0.0336359 0.0336359i
\(647\) −16.6166 16.6166i −0.653268 0.653268i 0.300511 0.953778i \(-0.402843\pi\)
−0.953778 + 0.300511i \(0.902843\pi\)
\(648\) 8.25213i 0.324174i
\(649\) 32.1879 + 32.1879i 1.26348 + 1.26348i
\(650\) 0 0
\(651\) 2.07207i 0.0812107i
\(652\) 22.3121i 0.873811i
\(653\) 45.8616i 1.79470i 0.441317 + 0.897352i \(0.354512\pi\)
−0.441317 + 0.897352i \(0.645488\pi\)
\(654\) 3.02202i 0.118170i
\(655\) 0 0
\(656\) 6.47983 + 6.47983i 0.252995 + 0.252995i
\(657\) 24.9640i 0.973938i
\(658\) −0.861152 0.861152i −0.0335712 0.0335712i
\(659\) 8.87020 + 8.87020i 0.345534 + 0.345534i 0.858443 0.512909i \(-0.171432\pi\)
−0.512909 + 0.858443i \(0.671432\pi\)
\(660\) 0 0
\(661\) 25.4205 0.988743 0.494371 0.869251i \(-0.335398\pi\)
0.494371 + 0.869251i \(0.335398\pi\)
\(662\) −3.40255 + 3.40255i −0.132244 + 0.132244i
\(663\) 0.0274265 + 0.0274265i 0.00106516 + 0.00106516i
\(664\) 1.00000 1.00000i 0.0388075 0.0388075i
\(665\) 0 0
\(666\) 19.2035i 0.744121i
\(667\) 17.0639 + 24.2048i 0.660715 + 0.937213i
\(668\) 7.60605 + 7.60605i 0.294287 + 0.294287i
\(669\) 2.97410 + 2.97410i 0.114985 + 0.114985i
\(670\) 0 0
\(671\) 25.3052i 0.976897i
\(672\) 0.183184 + 0.183184i 0.00706648 + 0.00706648i
\(673\) 28.6125 28.6125i 1.10293 1.10293i 0.108874 0.994056i \(-0.465275\pi\)
0.994056 0.108874i \(-0.0347246\pi\)
\(674\) 20.6557i 0.795626i
\(675\) 0 0
\(676\) 12.9211i 0.496966i
\(677\) −1.01813 −0.0391300 −0.0195650 0.999809i \(-0.506228\pi\)
−0.0195650 + 0.999809i \(0.506228\pi\)
\(678\) −0.902538 −0.0346618
\(679\) −7.46521 + 7.46521i −0.286489 + 0.286489i
\(680\) 0 0
\(681\) −3.31107 + 3.31107i −0.126881 + 0.126881i
\(682\) −36.8043 −1.40931
\(683\) 13.6805 + 13.6805i 0.523470 + 0.523470i 0.918618 0.395147i \(-0.129306\pi\)
−0.395147 + 0.918618i \(0.629306\pi\)
\(684\) 5.22859 + 5.22859i 0.199920 + 0.199920i
\(685\) 0 0
\(686\) 8.34897 8.34897i 0.318765 0.318765i
\(687\) −3.21829 + 3.21829i −0.122786 + 0.122786i
\(688\) 8.57318 0.326849
\(689\) 2.24657 0.0855877
\(690\) 0 0
\(691\) 39.6924 1.50997 0.754985 0.655742i \(-0.227644\pi\)
0.754985 + 0.655742i \(0.227644\pi\)
\(692\) −2.00873 + 2.00873i −0.0763606 + 0.0763606i
\(693\) 12.0028i 0.455947i
\(694\) −23.4372 + 23.4372i −0.889665 + 0.889665i
\(695\) 0 0
\(696\) −0.265920 + 1.53680i −0.0100797 + 0.0582523i
\(697\) −3.08961 + 3.08961i −0.117027 + 0.117027i
\(698\) −25.2886 −0.957188
\(699\) 4.22309 + 4.22309i 0.159732 + 0.159732i
\(700\) 0 0
\(701\) 22.9970i 0.868586i 0.900772 + 0.434293i \(0.143002\pi\)
−0.900772 + 0.434293i \(0.856998\pi\)
\(702\) −0.340304 0.340304i −0.0128439 0.0128439i
\(703\) −11.8074 11.8074i −0.445324 0.445324i
\(704\) −3.25374 + 3.25374i −0.122630 + 0.122630i
\(705\) 0 0
\(706\) −6.88469 6.88469i −0.259109 0.259109i
\(707\) 0.765427i 0.0287868i
\(708\) 2.86506i 0.107676i
\(709\) −33.5904 −1.26151 −0.630756 0.775981i \(-0.717255\pi\)
−0.630756 + 0.775981i \(0.717255\pi\)
\(710\) 0 0
\(711\) 0.124967 + 0.124967i 0.00468662 + 0.00468662i
\(712\) 5.88779 5.88779i 0.220654 0.220654i
\(713\) −43.9859 −1.64728
\(714\) −0.0873430 + 0.0873430i −0.00326873 + 0.00326873i
\(715\) 0 0
\(716\) 23.6028 0.882077
\(717\) 0.347796i 0.0129887i
\(718\) −22.2072 + 22.2072i −0.828765 + 0.828765i
\(719\) 5.51139i 0.205540i 0.994705 + 0.102770i \(0.0327706\pi\)
−0.994705 + 0.102770i \(0.967229\pi\)
\(720\) 0 0
\(721\) −13.8738 −0.516687
\(722\) 12.5703 0.467820
\(723\) 6.55127i 0.243645i
\(724\) −20.7780 −0.772210
\(725\) 0 0
\(726\) −2.94646 −0.109353
\(727\) 5.28028i 0.195835i 0.995195 + 0.0979173i \(0.0312181\pi\)
−0.995195 + 0.0979173i \(0.968782\pi\)
\(728\) −0.251245 −0.00931177
\(729\) −22.5755 −0.836130
\(730\) 0 0
\(731\) 4.08773i 0.151190i
\(732\) 1.12622 1.12622i 0.0416262 0.0416262i
\(733\) 24.3366i 0.898892i −0.893308 0.449446i \(-0.851621\pi\)
0.893308 0.449446i \(-0.148379\pi\)
\(734\) −1.97873 −0.0730363
\(735\) 0 0
\(736\) −3.88864 + 3.88864i −0.143337 + 0.143337i
\(737\) −51.1283 −1.88333
\(738\) 18.8960 18.8960i 0.695571 0.695571i
\(739\) 24.1899 + 24.1899i 0.889839 + 0.889839i 0.994507 0.104669i \(-0.0333782\pi\)
−0.104669 + 0.994507i \(0.533378\pi\)
\(740\) 0 0
\(741\) 0.206271 0.00757756
\(742\) 7.15449i 0.262650i
\(743\) 53.3731i 1.95807i 0.203694 + 0.979035i \(0.434705\pi\)
−0.203694 + 0.979035i \(0.565295\pi\)
\(744\) −1.63799 1.63799i −0.0600516 0.0600516i
\(745\) 0 0
\(746\) 19.0279 19.0279i 0.696659 0.696659i
\(747\) −2.91612 2.91612i −0.106695 0.106695i
\(748\) −1.55140 1.55140i −0.0567247 0.0567247i
\(749\) 0.853445i 0.0311842i
\(750\) 0 0
\(751\) −34.6175 34.6175i −1.26321 1.26321i −0.949528 0.313682i \(-0.898437\pi\)
−0.313682 0.949528i \(-0.601563\pi\)
\(752\) 1.36150 0.0496487
\(753\) 1.23569 1.23569i 0.0450309 0.0450309i
\(754\) −0.871535 1.23626i −0.0317394 0.0450218i
\(755\) 0 0
\(756\) 1.08374 1.08374i 0.0394152 0.0394152i
\(757\) 33.8919i 1.23182i 0.787815 + 0.615911i \(0.211212\pi\)
−0.787815 + 0.615911i \(0.788788\pi\)
\(758\) 10.8552 10.8552i 0.394279 0.394279i
\(759\) −7.32883 −0.266020
\(760\) 0 0
\(761\) 51.3033 1.85974 0.929871 0.367886i \(-0.119918\pi\)
0.929871 + 0.367886i \(0.119918\pi\)
\(762\) −0.634016 −0.0229680
\(763\) 6.59987 6.59987i 0.238931 0.238931i
\(764\) −6.90356 + 6.90356i −0.249762 + 0.249762i
\(765\) 0 0
\(766\) −22.6747 22.6747i −0.819269 0.819269i
\(767\) −1.96478 1.96478i −0.0709442 0.0709442i
\(768\) −0.289618 −0.0104507
\(769\) 13.2848 13.2848i 0.479063 0.479063i −0.425769 0.904832i \(-0.639996\pi\)
0.904832 + 0.425769i \(0.139996\pi\)
\(770\) 0 0
\(771\) 0.258409 0.258409i 0.00930636 0.00930636i
\(772\) −24.3879 −0.877741
\(773\) −23.8909 −0.859294 −0.429647 0.902997i \(-0.641362\pi\)
−0.429647 + 0.902997i \(0.641362\pi\)
\(774\) 25.0004i 0.898622i
\(775\) 0 0
\(776\) 11.8026i 0.423690i
\(777\) −1.20632 + 1.20632i −0.0432765 + 0.0432765i
\(778\) 8.76850 + 8.76850i 0.314366 + 0.314366i
\(779\) 23.2366i 0.832538i
\(780\) 0 0
\(781\) 28.0976 + 28.0976i 1.00541 + 1.00541i
\(782\) −1.85412 1.85412i −0.0663032 0.0663032i
\(783\) 9.09190 + 1.57322i 0.324918 + 0.0562222i
\(784\) 6.19988i 0.221424i
\(785\) 0 0
\(786\) −1.24090 + 1.24090i −0.0442616 + 0.0442616i
\(787\) −18.3968 18.3968i −0.655776 0.655776i 0.298602 0.954378i \(-0.403480\pi\)
−0.954378 + 0.298602i \(0.903480\pi\)
\(788\) 2.47207 2.47207i 0.0880640 0.0880640i
\(789\) 5.88496 0.209510
\(790\) 0 0
\(791\) 1.97108 + 1.97108i 0.0700834 + 0.0700834i
\(792\) 9.48830 + 9.48830i 0.337152 + 0.337152i
\(793\) 1.54466i 0.0548524i
\(794\) 18.3875 + 18.3875i 0.652547 + 0.652547i
\(795\) 0 0
\(796\) 11.3378i 0.401856i
\(797\) 16.2394i 0.575228i 0.957746 + 0.287614i \(0.0928621\pi\)
−0.957746 + 0.287614i \(0.907138\pi\)
\(798\) 0.656896i 0.0232539i
\(799\) 0.649168i 0.0229659i
\(800\) 0 0
\(801\) −17.1695 17.1695i −0.606655 0.606655i
\(802\) 5.87124i 0.207321i
\(803\) 27.8542 + 27.8542i 0.982954 + 0.982954i
\(804\) −2.27548 2.27548i −0.0802501 0.0802501i
\(805\) 0 0
\(806\) 2.24657 0.0791322
\(807\) −5.86329 + 5.86329i −0.206397 + 0.206397i
\(808\) 0.605077 + 0.605077i 0.0212865 + 0.0212865i
\(809\) 3.52028 3.52028i 0.123766 0.123766i −0.642510 0.766277i \(-0.722107\pi\)
0.766277 + 0.642510i \(0.222107\pi\)
\(810\) 0 0
\(811\) 2.40718i 0.0845277i −0.999106 0.0422638i \(-0.986543\pi\)
0.999106 0.0422638i \(-0.0134570\pi\)
\(812\) 3.93701 2.77551i 0.138162 0.0974013i
\(813\) 1.04585 + 1.04585i 0.0366795 + 0.0366795i
\(814\) −21.4268 21.4268i −0.751010 0.751010i
\(815\) 0 0
\(816\) 0.138091i 0.00483415i
\(817\) 15.3716 + 15.3716i 0.537786 + 0.537786i
\(818\) 11.7879 11.7879i 0.412156 0.412156i
\(819\) 0.732662i 0.0256013i
\(820\) 0 0
\(821\) 36.8938i 1.28760i −0.765193 0.643801i \(-0.777357\pi\)
0.765193 0.643801i \(-0.222643\pi\)
\(822\) 4.09115 0.142695
\(823\) −21.2449 −0.740550 −0.370275 0.928922i \(-0.620736\pi\)
−0.370275 + 0.928922i \(0.620736\pi\)
\(824\) 10.9674 10.9674i 0.382066 0.382066i
\(825\) 0 0
\(826\) 6.25709 6.25709i 0.217712 0.217712i
\(827\) 17.7303 0.616542 0.308271 0.951299i \(-0.400250\pi\)
0.308271 + 0.951299i \(0.400250\pi\)
\(828\) 11.3397 + 11.3397i 0.394083 + 0.394083i
\(829\) −16.5417 16.5417i −0.574516 0.574516i 0.358871 0.933387i \(-0.383162\pi\)
−0.933387 + 0.358871i \(0.883162\pi\)
\(830\) 0 0
\(831\) 0.335567 0.335567i 0.0116407 0.0116407i
\(832\) 0.198612 0.198612i 0.00688563 0.00688563i
\(833\) −2.95613 −0.102424
\(834\) −0.730562 −0.0252973
\(835\) 0 0
\(836\) −11.6679 −0.403541
\(837\) −9.69054 + 9.69054i −0.334954 + 0.334954i
\(838\) 18.7077i 0.646245i
\(839\) 14.1762 14.1762i 0.489416 0.489416i −0.418706 0.908122i \(-0.637516\pi\)
0.908122 + 0.418706i \(0.137516\pi\)
\(840\) 0 0
\(841\) 27.3139 + 9.74427i 0.941859 + 0.336009i
\(842\) 4.16276 4.16276i 0.143458 0.143458i
\(843\) 2.57434 0.0886649
\(844\) 11.8850 + 11.8850i 0.409100 + 0.409100i
\(845\) 0 0
\(846\) 3.97029i 0.136501i
\(847\) 6.43485 + 6.43485i 0.221104 + 0.221104i
\(848\) −5.65569 5.65569i −0.194217 0.194217i
\(849\) −6.64355 + 6.64355i −0.228006 + 0.228006i
\(850\) 0 0
\(851\) −25.6078 25.6078i −0.877825 0.877825i
\(852\) 2.50099i 0.0856823i
\(853\) 29.1166i 0.996932i 0.866909 + 0.498466i \(0.166103\pi\)
−0.866909 + 0.498466i \(0.833897\pi\)
\(854\) −4.91915 −0.168330
\(855\) 0 0
\(856\) 0.674656 + 0.674656i 0.0230593 + 0.0230593i
\(857\) −7.30296 + 7.30296i −0.249464 + 0.249464i −0.820751 0.571286i \(-0.806445\pi\)
0.571286 + 0.820751i \(0.306445\pi\)
\(858\) 0.374320 0.0127791
\(859\) 13.3341 13.3341i 0.454953 0.454953i −0.442042 0.896995i \(-0.645746\pi\)
0.896995 + 0.442042i \(0.145746\pi\)
\(860\) 0 0
\(861\) 2.37401 0.0809059
\(862\) 0.757725i 0.0258082i
\(863\) 9.11507 9.11507i 0.310280 0.310280i −0.534738 0.845018i \(-0.679590\pi\)
0.845018 + 0.534738i \(0.179590\pi\)
\(864\) 1.71341i 0.0582915i
\(865\) 0 0
\(866\) 10.8919 0.370122
\(867\) −4.85766 −0.164975
\(868\) 7.15449i 0.242839i
\(869\) −0.278870 −0.00946001
\(870\) 0 0
\(871\) 3.12093 0.105749
\(872\) 10.4345i 0.353357i
\(873\) −34.4179 −1.16487
\(874\) −13.9446 −0.471683
\(875\) 0 0
\(876\) 2.47932i 0.0837686i
\(877\) 36.2899 36.2899i 1.22542 1.22542i 0.259747 0.965677i \(-0.416361\pi\)
0.965677 0.259747i \(-0.0836390\pi\)
\(878\) 16.0340i 0.541122i
\(879\) 4.57590 0.154341
\(880\) 0 0
\(881\) −31.7249 + 31.7249i −1.06884 + 1.06884i −0.0713908 + 0.997448i \(0.522744\pi\)
−0.997448 + 0.0713908i \(0.977256\pi\)
\(882\) 18.0796 0.608772
\(883\) −5.18708 + 5.18708i −0.174559 + 0.174559i −0.788979 0.614420i \(-0.789390\pi\)
0.614420 + 0.788979i \(0.289390\pi\)
\(884\) 0.0946990 + 0.0946990i 0.00318507 + 0.00318507i
\(885\) 0 0
\(886\) −21.8127 −0.732812
\(887\) 45.5203i 1.52842i 0.644967 + 0.764211i \(0.276871\pi\)
−0.644967 + 0.764211i \(0.723129\pi\)
\(888\) 1.90722i 0.0640020i
\(889\) 1.38464 + 1.38464i 0.0464394 + 0.0464394i
\(890\) 0 0
\(891\) 26.8503 26.8503i 0.899518 0.899518i
\(892\) 10.2691 + 10.2691i 0.343834 + 0.343834i
\(893\) 2.44116 + 2.44116i 0.0816902 + 0.0816902i
\(894\) 0.851488i 0.0284780i
\(895\) 0 0
\(896\) 0.632503 + 0.632503i 0.0211305 + 0.0211305i
\(897\) 0.447360 0.0149369
\(898\) 11.8820 11.8820i 0.396509 0.396509i
\(899\) −35.2038 + 24.8179i −1.17411 + 0.827725i
\(900\) 0 0
\(901\) 2.69666 2.69666i 0.0898387 0.0898387i
\(902\) 42.1674i 1.40402i
\(903\) 1.57047 1.57047i 0.0522620 0.0522620i
\(904\) −3.11631 −0.103647
\(905\) 0 0
\(906\) −3.13986 −0.104315
\(907\) −52.1407 −1.73130 −0.865652 0.500646i \(-0.833096\pi\)
−0.865652 + 0.500646i \(0.833096\pi\)
\(908\) −11.4326 + 11.4326i −0.379403 + 0.379403i
\(909\) 1.76448 1.76448i 0.0585241 0.0585241i
\(910\) 0 0
\(911\) 22.5889 + 22.5889i 0.748403 + 0.748403i 0.974179 0.225776i \(-0.0724918\pi\)
−0.225776 + 0.974179i \(0.572492\pi\)
\(912\) −0.519282 0.519282i −0.0171952 0.0171952i
\(913\) 6.50748 0.215366
\(914\) −25.4126 + 25.4126i −0.840575 + 0.840575i
\(915\) 0 0
\(916\) −11.1122 + 11.1122i −0.367158 + 0.367158i
\(917\) 5.42008 0.178987
\(918\) −0.816963 −0.0269638
\(919\) 1.29013i 0.0425574i −0.999774 0.0212787i \(-0.993226\pi\)
0.999774 0.0212787i \(-0.00677373\pi\)
\(920\) 0 0
\(921\) 4.62183i 0.152295i
\(922\) 26.1001 26.1001i 0.859562 0.859562i
\(923\) −1.71511 1.71511i −0.0564534 0.0564534i
\(924\) 1.19207i 0.0392161i
\(925\) 0 0
\(926\) 3.00076 + 3.00076i 0.0986111 + 0.0986111i
\(927\) −31.9822 31.9822i −1.05043 1.05043i
\(928\) −0.918177 + 5.30631i −0.0301406 + 0.174188i
\(929\) 29.6911i 0.974134i 0.873365 + 0.487067i \(0.161933\pi\)
−0.873365 + 0.487067i \(0.838067\pi\)
\(930\) 0 0
\(931\) −11.1163 + 11.1163i −0.364323 + 0.364323i
\(932\) 14.5816 + 14.5816i 0.477636 + 0.477636i
\(933\) 1.47511 1.47511i 0.0482930 0.0482930i
\(934\) −4.86798 −0.159285
\(935\) 0 0
\(936\) −0.579176 0.579176i −0.0189310 0.0189310i
\(937\) 30.6659 + 30.6659i 1.00181 + 1.00181i 0.999998 + 0.00181196i \(0.000576765\pi\)
0.00181196 + 0.999998i \(0.499423\pi\)
\(938\) 9.93897i 0.324519i
\(939\) −2.78675 2.78675i −0.0909421 0.0909421i
\(940\) 0 0
\(941\) 32.2353i 1.05084i 0.850842 + 0.525421i \(0.176092\pi\)
−0.850842 + 0.525421i \(0.823908\pi\)
\(942\) 2.28280i 0.0743776i
\(943\) 50.3954i 1.64110i
\(944\) 9.89258i 0.321976i
\(945\) 0 0
\(946\) 27.8949 + 27.8949i 0.906940 + 0.906940i
\(947\) 32.5015i 1.05616i −0.849195 0.528079i \(-0.822913\pi\)
0.849195 0.528079i \(-0.177087\pi\)
\(948\) −0.0124112 0.0124112i −0.000403097 0.000403097i
\(949\) −1.70025 1.70025i −0.0551925 0.0551925i
\(950\) 0 0
\(951\) −6.57215 −0.213117
\(952\) −0.301580 + 0.301580i −0.00977428 + 0.00977428i
\(953\) 23.0094 + 23.0094i 0.745348 + 0.745348i 0.973602 0.228254i \(-0.0733015\pi\)
−0.228254 + 0.973602i \(0.573302\pi\)
\(954\) −16.4927 + 16.4927i −0.533971 + 0.533971i
\(955\) 0 0
\(956\) 1.20088i 0.0388392i
\(957\) −5.86558 + 4.13511i −0.189607 + 0.133669i
\(958\) −4.92833 4.92833i −0.159227 0.159227i
\(959\) −8.93477 8.93477i −0.288519 0.288519i
\(960\) 0 0
\(961\) 32.9737i 1.06367i
\(962\) 1.30792 + 1.30792i 0.0421689 + 0.0421689i
\(963\) 1.96738 1.96738i 0.0633979 0.0633979i
\(964\) 22.6204i 0.728555i
\(965\) 0 0
\(966\) 1.42467i 0.0458381i
\(967\) 0.317494 0.0102099 0.00510495 0.999987i \(-0.498375\pi\)
0.00510495 + 0.999987i \(0.498375\pi\)
\(968\) −10.1736 −0.326993
\(969\) 0.247596 0.247596i 0.00795393 0.00795393i
\(970\) 0 0
\(971\) −23.8271 + 23.8271i −0.764647 + 0.764647i −0.977159 0.212512i \(-0.931836\pi\)
0.212512 + 0.977159i \(0.431836\pi\)
\(972\) 7.53020 0.241531
\(973\) 1.59549 + 1.59549i 0.0511491 + 0.0511491i
\(974\) −2.73756 2.73756i −0.0877169 0.0877169i
\(975\) 0 0
\(976\) 3.88864 3.88864i 0.124472 0.124472i
\(977\) −24.5169 + 24.5169i −0.784365 + 0.784365i −0.980564 0.196199i \(-0.937140\pi\)
0.196199 + 0.980564i \(0.437140\pi\)
\(978\) 6.46199 0.206632
\(979\) 38.3146 1.22454
\(980\) 0 0
\(981\) 30.4283 0.971501
\(982\) 16.0568 16.0568i 0.512392 0.512392i
\(983\) 59.6952i 1.90398i −0.306126 0.951991i \(-0.599033\pi\)
0.306126 0.951991i \(-0.400967\pi\)
\(984\) −1.87667 + 1.87667i −0.0598262 + 0.0598262i
\(985\) 0 0
\(986\) −2.53007 0.437791i −0.0805739 0.0139421i
\(987\) 0.249405 0.249405i 0.00793864 0.00793864i
\(988\) 0.712219 0.0226587
\(989\) 33.3380 + 33.3380i 1.06009 + 1.06009i
\(990\) 0 0
\(991\) 5.66996i 0.180112i −0.995937 0.0900561i \(-0.971295\pi\)
0.995937 0.0900561i \(-0.0287046\pi\)
\(992\) −5.65569 5.65569i −0.179568 0.179568i
\(993\) −0.985439 0.985439i −0.0312720 0.0312720i
\(994\) 5.46197 5.46197i 0.173243 0.173243i
\(995\) 0 0
\(996\) 0.289618 + 0.289618i 0.00917688 + 0.00917688i
\(997\) 27.2996i 0.864586i 0.901733 + 0.432293i \(0.142295\pi\)
−0.901733 + 0.432293i \(0.857705\pi\)
\(998\) 11.0768i 0.350631i
\(999\) −11.2833 −0.356989
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.j.h.1293.3 12
5.2 odd 4 1450.2.e.h.307.4 12
5.3 odd 4 290.2.e.f.17.3 12
5.4 even 2 290.2.j.f.133.4 yes 12
29.12 odd 4 1450.2.e.h.1143.3 12
145.12 even 4 inner 1450.2.j.h.157.3 12
145.99 odd 4 290.2.e.f.273.4 yes 12
145.128 even 4 290.2.j.f.157.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.e.f.17.3 12 5.3 odd 4
290.2.e.f.273.4 yes 12 145.99 odd 4
290.2.j.f.133.4 yes 12 5.4 even 2
290.2.j.f.157.4 yes 12 145.128 even 4
1450.2.e.h.307.4 12 5.2 odd 4
1450.2.e.h.1143.3 12 29.12 odd 4
1450.2.j.h.157.3 12 145.12 even 4 inner
1450.2.j.h.1293.3 12 1.1 even 1 trivial