Defining parameters
| Level: | \( N \) | = | \( 1450 = 2 \cdot 5^{2} \cdot 29 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 24 \) | ||
| Sturm bound: | \(252000\) | ||
| Trace bound: | \(6\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1450))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 64568 | 19307 | 45261 |
| Cusp forms | 61433 | 19307 | 42126 |
| Eisenstein series | 3135 | 0 | 3135 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1450))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1450))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1450)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(58))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(145))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(290))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(725))\)\(^{\oplus 2}\)