Properties

Label 1450.2
Level 1450
Weight 2
Dimension 19307
Nonzero newspaces 24
Sturm bound 252000
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(252000\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1450))\).

Total New Old
Modular forms 64568 19307 45261
Cusp forms 61433 19307 42126
Eisenstein series 3135 0 3135

Trace form

\( 19307 q + 2 q^{2} + 8 q^{3} + 2 q^{4} + 10 q^{5} + 8 q^{6} + 16 q^{7} + 2 q^{8} + 26 q^{9} + 10 q^{10} + 24 q^{11} + 8 q^{12} + 28 q^{13} + 16 q^{14} + 40 q^{15} + 2 q^{16} - 4 q^{17} - 24 q^{18} - 40 q^{19}+ \cdots + 388 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1450))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1450.2.a \(\chi_{1450}(1, \cdot)\) 1450.2.a.a 1 1
1450.2.a.b 1
1450.2.a.c 1
1450.2.a.d 1
1450.2.a.e 1
1450.2.a.f 1
1450.2.a.g 1
1450.2.a.h 1
1450.2.a.i 1
1450.2.a.j 2
1450.2.a.k 2
1450.2.a.l 2
1450.2.a.m 2
1450.2.a.n 2
1450.2.a.o 2
1450.2.a.p 3
1450.2.a.q 3
1450.2.a.r 3
1450.2.a.s 3
1450.2.a.t 5
1450.2.a.u 5
1450.2.b \(\chi_{1450}(349, \cdot)\) 1450.2.b.a 2 1
1450.2.b.b 2
1450.2.b.c 2
1450.2.b.d 2
1450.2.b.e 2
1450.2.b.f 2
1450.2.b.g 4
1450.2.b.h 4
1450.2.b.i 4
1450.2.b.j 6
1450.2.b.k 6
1450.2.b.l 6
1450.2.c \(\chi_{1450}(1101, \cdot)\) 1450.2.c.a 2 1
1450.2.c.b 2
1450.2.c.c 4
1450.2.c.d 4
1450.2.c.e 10
1450.2.c.f 10
1450.2.c.g 16
1450.2.d \(\chi_{1450}(1449, \cdot)\) 1450.2.d.a 2 1
1450.2.d.b 2
1450.2.d.c 2
1450.2.d.d 2
1450.2.d.e 4
1450.2.d.f 4
1450.2.d.g 4
1450.2.d.h 4
1450.2.d.i 10
1450.2.d.j 10
1450.2.e \(\chi_{1450}(307, \cdot)\) 1450.2.e.a 2 2
1450.2.e.b 2
1450.2.e.c 2
1450.2.e.d 4
1450.2.e.e 8
1450.2.e.f 10
1450.2.e.g 10
1450.2.e.h 12
1450.2.e.i 20
1450.2.e.j 20
1450.2.j \(\chi_{1450}(157, \cdot)\) 1450.2.j.a 2 2
1450.2.j.b 2
1450.2.j.c 2
1450.2.j.d 4
1450.2.j.e 8
1450.2.j.f 10
1450.2.j.g 10
1450.2.j.h 12
1450.2.j.i 20
1450.2.j.j 20
1450.2.k \(\chi_{1450}(291, \cdot)\) n/a 280 4
1450.2.l \(\chi_{1450}(401, \cdot)\) n/a 282 6
1450.2.m \(\chi_{1450}(289, \cdot)\) n/a 304 4
1450.2.n \(\chi_{1450}(59, \cdot)\) n/a 280 4
1450.2.o \(\chi_{1450}(231, \cdot)\) n/a 296 4
1450.2.p \(\chi_{1450}(149, \cdot)\) n/a 264 6
1450.2.q \(\chi_{1450}(51, \cdot)\) n/a 288 6
1450.2.r \(\chi_{1450}(49, \cdot)\) n/a 276 6
1450.2.s \(\chi_{1450}(133, \cdot)\) n/a 600 8
1450.2.x \(\chi_{1450}(17, \cdot)\) n/a 600 8
1450.2.y \(\chi_{1450}(43, \cdot)\) n/a 540 12
1450.2.bd \(\chi_{1450}(143, \cdot)\) n/a 540 12
1450.2.be \(\chi_{1450}(81, \cdot)\) n/a 1824 24
1450.2.bf \(\chi_{1450}(71, \cdot)\) n/a 1776 24
1450.2.bg \(\chi_{1450}(139, \cdot)\) n/a 1776 24
1450.2.bh \(\chi_{1450}(9, \cdot)\) n/a 1824 24
1450.2.bi \(\chi_{1450}(73, \cdot)\) n/a 3600 48
1450.2.bn \(\chi_{1450}(3, \cdot)\) n/a 3600 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1450))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1450)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(58))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(145))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(290))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(725))\)\(^{\oplus 2}\)