Properties

Label 290.2.j.f.157.4
Level $290$
Weight $2$
Character 290.157
Analytic conductor $2.316$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [290,2,Mod(133,290)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(290, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("290.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 290.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,6,0,-4,0,28,4,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.31566165862\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 346x^{6} + 397x^{4} + 80x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 157.4
Root \(1.64632i\) of defining polynomial
Character \(\chi\) \(=\) 290.157
Dual form 290.2.j.f.133.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +0.289618 q^{3} -1.00000 q^{4} +(1.56156 + 1.60047i) q^{5} +0.289618i q^{6} +(0.632503 + 0.632503i) q^{7} -1.00000i q^{8} -2.91612 q^{9} +(-1.60047 + 1.56156i) q^{10} +(3.25374 + 3.25374i) q^{11} -0.289618 q^{12} +(0.198612 + 0.198612i) q^{13} +(-0.632503 + 0.632503i) q^{14} +(0.452256 + 0.463525i) q^{15} +1.00000 q^{16} +0.476804i q^{17} -2.91612i q^{18} +(1.79299 - 1.79299i) q^{19} +(-1.56156 - 1.60047i) q^{20} +(0.183184 + 0.183184i) q^{21} +(-3.25374 + 3.25374i) q^{22} +(-3.88864 + 3.88864i) q^{23} -0.289618i q^{24} +(-0.123035 + 4.99849i) q^{25} +(-0.198612 + 0.198612i) q^{26} -1.71341 q^{27} +(-0.632503 - 0.632503i) q^{28} +(5.30631 - 0.918177i) q^{29} +(-0.463525 + 0.452256i) q^{30} +(-5.65569 - 5.65569i) q^{31} +1.00000i q^{32} +(0.942340 + 0.942340i) q^{33} -0.476804 q^{34} +(-0.0246107 + 2.00000i) q^{35} +2.91612 q^{36} +6.58530 q^{37} +(1.79299 + 1.79299i) q^{38} +(0.0575215 + 0.0575215i) q^{39} +(1.60047 - 1.56156i) q^{40} +(6.47983 - 6.47983i) q^{41} +(-0.183184 + 0.183184i) q^{42} -8.57318 q^{43} +(-3.25374 - 3.25374i) q^{44} +(-4.55371 - 4.66718i) q^{45} +(-3.88864 - 3.88864i) q^{46} -1.36150 q^{47} +0.289618 q^{48} -6.19988i q^{49} +(-4.99849 - 0.123035i) q^{50} +0.138091i q^{51} +(-0.198612 - 0.198612i) q^{52} +(5.65569 - 5.65569i) q^{53} -1.71341i q^{54} +(-0.126603 + 10.2884i) q^{55} +(0.632503 - 0.632503i) q^{56} +(0.519282 - 0.519282i) q^{57} +(0.918177 + 5.30631i) q^{58} -9.89258i q^{59} +(-0.452256 - 0.463525i) q^{60} +(3.88864 + 3.88864i) q^{61} +(5.65569 - 5.65569i) q^{62} +(-1.84446 - 1.84446i) q^{63} -1.00000 q^{64} +(-0.00772799 + 0.628018i) q^{65} +(-0.942340 + 0.942340i) q^{66} +(7.85685 - 7.85685i) q^{67} -0.476804i q^{68} +(-1.12622 + 1.12622i) q^{69} +(-2.00000 - 0.0246107i) q^{70} -8.63547i q^{71} +2.91612i q^{72} +8.56068i q^{73} +6.58530i q^{74} +(-0.0356331 + 1.44765i) q^{75} +(-1.79299 + 1.79299i) q^{76} +4.11600i q^{77} +(-0.0575215 + 0.0575215i) q^{78} +(-0.0428537 + 0.0428537i) q^{79} +(1.56156 + 1.60047i) q^{80} +8.25213 q^{81} +(6.47983 + 6.47983i) q^{82} +(-1.00000 + 1.00000i) q^{83} +(-0.183184 - 0.183184i) q^{84} +(-0.763113 + 0.744561i) q^{85} -8.57318i q^{86} +(1.53680 - 0.265920i) q^{87} +(3.25374 - 3.25374i) q^{88} +(5.88779 - 5.88779i) q^{89} +(4.66718 - 4.55371i) q^{90} +0.251245i q^{91} +(3.88864 - 3.88864i) q^{92} +(-1.63799 - 1.63799i) q^{93} -1.36150i q^{94} +(5.66951 + 0.0697654i) q^{95} +0.289618i q^{96} -11.8026 q^{97} +6.19988 q^{98} +(-9.48830 - 9.48830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} + 6 q^{5} - 4 q^{7} + 28 q^{9} + 4 q^{10} + 10 q^{11} + 2 q^{13} + 4 q^{14} + 10 q^{15} + 12 q^{16} - 16 q^{19} - 6 q^{20} - 16 q^{21} - 10 q^{22} + 4 q^{23} - 10 q^{25} - 2 q^{26} + 12 q^{27}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/290\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.289618 0.167211 0.0836054 0.996499i \(-0.473356\pi\)
0.0836054 + 0.996499i \(0.473356\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.56156 + 1.60047i 0.698353 + 0.715754i
\(6\) 0.289618i 0.118236i
\(7\) 0.632503 + 0.632503i 0.239064 + 0.239064i 0.816462 0.577399i \(-0.195932\pi\)
−0.577399 + 0.816462i \(0.695932\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.91612 −0.972041
\(10\) −1.60047 + 1.56156i −0.506114 + 0.493810i
\(11\) 3.25374 + 3.25374i 0.981039 + 0.981039i 0.999824 0.0187847i \(-0.00597971\pi\)
−0.0187847 + 0.999824i \(0.505980\pi\)
\(12\) −0.289618 −0.0836054
\(13\) 0.198612 + 0.198612i 0.0550850 + 0.0550850i 0.734113 0.679028i \(-0.237598\pi\)
−0.679028 + 0.734113i \(0.737598\pi\)
\(14\) −0.632503 + 0.632503i −0.169044 + 0.169044i
\(15\) 0.452256 + 0.463525i 0.116772 + 0.119682i
\(16\) 1.00000 0.250000
\(17\) 0.476804i 0.115642i 0.998327 + 0.0578210i \(0.0184153\pi\)
−0.998327 + 0.0578210i \(0.981585\pi\)
\(18\) 2.91612i 0.687336i
\(19\) 1.79299 1.79299i 0.411341 0.411341i −0.470865 0.882205i \(-0.656058\pi\)
0.882205 + 0.470865i \(0.156058\pi\)
\(20\) −1.56156 1.60047i −0.349176 0.357877i
\(21\) 0.183184 + 0.183184i 0.0399740 + 0.0399740i
\(22\) −3.25374 + 3.25374i −0.693699 + 0.693699i
\(23\) −3.88864 + 3.88864i −0.810837 + 0.810837i −0.984759 0.173923i \(-0.944356\pi\)
0.173923 + 0.984759i \(0.444356\pi\)
\(24\) 0.289618i 0.0591179i
\(25\) −0.123035 + 4.99849i −0.0246070 + 0.999697i
\(26\) −0.198612 + 0.198612i −0.0389510 + 0.0389510i
\(27\) −1.71341 −0.329746
\(28\) −0.632503 0.632503i −0.119532 0.119532i
\(29\) 5.30631 0.918177i 0.985357 0.170501i
\(30\) −0.463525 + 0.452256i −0.0846278 + 0.0825703i
\(31\) −5.65569 5.65569i −1.01579 1.01579i −0.999873 0.0159192i \(-0.994933\pi\)
−0.0159192 0.999873i \(-0.505067\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.942340 + 0.942340i 0.164040 + 0.164040i
\(34\) −0.476804 −0.0817713
\(35\) −0.0246107 + 2.00000i −0.00415997 + 0.338062i
\(36\) 2.91612 0.486020
\(37\) 6.58530 1.08262 0.541308 0.840824i \(-0.317929\pi\)
0.541308 + 0.840824i \(0.317929\pi\)
\(38\) 1.79299 + 1.79299i 0.290862 + 0.290862i
\(39\) 0.0575215 + 0.0575215i 0.00921081 + 0.00921081i
\(40\) 1.60047 1.56156i 0.253057 0.246905i
\(41\) 6.47983 6.47983i 1.01198 1.01198i 0.0120528 0.999927i \(-0.496163\pi\)
0.999927 0.0120528i \(-0.00383661\pi\)
\(42\) −0.183184 + 0.183184i −0.0282659 + 0.0282659i
\(43\) −8.57318 −1.30740 −0.653699 0.756755i \(-0.726784\pi\)
−0.653699 + 0.756755i \(0.726784\pi\)
\(44\) −3.25374 3.25374i −0.490519 0.490519i
\(45\) −4.55371 4.66718i −0.678827 0.695742i
\(46\) −3.88864 3.88864i −0.573348 0.573348i
\(47\) −1.36150 −0.198595 −0.0992974 0.995058i \(-0.531660\pi\)
−0.0992974 + 0.995058i \(0.531660\pi\)
\(48\) 0.289618 0.0418027
\(49\) 6.19988i 0.885697i
\(50\) −4.99849 0.123035i −0.706893 0.0173998i
\(51\) 0.138091i 0.0193366i
\(52\) −0.198612 0.198612i −0.0275425 0.0275425i
\(53\) 5.65569 5.65569i 0.776869 0.776869i −0.202428 0.979297i \(-0.564883\pi\)
0.979297 + 0.202428i \(0.0648832\pi\)
\(54\) 1.71341i 0.233166i
\(55\) −0.126603 + 10.2884i −0.0170712 + 1.38729i
\(56\) 0.632503 0.632503i 0.0845218 0.0845218i
\(57\) 0.519282 0.519282i 0.0687806 0.0687806i
\(58\) 0.918177 + 5.30631i 0.120563 + 0.696753i
\(59\) 9.89258i 1.28790i −0.765066 0.643952i \(-0.777294\pi\)
0.765066 0.643952i \(-0.222706\pi\)
\(60\) −0.452256 0.463525i −0.0583860 0.0598409i
\(61\) 3.88864 + 3.88864i 0.497889 + 0.497889i 0.910780 0.412891i \(-0.135481\pi\)
−0.412891 + 0.910780i \(0.635481\pi\)
\(62\) 5.65569 5.65569i 0.718274 0.718274i
\(63\) −1.84446 1.84446i −0.232380 0.232380i
\(64\) −1.00000 −0.125000
\(65\) −0.00772799 + 0.628018i −0.000958539 + 0.0778961i
\(66\) −0.942340 + 0.942340i −0.115994 + 0.115994i
\(67\) 7.85685 7.85685i 0.959867 0.959867i −0.0393577 0.999225i \(-0.512531\pi\)
0.999225 + 0.0393577i \(0.0125312\pi\)
\(68\) 0.476804i 0.0578210i
\(69\) −1.12622 + 1.12622i −0.135581 + 0.135581i
\(70\) −2.00000 0.0246107i −0.239046 0.00294154i
\(71\) 8.63547i 1.02484i −0.858734 0.512421i \(-0.828749\pi\)
0.858734 0.512421i \(-0.171251\pi\)
\(72\) 2.91612i 0.343668i
\(73\) 8.56068i 1.00195i 0.865461 + 0.500976i \(0.167026\pi\)
−0.865461 + 0.500976i \(0.832974\pi\)
\(74\) 6.58530i 0.765525i
\(75\) −0.0356331 + 1.44765i −0.00411456 + 0.167160i
\(76\) −1.79299 + 1.79299i −0.205670 + 0.205670i
\(77\) 4.11600i 0.469062i
\(78\) −0.0575215 + 0.0575215i −0.00651302 + 0.00651302i
\(79\) −0.0428537 + 0.0428537i −0.00482142 + 0.00482142i −0.709513 0.704692i \(-0.751085\pi\)
0.704692 + 0.709513i \(0.251085\pi\)
\(80\) 1.56156 + 1.60047i 0.174588 + 0.178938i
\(81\) 8.25213 0.916903
\(82\) 6.47983 + 6.47983i 0.715578 + 0.715578i
\(83\) −1.00000 + 1.00000i −0.109764 + 0.109764i −0.759856 0.650092i \(-0.774731\pi\)
0.650092 + 0.759856i \(0.274731\pi\)
\(84\) −0.183184 0.183184i −0.0199870 0.0199870i
\(85\) −0.763113 + 0.744561i −0.0827712 + 0.0807589i
\(86\) 8.57318i 0.924469i
\(87\) 1.53680 0.265920i 0.164762 0.0285096i
\(88\) 3.25374 3.25374i 0.346850 0.346850i
\(89\) 5.88779 5.88779i 0.624104 0.624104i −0.322474 0.946578i \(-0.604514\pi\)
0.946578 + 0.322474i \(0.104514\pi\)
\(90\) 4.66718 4.55371i 0.491964 0.480003i
\(91\) 0.251245i 0.0263377i
\(92\) 3.88864 3.88864i 0.405418 0.405418i
\(93\) −1.63799 1.63799i −0.169851 0.169851i
\(94\) 1.36150i 0.140428i
\(95\) 5.66951 + 0.0697654i 0.581680 + 0.00715778i
\(96\) 0.289618i 0.0295590i
\(97\) −11.8026 −1.19838 −0.599188 0.800608i \(-0.704510\pi\)
−0.599188 + 0.800608i \(0.704510\pi\)
\(98\) 6.19988 0.626282
\(99\) −9.48830 9.48830i −0.953610 0.953610i
\(100\) 0.123035 4.99849i 0.0123035 0.499849i
\(101\) −0.605077 0.605077i −0.0602074 0.0602074i 0.676362 0.736569i \(-0.263556\pi\)
−0.736569 + 0.676362i \(0.763556\pi\)
\(102\) −0.138091 −0.0136730
\(103\) −10.9674 + 10.9674i −1.08065 + 1.08065i −0.0841981 + 0.996449i \(0.526833\pi\)
−0.996449 + 0.0841981i \(0.973167\pi\)
\(104\) 0.198612 0.198612i 0.0194755 0.0194755i
\(105\) −0.00712770 + 0.579235i −0.000695592 + 0.0565276i
\(106\) 5.65569 + 5.65569i 0.549330 + 0.549330i
\(107\) 0.674656 + 0.674656i 0.0652215 + 0.0652215i 0.738965 0.673744i \(-0.235315\pi\)
−0.673744 + 0.738965i \(0.735315\pi\)
\(108\) 1.71341 0.164873
\(109\) −10.4345 −0.999445 −0.499723 0.866185i \(-0.666565\pi\)
−0.499723 + 0.866185i \(0.666565\pi\)
\(110\) −10.2884 0.126603i −0.980965 0.0120711i
\(111\) 1.90722 0.181025
\(112\) 0.632503 + 0.632503i 0.0597660 + 0.0597660i
\(113\) 3.11631i 0.293158i −0.989199 0.146579i \(-0.953174\pi\)
0.989199 0.146579i \(-0.0468262\pi\)
\(114\) 0.519282 + 0.519282i 0.0486353 + 0.0486353i
\(115\) −12.2960 0.151307i −1.14661 0.0141095i
\(116\) −5.30631 + 0.918177i −0.492679 + 0.0852506i
\(117\) −0.579176 0.579176i −0.0535449 0.0535449i
\(118\) 9.89258 0.910686
\(119\) −0.301580 + 0.301580i −0.0276458 + 0.0276458i
\(120\) 0.463525 0.452256i 0.0423139 0.0412852i
\(121\) 10.1736i 0.924874i
\(122\) −3.88864 + 3.88864i −0.352061 + 0.352061i
\(123\) 1.87667 1.87667i 0.169214 0.169214i
\(124\) 5.65569 + 5.65569i 0.507896 + 0.507896i
\(125\) −8.19207 + 7.60854i −0.732721 + 0.680529i
\(126\) 1.84446 1.84446i 0.164317 0.164317i
\(127\) 2.18915i 0.194255i −0.995272 0.0971277i \(-0.969034\pi\)
0.995272 0.0971277i \(-0.0309655\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −2.48294 −0.218611
\(130\) −0.628018 0.00772799i −0.0550808 0.000677790i
\(131\) −4.28463 + 4.28463i −0.374350 + 0.374350i −0.869059 0.494709i \(-0.835275\pi\)
0.494709 + 0.869059i \(0.335275\pi\)
\(132\) −0.942340 0.942340i −0.0820201 0.0820201i
\(133\) 2.26815 0.196673
\(134\) 7.85685 + 7.85685i 0.678729 + 0.678729i
\(135\) −2.67560 2.74227i −0.230279 0.236017i
\(136\) 0.476804 0.0408856
\(137\) 14.1260i 1.20687i 0.797413 + 0.603435i \(0.206202\pi\)
−0.797413 + 0.603435i \(0.793798\pi\)
\(138\) −1.12622 1.12622i −0.0958700 0.0958700i
\(139\) 2.52250i 0.213956i 0.994261 + 0.106978i \(0.0341174\pi\)
−0.994261 + 0.106978i \(0.965883\pi\)
\(140\) 0.0246107 2.00000i 0.00207999 0.169031i
\(141\) −0.394314 −0.0332072
\(142\) 8.63547 0.724673
\(143\) 1.29246i 0.108081i
\(144\) −2.91612 −0.243010
\(145\) 9.75567 + 7.05882i 0.810164 + 0.586203i
\(146\) −8.56068 −0.708487
\(147\) 1.79559i 0.148098i
\(148\) −6.58530 −0.541308
\(149\) 2.94004 0.240858 0.120429 0.992722i \(-0.461573\pi\)
0.120429 + 0.992722i \(0.461573\pi\)
\(150\) −1.44765 0.0356331i −0.118200 0.00290943i
\(151\) 10.8414i 0.882262i 0.897443 + 0.441131i \(0.145423\pi\)
−0.897443 + 0.441131i \(0.854577\pi\)
\(152\) −1.79299 1.79299i −0.145431 0.145431i
\(153\) 1.39042i 0.112409i
\(154\) −4.11600 −0.331677
\(155\) 0.220063 17.8835i 0.0176759 1.43644i
\(156\) −0.0575215 0.0575215i −0.00460540 0.00460540i
\(157\) −7.88212 −0.629061 −0.314531 0.949247i \(-0.601847\pi\)
−0.314531 + 0.949247i \(0.601847\pi\)
\(158\) −0.0428537 0.0428537i −0.00340926 0.00340926i
\(159\) 1.63799 1.63799i 0.129901 0.129901i
\(160\) −1.60047 + 1.56156i −0.126529 + 0.123452i
\(161\) −4.91915 −0.387683
\(162\) 8.25213i 0.648349i
\(163\) 22.3121i 1.74762i 0.486266 + 0.873811i \(0.338359\pi\)
−0.486266 + 0.873811i \(0.661641\pi\)
\(164\) −6.47983 + 6.47983i −0.505990 + 0.505990i
\(165\) −0.0366665 + 2.97971i −0.00285448 + 0.231970i
\(166\) −1.00000 1.00000i −0.0776151 0.0776151i
\(167\) 7.60605 7.60605i 0.588574 0.588574i −0.348671 0.937245i \(-0.613367\pi\)
0.937245 + 0.348671i \(0.113367\pi\)
\(168\) 0.183184 0.183184i 0.0141330 0.0141330i
\(169\) 12.9211i 0.993931i
\(170\) −0.744561 0.763113i −0.0571052 0.0585281i
\(171\) −5.22859 + 5.22859i −0.399840 + 0.399840i
\(172\) 8.57318 0.653699
\(173\) −2.00873 2.00873i −0.152721 0.152721i 0.626611 0.779332i \(-0.284442\pi\)
−0.779332 + 0.626611i \(0.784442\pi\)
\(174\) 0.265920 + 1.53680i 0.0201594 + 0.116505i
\(175\) −3.23938 + 3.08374i −0.244874 + 0.233109i
\(176\) 3.25374 + 3.25374i 0.245260 + 0.245260i
\(177\) 2.86506i 0.215351i
\(178\) 5.88779 + 5.88779i 0.441308 + 0.441308i
\(179\) −23.6028 −1.76415 −0.882077 0.471106i \(-0.843855\pi\)
−0.882077 + 0.471106i \(0.843855\pi\)
\(180\) 4.55371 + 4.66718i 0.339414 + 0.347871i
\(181\) 20.7780 1.54442 0.772210 0.635368i \(-0.219152\pi\)
0.772210 + 0.635368i \(0.219152\pi\)
\(182\) −0.251245 −0.0186235
\(183\) 1.12622 + 1.12622i 0.0832524 + 0.0832524i
\(184\) 3.88864 + 3.88864i 0.286674 + 0.286674i
\(185\) 10.2834 + 10.5396i 0.756048 + 0.774886i
\(186\) 1.63799 1.63799i 0.120103 0.120103i
\(187\) −1.55140 + 1.55140i −0.113449 + 0.113449i
\(188\) 1.36150 0.0992974
\(189\) −1.08374 1.08374i −0.0788304 0.0788304i
\(190\) −0.0697654 + 5.66951i −0.00506132 + 0.411310i
\(191\) 6.90356 + 6.90356i 0.499524 + 0.499524i 0.911290 0.411766i \(-0.135088\pi\)
−0.411766 + 0.911290i \(0.635088\pi\)
\(192\) −0.289618 −0.0209013
\(193\) −24.3879 −1.75548 −0.877741 0.479135i \(-0.840950\pi\)
−0.877741 + 0.479135i \(0.840950\pi\)
\(194\) 11.8026i 0.847380i
\(195\) −0.00223816 + 0.181885i −0.000160278 + 0.0130251i
\(196\) 6.19988i 0.442848i
\(197\) 2.47207 + 2.47207i 0.176128 + 0.176128i 0.789666 0.613538i \(-0.210254\pi\)
−0.613538 + 0.789666i \(0.710254\pi\)
\(198\) 9.48830 9.48830i 0.674304 0.674304i
\(199\) 11.3378i 0.803712i 0.915703 + 0.401856i \(0.131635\pi\)
−0.915703 + 0.401856i \(0.868365\pi\)
\(200\) 4.99849 + 0.123035i 0.353446 + 0.00869989i
\(201\) 2.27548 2.27548i 0.160500 0.160500i
\(202\) 0.605077 0.605077i 0.0425731 0.0425731i
\(203\) 3.93701 + 2.77551i 0.276324 + 0.194803i
\(204\) 0.138091i 0.00966830i
\(205\) 20.4895 + 0.252131i 1.43105 + 0.0176096i
\(206\) −10.9674 10.9674i −0.764133 0.764133i
\(207\) 11.3397 11.3397i 0.788166 0.788166i
\(208\) 0.198612 + 0.198612i 0.0137713 + 0.0137713i
\(209\) 11.6679 0.807083
\(210\) −0.579235 0.00712770i −0.0399710 0.000491858i
\(211\) −11.8850 + 11.8850i −0.818199 + 0.818199i −0.985847 0.167648i \(-0.946383\pi\)
0.167648 + 0.985847i \(0.446383\pi\)
\(212\) −5.65569 + 5.65569i −0.388435 + 0.388435i
\(213\) 2.50099i 0.171365i
\(214\) −0.674656 + 0.674656i −0.0461185 + 0.0461185i
\(215\) −13.3876 13.7211i −0.913024 0.935775i
\(216\) 1.71341i 0.116583i
\(217\) 7.15449i 0.485678i
\(218\) 10.4345i 0.706715i
\(219\) 2.47932i 0.167537i
\(220\) 0.126603 10.2884i 0.00853558 0.693647i
\(221\) −0.0946990 + 0.0946990i −0.00637014 + 0.00637014i
\(222\) 1.90722i 0.128004i
\(223\) 10.2691 10.2691i 0.687668 0.687668i −0.274048 0.961716i \(-0.588363\pi\)
0.961716 + 0.274048i \(0.0883628\pi\)
\(224\) −0.632503 + 0.632503i −0.0422609 + 0.0422609i
\(225\) 0.358785 14.5762i 0.0239190 0.971746i
\(226\) 3.11631 0.207294
\(227\) −11.4326 11.4326i −0.758806 0.758806i 0.217299 0.976105i \(-0.430275\pi\)
−0.976105 + 0.217299i \(0.930275\pi\)
\(228\) −0.519282 + 0.519282i −0.0343903 + 0.0343903i
\(229\) 11.1122 + 11.1122i 0.734316 + 0.734316i 0.971472 0.237156i \(-0.0762151\pi\)
−0.237156 + 0.971472i \(0.576215\pi\)
\(230\) 0.151307 12.2960i 0.00997689 0.810775i
\(231\) 1.19207i 0.0784322i
\(232\) −0.918177 5.30631i −0.0602813 0.348376i
\(233\) 14.5816 14.5816i 0.955273 0.955273i −0.0437692 0.999042i \(-0.513937\pi\)
0.999042 + 0.0437692i \(0.0139366\pi\)
\(234\) 0.579176 0.579176i 0.0378619 0.0378619i
\(235\) −2.12607 2.17904i −0.138689 0.142145i
\(236\) 9.89258i 0.643952i
\(237\) −0.0124112 + 0.0124112i −0.000806194 + 0.000806194i
\(238\) −0.301580 0.301580i −0.0195486 0.0195486i
\(239\) 1.20088i 0.0776785i 0.999245 + 0.0388392i \(0.0123660\pi\)
−0.999245 + 0.0388392i \(0.987634\pi\)
\(240\) 0.452256 + 0.463525i 0.0291930 + 0.0299204i
\(241\) 22.6204i 1.45711i −0.684987 0.728555i \(-0.740192\pi\)
0.684987 0.728555i \(-0.259808\pi\)
\(242\) −10.1736 −0.653985
\(243\) 7.53020 0.483063
\(244\) −3.88864 3.88864i −0.248944 0.248944i
\(245\) 9.92275 9.68151i 0.633941 0.618529i
\(246\) 1.87667 + 1.87667i 0.119652 + 0.119652i
\(247\) 0.712219 0.0453174
\(248\) −5.65569 + 5.65569i −0.359137 + 0.359137i
\(249\) −0.289618 + 0.289618i −0.0183538 + 0.0183538i
\(250\) −7.60854 8.19207i −0.481206 0.518112i
\(251\) −4.26661 4.26661i −0.269306 0.269306i 0.559514 0.828821i \(-0.310988\pi\)
−0.828821 + 0.559514i \(0.810988\pi\)
\(252\) 1.84446 + 1.84446i 0.116190 + 0.116190i
\(253\) −25.3052 −1.59092
\(254\) 2.18915 0.137359
\(255\) −0.221011 + 0.215638i −0.0138402 + 0.0135038i
\(256\) 1.00000 0.0625000
\(257\) 0.892241 + 0.892241i 0.0556564 + 0.0556564i 0.734387 0.678731i \(-0.237470\pi\)
−0.678731 + 0.734387i \(0.737470\pi\)
\(258\) 2.48294i 0.154581i
\(259\) 4.16522 + 4.16522i 0.258814 + 0.258814i
\(260\) 0.00772799 0.628018i 0.000479270 0.0389480i
\(261\) −15.4739 + 2.67752i −0.957807 + 0.165734i
\(262\) −4.28463 4.28463i −0.264705 0.264705i
\(263\) 20.3198 1.25297 0.626486 0.779433i \(-0.284493\pi\)
0.626486 + 0.779433i \(0.284493\pi\)
\(264\) 0.942340 0.942340i 0.0579970 0.0579970i
\(265\) 17.8835 + 0.220063i 1.09858 + 0.0135184i
\(266\) 2.26815i 0.139069i
\(267\) 1.70521 1.70521i 0.104357 0.104357i
\(268\) −7.85685 + 7.85685i −0.479934 + 0.479934i
\(269\) 20.2449 + 20.2449i 1.23436 + 1.23436i 0.962274 + 0.272081i \(0.0877118\pi\)
0.272081 + 0.962274i \(0.412288\pi\)
\(270\) 2.74227 2.67560i 0.166889 0.162832i
\(271\) −3.61114 + 3.61114i −0.219361 + 0.219361i −0.808229 0.588868i \(-0.799574\pi\)
0.588868 + 0.808229i \(0.299574\pi\)
\(272\) 0.476804i 0.0289105i
\(273\) 0.0727650i 0.00440394i
\(274\) −14.1260 −0.853385
\(275\) −16.6641 + 15.8634i −1.00488 + 0.956601i
\(276\) 1.12622 1.12622i 0.0677903 0.0677903i
\(277\) 1.15866 + 1.15866i 0.0696169 + 0.0696169i 0.741058 0.671441i \(-0.234324\pi\)
−0.671441 + 0.741058i \(0.734324\pi\)
\(278\) −2.52250 −0.151290
\(279\) 16.4927 + 16.4927i 0.987392 + 0.987392i
\(280\) 2.00000 + 0.0246107i 0.119523 + 0.00147077i
\(281\) −8.88875 −0.530258 −0.265129 0.964213i \(-0.585415\pi\)
−0.265129 + 0.964213i \(0.585415\pi\)
\(282\) 0.394314i 0.0234810i
\(283\) −22.9390 22.9390i −1.36358 1.36358i −0.869301 0.494284i \(-0.835430\pi\)
−0.494284 0.869301i \(-0.664570\pi\)
\(284\) 8.63547i 0.512421i
\(285\) 1.64199 + 0.0202053i 0.0972631 + 0.00119686i
\(286\) −1.29246 −0.0764248
\(287\) 8.19704 0.483856
\(288\) 2.91612i 0.171834i
\(289\) 16.7727 0.986627
\(290\) −7.05882 + 9.75567i −0.414508 + 0.572872i
\(291\) −3.41825 −0.200382
\(292\) 8.56068i 0.500976i
\(293\) 15.7998 0.923035 0.461517 0.887131i \(-0.347305\pi\)
0.461517 + 0.887131i \(0.347305\pi\)
\(294\) 1.79559 0.104721
\(295\) 15.8328 15.4479i 0.921822 0.899411i
\(296\) 6.58530i 0.382763i
\(297\) −5.57500 5.57500i −0.323494 0.323494i
\(298\) 2.94004i 0.170312i
\(299\) −1.54466 −0.0893299
\(300\) 0.0356331 1.44765i 0.00205728 0.0835801i
\(301\) −5.42256 5.42256i −0.312551 0.312551i
\(302\) −10.8414 −0.623853
\(303\) −0.175241 0.175241i −0.0100673 0.0100673i
\(304\) 1.79299 1.79299i 0.102835 0.102835i
\(305\) −0.151307 + 12.2960i −0.00866381 + 0.704068i
\(306\) 1.39042 0.0794850
\(307\) 15.9584i 0.910794i −0.890289 0.455397i \(-0.849497\pi\)
0.890289 0.455397i \(-0.150503\pi\)
\(308\) 4.11600i 0.234531i
\(309\) −3.17634 + 3.17634i −0.180696 + 0.180696i
\(310\) 17.8835 + 0.220063i 1.01572 + 0.0124988i
\(311\) −5.09331 5.09331i −0.288815 0.288815i 0.547797 0.836612i \(-0.315467\pi\)
−0.836612 + 0.547797i \(0.815467\pi\)
\(312\) 0.0575215 0.0575215i 0.00325651 0.00325651i
\(313\) −9.62217 + 9.62217i −0.543877 + 0.543877i −0.924663 0.380786i \(-0.875653\pi\)
0.380786 + 0.924663i \(0.375653\pi\)
\(314\) 7.88212i 0.444814i
\(315\) 0.0717679 5.83224i 0.00404366 0.328610i
\(316\) 0.0428537 0.0428537i 0.00241071 0.00241071i
\(317\) −22.6925 −1.27454 −0.637269 0.770641i \(-0.719936\pi\)
−0.637269 + 0.770641i \(0.719936\pi\)
\(318\) 1.63799 + 1.63799i 0.0918538 + 0.0918538i
\(319\) 20.2529 + 14.2778i 1.13394 + 0.799406i
\(320\) −1.56156 1.60047i −0.0872941 0.0894692i
\(321\) 0.195392 + 0.195392i 0.0109057 + 0.0109057i
\(322\) 4.91915i 0.274134i
\(323\) 0.854907 + 0.854907i 0.0475683 + 0.0475683i
\(324\) −8.25213 −0.458452
\(325\) −1.01719 + 0.968322i −0.0564238 + 0.0537128i
\(326\) −22.3121 −1.23576
\(327\) −3.02202 −0.167118
\(328\) −6.47983 6.47983i −0.357789 0.357789i
\(329\) −0.861152 0.861152i −0.0474768 0.0474768i
\(330\) −2.97971 0.0366665i −0.164028 0.00201842i
\(331\) 3.40255 3.40255i 0.187021 0.187021i −0.607386 0.794407i \(-0.707782\pi\)
0.794407 + 0.607386i \(0.207782\pi\)
\(332\) 1.00000 1.00000i 0.0548821 0.0548821i
\(333\) −19.2035 −1.05235
\(334\) 7.60605 + 7.60605i 0.416185 + 0.416185i
\(335\) 24.8437 + 0.305710i 1.35735 + 0.0167027i
\(336\) 0.183184 + 0.183184i 0.00999351 + 0.00999351i
\(337\) −20.6557 −1.12519 −0.562593 0.826734i \(-0.690196\pi\)
−0.562593 + 0.826734i \(0.690196\pi\)
\(338\) 12.9211 0.702816
\(339\) 0.902538i 0.0490191i
\(340\) 0.763113 0.744561i 0.0413856 0.0403795i
\(341\) 36.8043i 1.99306i
\(342\) −5.22859 5.22859i −0.282730 0.282730i
\(343\) 8.34897 8.34897i 0.450802 0.450802i
\(344\) 8.57318i 0.462235i
\(345\) −3.56114 0.0438212i −0.191725 0.00235925i
\(346\) 2.00873 2.00873i 0.107990 0.107990i
\(347\) −23.4372 + 23.4372i −1.25818 + 1.25818i −0.306213 + 0.951963i \(0.599062\pi\)
−0.951963 + 0.306213i \(0.900938\pi\)
\(348\) −1.53680 + 0.265920i −0.0823812 + 0.0142548i
\(349\) 25.2886i 1.35367i −0.736136 0.676834i \(-0.763351\pi\)
0.736136 0.676834i \(-0.236649\pi\)
\(350\) −3.08374 3.23938i −0.164833 0.173152i
\(351\) −0.340304 0.340304i −0.0181641 0.0181641i
\(352\) −3.25374 + 3.25374i −0.173425 + 0.173425i
\(353\) 6.88469 + 6.88469i 0.366435 + 0.366435i 0.866175 0.499740i \(-0.166571\pi\)
−0.499740 + 0.866175i \(0.666571\pi\)
\(354\) 2.86506 0.152276
\(355\) 13.8209 13.4848i 0.733535 0.715701i
\(356\) −5.88779 + 5.88779i −0.312052 + 0.312052i
\(357\) −0.0873430 + 0.0873430i −0.00462268 + 0.00462268i
\(358\) 23.6028i 1.24745i
\(359\) 22.2072 22.2072i 1.17205 1.17205i 0.190330 0.981720i \(-0.439044\pi\)
0.981720 0.190330i \(-0.0609559\pi\)
\(360\) −4.66718 + 4.55371i −0.245982 + 0.240002i
\(361\) 12.5703i 0.661597i
\(362\) 20.7780i 1.09207i
\(363\) 2.94646i 0.154649i
\(364\) 0.251245i 0.0131688i
\(365\) −13.7012 + 13.3681i −0.717151 + 0.699716i
\(366\) −1.12622 + 1.12622i −0.0588683 + 0.0588683i
\(367\) 1.97873i 0.103289i 0.998666 + 0.0516445i \(0.0164463\pi\)
−0.998666 + 0.0516445i \(0.983554\pi\)
\(368\) −3.88864 + 3.88864i −0.202709 + 0.202709i
\(369\) −18.8960 + 18.8960i −0.983686 + 0.983686i
\(370\) −10.5396 + 10.2834i −0.547927 + 0.534607i
\(371\) 7.15449 0.371443
\(372\) 1.63799 + 1.63799i 0.0849257 + 0.0849257i
\(373\) 19.0279 19.0279i 0.985225 0.985225i −0.0146674 0.999892i \(-0.504669\pi\)
0.999892 + 0.0146674i \(0.00466895\pi\)
\(374\) −1.55140 1.55140i −0.0802208 0.0802208i
\(375\) −2.37257 + 2.20357i −0.122519 + 0.113792i
\(376\) 1.36150i 0.0702139i
\(377\) 1.23626 + 0.871535i 0.0636705 + 0.0448864i
\(378\) 1.08374 1.08374i 0.0557415 0.0557415i
\(379\) −10.8552 + 10.8552i −0.557595 + 0.557595i −0.928622 0.371027i \(-0.879006\pi\)
0.371027 + 0.928622i \(0.379006\pi\)
\(380\) −5.66951 0.0697654i −0.290840 0.00357889i
\(381\) 0.634016i 0.0324816i
\(382\) −6.90356 + 6.90356i −0.353217 + 0.353217i
\(383\) 22.6747 + 22.6747i 1.15862 + 1.15862i 0.984772 + 0.173848i \(0.0556202\pi\)
0.173848 + 0.984772i \(0.444380\pi\)
\(384\) 0.289618i 0.0147795i
\(385\) −6.58755 + 6.42740i −0.335733 + 0.327571i
\(386\) 24.3879i 1.24131i
\(387\) 25.0004 1.27084
\(388\) 11.8026 0.599188
\(389\) 8.76850 + 8.76850i 0.444581 + 0.444581i 0.893548 0.448967i \(-0.148208\pi\)
−0.448967 + 0.893548i \(0.648208\pi\)
\(390\) −0.181885 0.00223816i −0.00921011 0.000113334i
\(391\) −1.85412 1.85412i −0.0937668 0.0937668i
\(392\) −6.19988 −0.313141
\(393\) −1.24090 + 1.24090i −0.0625953 + 0.0625953i
\(394\) −2.47207 + 2.47207i −0.124541 + 0.124541i
\(395\) −0.135505 0.00166744i −0.00681801 8.38980e-5i
\(396\) 9.48830 + 9.48830i 0.476805 + 0.476805i
\(397\) −18.3875 18.3875i −0.922841 0.922841i 0.0743886 0.997229i \(-0.476299\pi\)
−0.997229 + 0.0743886i \(0.976299\pi\)
\(398\) −11.3378 −0.568310
\(399\) 0.656896 0.0328859
\(400\) −0.123035 + 4.99849i −0.00615175 + 0.249924i
\(401\) 5.87124 0.293196 0.146598 0.989196i \(-0.453168\pi\)
0.146598 + 0.989196i \(0.453168\pi\)
\(402\) 2.27548 + 2.27548i 0.113491 + 0.113491i
\(403\) 2.24657i 0.111910i
\(404\) 0.605077 + 0.605077i 0.0301037 + 0.0301037i
\(405\) 12.8862 + 13.2073i 0.640322 + 0.656277i
\(406\) −2.77551 + 3.93701i −0.137746 + 0.195391i
\(407\) 21.4268 + 21.4268i 1.06209 + 1.06209i
\(408\) 0.138091 0.00683652
\(409\) −11.7879 + 11.7879i −0.582876 + 0.582876i −0.935693 0.352816i \(-0.885224\pi\)
0.352816 + 0.935693i \(0.385224\pi\)
\(410\) −0.252131 + 20.4895i −0.0124518 + 1.01190i
\(411\) 4.09115i 0.201802i
\(412\) 10.9674 10.9674i 0.540324 0.540324i
\(413\) 6.25709 6.25709i 0.307891 0.307891i
\(414\) 11.3397 + 11.3397i 0.557318 + 0.557318i
\(415\) −3.16204 0.0389100i −0.155218 0.00191002i
\(416\) −0.198612 + 0.198612i −0.00973774 + 0.00973774i
\(417\) 0.730562i 0.0357758i
\(418\) 11.6679i 0.570694i
\(419\) −18.7077 −0.913929 −0.456964 0.889485i \(-0.651063\pi\)
−0.456964 + 0.889485i \(0.651063\pi\)
\(420\) 0.00712770 0.579235i 0.000347796 0.0282638i
\(421\) −4.16276 + 4.16276i −0.202880 + 0.202880i −0.801233 0.598353i \(-0.795822\pi\)
0.598353 + 0.801233i \(0.295822\pi\)
\(422\) −11.8850 11.8850i −0.578554 0.578554i
\(423\) 3.97029 0.193042
\(424\) −5.65569 5.65569i −0.274665 0.274665i
\(425\) −2.38330 0.0586636i −0.115607 0.00284560i
\(426\) 2.50099 0.121173
\(427\) 4.91915i 0.238054i
\(428\) −0.674656 0.674656i −0.0326107 0.0326107i
\(429\) 0.374320i 0.0180723i
\(430\) 13.7211 13.3876i 0.661693 0.645606i
\(431\) 0.757725 0.0364983 0.0182492 0.999833i \(-0.494191\pi\)
0.0182492 + 0.999833i \(0.494191\pi\)
\(432\) −1.71341 −0.0824366
\(433\) 10.8919i 0.523431i −0.965145 0.261716i \(-0.915712\pi\)
0.965145 0.261716i \(-0.0842882\pi\)
\(434\) 7.15449 0.343427
\(435\) 2.82541 + 2.04436i 0.135468 + 0.0980195i
\(436\) 10.4345 0.499723
\(437\) 13.9446i 0.667061i
\(438\) −2.47932 −0.118467
\(439\) −16.0340 −0.765261 −0.382631 0.923901i \(-0.624982\pi\)
−0.382631 + 0.923901i \(0.624982\pi\)
\(440\) 10.2884 + 0.126603i 0.490482 + 0.00603556i
\(441\) 18.0796i 0.860933i
\(442\) −0.0946990 0.0946990i −0.00450437 0.00450437i
\(443\) 21.8127i 1.03635i 0.855274 + 0.518176i \(0.173389\pi\)
−0.855274 + 0.518176i \(0.826611\pi\)
\(444\) −1.90722 −0.0905125
\(445\) 18.6174 + 0.229094i 0.882550 + 0.0108601i
\(446\) 10.2691 + 10.2691i 0.486255 + 0.486255i
\(447\) 0.851488 0.0402740
\(448\) −0.632503 0.632503i −0.0298830 0.0298830i
\(449\) −11.8820 + 11.8820i −0.560748 + 0.560748i −0.929520 0.368772i \(-0.879778\pi\)
0.368772 + 0.929520i \(0.379778\pi\)
\(450\) 14.5762 + 0.358785i 0.687128 + 0.0169133i
\(451\) 42.1674 1.98558
\(452\) 3.11631i 0.146579i
\(453\) 3.13986i 0.147524i
\(454\) 11.4326 11.4326i 0.536557 0.536557i
\(455\) −0.402112 + 0.392336i −0.0188513 + 0.0183930i
\(456\) −0.519282 0.519282i −0.0243176 0.0243176i
\(457\) −25.4126 + 25.4126i −1.18875 + 1.18875i −0.211340 + 0.977413i \(0.567783\pi\)
−0.977413 + 0.211340i \(0.932217\pi\)
\(458\) −11.1122 + 11.1122i −0.519240 + 0.519240i
\(459\) 0.816963i 0.0381325i
\(460\) 12.2960 + 0.151307i 0.573305 + 0.00705473i
\(461\) −26.1001 + 26.1001i −1.21560 + 1.21560i −0.246449 + 0.969156i \(0.579264\pi\)
−0.969156 + 0.246449i \(0.920736\pi\)
\(462\) −1.19207 −0.0554599
\(463\) −3.00076 3.00076i −0.139457 0.139457i 0.633932 0.773389i \(-0.281440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(464\) 5.30631 0.918177i 0.246339 0.0426253i
\(465\) 0.0637342 5.17938i 0.00295560 0.240188i
\(466\) 14.5816 + 14.5816i 0.675480 + 0.675480i
\(467\) 4.86798i 0.225263i 0.993637 + 0.112632i \(0.0359280\pi\)
−0.993637 + 0.112632i \(0.964072\pi\)
\(468\) 0.579176 + 0.579176i 0.0267724 + 0.0267724i
\(469\) 9.93897 0.458939
\(470\) 2.17904 2.12607i 0.100512 0.0980681i
\(471\) −2.28280 −0.105186
\(472\) −9.89258 −0.455343
\(473\) −27.8949 27.8949i −1.28261 1.28261i
\(474\) −0.0124112 0.0124112i −0.000570065 0.000570065i
\(475\) 8.74165 + 9.18285i 0.401094 + 0.421338i
\(476\) 0.301580 0.301580i 0.0138229 0.0138229i
\(477\) −16.4927 + 16.4927i −0.755148 + 0.755148i
\(478\) −1.20088 −0.0549270
\(479\) −4.92833 4.92833i −0.225181 0.225181i 0.585495 0.810676i \(-0.300900\pi\)
−0.810676 + 0.585495i \(0.800900\pi\)
\(480\) −0.463525 + 0.452256i −0.0211569 + 0.0206426i
\(481\) 1.30792 + 1.30792i 0.0596359 + 0.0596359i
\(482\) 22.6204 1.03033
\(483\) −1.42467 −0.0648249
\(484\) 10.1736i 0.462437i
\(485\) −18.4306 18.8898i −0.836890 0.857743i
\(486\) 7.53020i 0.341577i
\(487\) 2.73756 + 2.73756i 0.124050 + 0.124050i 0.766406 0.642356i \(-0.222043\pi\)
−0.642356 + 0.766406i \(0.722043\pi\)
\(488\) 3.88864 3.88864i 0.176030 0.176030i
\(489\) 6.46199i 0.292221i
\(490\) 9.68151 + 9.92275i 0.437366 + 0.448264i
\(491\) −16.0568 + 16.0568i −0.724631 + 0.724631i −0.969545 0.244914i \(-0.921240\pi\)
0.244914 + 0.969545i \(0.421240\pi\)
\(492\) −1.87667 + 1.87667i −0.0846070 + 0.0846070i
\(493\) 0.437791 + 2.53007i 0.0197171 + 0.113949i
\(494\) 0.712219i 0.0320443i
\(495\) 0.369190 30.0024i 0.0165939 1.34851i
\(496\) −5.65569 5.65569i −0.253948 0.253948i
\(497\) 5.46197 5.46197i 0.245003 0.245003i
\(498\) −0.289618 0.289618i −0.0129781 0.0129781i
\(499\) −11.0768 −0.495867 −0.247934 0.968777i \(-0.579751\pi\)
−0.247934 + 0.968777i \(0.579751\pi\)
\(500\) 8.19207 7.60854i 0.366361 0.340264i
\(501\) 2.20285 2.20285i 0.0984159 0.0984159i
\(502\) 4.26661 4.26661i 0.190428 0.190428i
\(503\) 8.08426i 0.360459i −0.983625 0.180230i \(-0.942316\pi\)
0.983625 0.180230i \(-0.0576841\pi\)
\(504\) −1.84446 + 1.84446i −0.0821586 + 0.0821586i
\(505\) 0.0235436 1.91328i 0.00104768 0.0851397i
\(506\) 25.3052i 1.12495i
\(507\) 3.74218i 0.166196i
\(508\) 2.18915i 0.0971277i
\(509\) 12.9806i 0.575354i 0.957728 + 0.287677i \(0.0928829\pi\)
−0.957728 + 0.287677i \(0.907117\pi\)
\(510\) −0.215638 0.221011i −0.00954860 0.00978653i
\(511\) −5.41466 + 5.41466i −0.239531 + 0.239531i
\(512\) 1.00000i 0.0441942i
\(513\) −3.07214 + 3.07214i −0.135638 + 0.135638i
\(514\) −0.892241 + 0.892241i −0.0393550 + 0.0393550i
\(515\) −34.6792 0.426741i −1.52815 0.0188044i
\(516\) 2.48294 0.109305
\(517\) −4.42996 4.42996i −0.194829 0.194829i
\(518\) −4.16522 + 4.16522i −0.183009 + 0.183009i
\(519\) −0.581765 0.581765i −0.0255366 0.0255366i
\(520\) 0.628018 + 0.00772799i 0.0275404 + 0.000338895i
\(521\) 18.4390i 0.807827i −0.914797 0.403914i \(-0.867650\pi\)
0.914797 0.403914i \(-0.132350\pi\)
\(522\) −2.67752 15.4739i −0.117192 0.677272i
\(523\) 13.6216 13.6216i 0.595631 0.595631i −0.343516 0.939147i \(-0.611618\pi\)
0.939147 + 0.343516i \(0.111618\pi\)
\(524\) 4.28463 4.28463i 0.187175 0.187175i
\(525\) −0.938181 + 0.893105i −0.0409456 + 0.0389783i
\(526\) 20.3198i 0.885984i
\(527\) 2.69666 2.69666i 0.117468 0.117468i
\(528\) 0.942340 + 0.942340i 0.0410101 + 0.0410101i
\(529\) 7.24299i 0.314913i
\(530\) −0.220063 + 17.8835i −0.00955894 + 0.776810i
\(531\) 28.8480i 1.25190i
\(532\) −2.26815 −0.0983367
\(533\) 2.57394 0.111490
\(534\) 1.70521 + 1.70521i 0.0737915 + 0.0737915i
\(535\) −0.0262509 + 2.13329i −0.00113493 + 0.0922301i
\(536\) −7.85685 7.85685i −0.339364 0.339364i
\(537\) −6.83578 −0.294986
\(538\) −20.2449 + 20.2449i −0.872821 + 0.872821i
\(539\) 20.1728 20.1728i 0.868903 0.868903i
\(540\) 2.67560 + 2.74227i 0.115140 + 0.118009i
\(541\) −16.5747 16.5747i −0.712602 0.712602i 0.254477 0.967079i \(-0.418097\pi\)
−0.967079 + 0.254477i \(0.918097\pi\)
\(542\) −3.61114 3.61114i −0.155112 0.155112i
\(543\) 6.01768 0.258244
\(544\) −0.476804 −0.0204428
\(545\) −16.2942 16.7002i −0.697965 0.715357i
\(546\) −0.0727650 −0.00311406
\(547\) −8.23169 8.23169i −0.351961 0.351961i 0.508877 0.860839i \(-0.330061\pi\)
−0.860839 + 0.508877i \(0.830061\pi\)
\(548\) 14.1260i 0.603435i
\(549\) −11.3397 11.3397i −0.483968 0.483968i
\(550\) −15.8634 16.6641i −0.676419 0.710559i
\(551\) 7.86790 11.1605i 0.335184 0.475452i
\(552\) 1.12622 + 1.12622i 0.0479350 + 0.0479350i
\(553\) −0.0542103 −0.00230526
\(554\) −1.15866 + 1.15866i −0.0492266 + 0.0492266i
\(555\) 2.97824 + 3.05245i 0.126419 + 0.129569i
\(556\) 2.52250i 0.106978i
\(557\) 23.6717 23.6717i 1.00300 1.00300i 0.00300753 0.999995i \(-0.499043\pi\)
0.999995 0.00300753i \(-0.000957328\pi\)
\(558\) −16.4927 + 16.4927i −0.698191 + 0.698191i
\(559\) −1.70273 1.70273i −0.0720180 0.0720180i
\(560\) −0.0246107 + 2.00000i −0.00103999 + 0.0845154i
\(561\) −0.449312 + 0.449312i −0.0189700 + 0.0189700i
\(562\) 8.88875i 0.374949i
\(563\) 38.2332i 1.61134i −0.592365 0.805670i \(-0.701806\pi\)
0.592365 0.805670i \(-0.298194\pi\)
\(564\) 0.394314 0.0166036
\(565\) 4.98757 4.86632i 0.209829 0.204728i
\(566\) 22.9390 22.9390i 0.964200 0.964200i
\(567\) 5.21950 + 5.21950i 0.219198 + 0.219198i
\(568\) −8.63547 −0.362336
\(569\) 10.6612 + 10.6612i 0.446939 + 0.446939i 0.894336 0.447397i \(-0.147649\pi\)
−0.447397 + 0.894336i \(0.647649\pi\)
\(570\) −0.0202053 + 1.64199i −0.000846307 + 0.0687754i
\(571\) −12.7145 −0.532085 −0.266042 0.963961i \(-0.585716\pi\)
−0.266042 + 0.963961i \(0.585716\pi\)
\(572\) 1.29246i 0.0540405i
\(573\) 1.99939 + 1.99939i 0.0835258 + 0.0835258i
\(574\) 8.19704i 0.342138i
\(575\) −18.9589 19.9157i −0.790639 0.830544i
\(576\) 2.91612 0.121505
\(577\) 24.2872 1.01109 0.505545 0.862800i \(-0.331291\pi\)
0.505545 + 0.862800i \(0.331291\pi\)
\(578\) 16.7727i 0.697651i
\(579\) −7.06318 −0.293536
\(580\) −9.75567 7.05882i −0.405082 0.293102i
\(581\) −1.26501 −0.0524813
\(582\) 3.41825i 0.141691i
\(583\) 36.8043 1.52428
\(584\) 8.56068 0.354244
\(585\) 0.0225358 1.83138i 0.000931739 0.0757181i
\(586\) 15.7998i 0.652684i
\(587\) 5.49283 + 5.49283i 0.226714 + 0.226714i 0.811318 0.584605i \(-0.198750\pi\)
−0.584605 + 0.811318i \(0.698750\pi\)
\(588\) 1.79559i 0.0740490i
\(589\) −20.2812 −0.835674
\(590\) 15.4479 + 15.8328i 0.635980 + 0.651827i
\(591\) 0.715956 + 0.715956i 0.0294505 + 0.0294505i
\(592\) 6.58530 0.270654
\(593\) 28.1924 + 28.1924i 1.15772 + 1.15772i 0.984964 + 0.172761i \(0.0552688\pi\)
0.172761 + 0.984964i \(0.444731\pi\)
\(594\) 5.57500 5.57500i 0.228745 0.228745i
\(595\) −0.953609 0.0117345i −0.0390941 0.000481068i
\(596\) −2.94004 −0.120429
\(597\) 3.28361i 0.134389i
\(598\) 1.54466i 0.0631658i
\(599\) −20.0950 + 20.0950i −0.821059 + 0.821059i −0.986260 0.165201i \(-0.947173\pi\)
0.165201 + 0.986260i \(0.447173\pi\)
\(600\) 1.44765 + 0.0356331i 0.0591000 + 0.00145472i
\(601\) −2.21091 2.21091i −0.0901848 0.0901848i 0.660575 0.750760i \(-0.270313\pi\)
−0.750760 + 0.660575i \(0.770313\pi\)
\(602\) 5.42256 5.42256i 0.221007 0.221007i
\(603\) −22.9115 + 22.9115i −0.933030 + 0.933030i
\(604\) 10.8414i 0.441131i
\(605\) −16.2826 + 15.8868i −0.661982 + 0.645889i
\(606\) 0.175241 0.175241i 0.00711868 0.00711868i
\(607\) 37.1113 1.50630 0.753150 0.657849i \(-0.228533\pi\)
0.753150 + 0.657849i \(0.228533\pi\)
\(608\) 1.79299 + 1.79299i 0.0727155 + 0.0727155i
\(609\) 1.14023 + 0.803837i 0.0462043 + 0.0325731i
\(610\) −12.2960 0.151307i −0.497851 0.00612624i
\(611\) −0.270409 0.270409i −0.0109396 0.0109396i
\(612\) 1.39042i 0.0562044i
\(613\) −20.5386 20.5386i −0.829547 0.829547i 0.157907 0.987454i \(-0.449525\pi\)
−0.987454 + 0.157907i \(0.949525\pi\)
\(614\) 15.9584 0.644028
\(615\) 5.93411 + 0.0730214i 0.239287 + 0.00294451i
\(616\) 4.11600 0.165838
\(617\) 1.48087 0.0596176 0.0298088 0.999556i \(-0.490510\pi\)
0.0298088 + 0.999556i \(0.490510\pi\)
\(618\) −3.17634 3.17634i −0.127771 0.127771i
\(619\) −31.9416 31.9416i −1.28384 1.28384i −0.938463 0.345380i \(-0.887750\pi\)
−0.345380 0.938463i \(-0.612250\pi\)
\(620\) −0.220063 + 17.8835i −0.00883795 + 0.718219i
\(621\) 6.66284 6.66284i 0.267371 0.267371i
\(622\) 5.09331 5.09331i 0.204223 0.204223i
\(623\) 7.44809 0.298402
\(624\) 0.0575215 + 0.0575215i 0.00230270 + 0.00230270i
\(625\) −24.9697 1.22998i −0.998789 0.0491991i
\(626\) −9.62217 9.62217i −0.384579 0.384579i
\(627\) 3.37922 0.134953
\(628\) 7.88212 0.314531
\(629\) 3.13990i 0.125196i
\(630\) 5.83224 + 0.0717679i 0.232362 + 0.00285930i
\(631\) 32.1454i 1.27969i −0.768505 0.639844i \(-0.778999\pi\)
0.768505 0.639844i \(-0.221001\pi\)
\(632\) 0.0428537 + 0.0428537i 0.00170463 + 0.00170463i
\(633\) −3.44211 + 3.44211i −0.136812 + 0.136812i
\(634\) 22.6925i 0.901235i
\(635\) 3.50367 3.41849i 0.139039 0.135659i
\(636\) −1.63799 + 1.63799i −0.0649505 + 0.0649505i
\(637\) 1.23137 1.23137i 0.0487886 0.0487886i
\(638\) −14.2778 + 20.2529i −0.565265 + 0.801818i
\(639\) 25.1821i 0.996188i
\(640\) 1.60047 1.56156i 0.0632643 0.0617262i
\(641\) −30.2409 30.2409i −1.19444 1.19444i −0.975806 0.218636i \(-0.929839\pi\)
−0.218636 0.975806i \(-0.570161\pi\)
\(642\) −0.195392 + 0.195392i −0.00771152 + 0.00771152i
\(643\) 7.79835 + 7.79835i 0.307537 + 0.307537i 0.843953 0.536417i \(-0.180222\pi\)
−0.536417 + 0.843953i \(0.680222\pi\)
\(644\) 4.91915 0.193842
\(645\) −3.87727 3.97389i −0.152668 0.156472i
\(646\) −0.854907 + 0.854907i −0.0336359 + 0.0336359i
\(647\) 16.6166 16.6166i 0.653268 0.653268i −0.300511 0.953778i \(-0.597157\pi\)
0.953778 + 0.300511i \(0.0971571\pi\)
\(648\) 8.25213i 0.324174i
\(649\) 32.1879 32.1879i 1.26348 1.26348i
\(650\) −0.968322 1.01719i −0.0379807 0.0398977i
\(651\) 2.07207i 0.0812107i
\(652\) 22.3121i 0.873811i
\(653\) 45.8616i 1.79470i 0.441317 + 0.897352i \(0.354512\pi\)
−0.441317 + 0.897352i \(0.645488\pi\)
\(654\) 3.02202i 0.118170i
\(655\) −13.5482 0.166715i −0.529370 0.00651410i
\(656\) 6.47983 6.47983i 0.252995 0.252995i
\(657\) 24.9640i 0.973938i
\(658\) 0.861152 0.861152i 0.0335712 0.0335712i
\(659\) 8.87020 8.87020i 0.345534 0.345534i −0.512909 0.858443i \(-0.671432\pi\)
0.858443 + 0.512909i \(0.171432\pi\)
\(660\) 0.0366665 2.97971i 0.00142724 0.115985i
\(661\) 25.4205 0.988743 0.494371 0.869251i \(-0.335398\pi\)
0.494371 + 0.869251i \(0.335398\pi\)
\(662\) 3.40255 + 3.40255i 0.132244 + 0.132244i
\(663\) −0.0274265 + 0.0274265i −0.00106516 + 0.00106516i
\(664\) 1.00000 + 1.00000i 0.0388075 + 0.0388075i
\(665\) 3.54186 + 3.63011i 0.137347 + 0.140770i
\(666\) 19.2035i 0.744121i
\(667\) −17.0639 + 24.2048i −0.660715 + 0.937213i
\(668\) −7.60605 + 7.60605i −0.294287 + 0.294287i
\(669\) 2.97410 2.97410i 0.114985 0.114985i
\(670\) −0.305710 + 24.8437i −0.0118106 + 0.959795i
\(671\) 25.3052i 0.976897i
\(672\) −0.183184 + 0.183184i −0.00706648 + 0.00706648i
\(673\) −28.6125 28.6125i −1.10293 1.10293i −0.994056 0.108874i \(-0.965275\pi\)
−0.108874 0.994056i \(-0.534725\pi\)
\(674\) 20.6557i 0.795626i
\(675\) 0.210810 8.56447i 0.00811407 0.329647i
\(676\) 12.9211i 0.496966i
\(677\) 1.01813 0.0391300 0.0195650 0.999809i \(-0.493772\pi\)
0.0195650 + 0.999809i \(0.493772\pi\)
\(678\) 0.902538 0.0346618
\(679\) −7.46521 7.46521i −0.286489 0.286489i
\(680\) 0.744561 + 0.763113i 0.0285526 + 0.0292640i
\(681\) −3.31107 3.31107i −0.126881 0.126881i
\(682\) 36.8043 1.40931
\(683\) −13.6805 + 13.6805i −0.523470 + 0.523470i −0.918618 0.395147i \(-0.870694\pi\)
0.395147 + 0.918618i \(0.370694\pi\)
\(684\) 5.22859 5.22859i 0.199920 0.199920i
\(685\) −22.6084 + 22.0587i −0.863821 + 0.842820i
\(686\) 8.34897 + 8.34897i 0.318765 + 0.318765i
\(687\) 3.21829 + 3.21829i 0.122786 + 0.122786i
\(688\) −8.57318 −0.326849
\(689\) 2.24657 0.0855877
\(690\) 0.0438212 3.56114i 0.00166824 0.135570i
\(691\) 39.6924 1.50997 0.754985 0.655742i \(-0.227644\pi\)
0.754985 + 0.655742i \(0.227644\pi\)
\(692\) 2.00873 + 2.00873i 0.0763606 + 0.0763606i
\(693\) 12.0028i 0.455947i
\(694\) −23.4372 23.4372i −0.889665 0.889665i
\(695\) −4.03720 + 3.93905i −0.153140 + 0.149417i
\(696\) −0.265920 1.53680i −0.0100797 0.0582523i
\(697\) 3.08961 + 3.08961i 0.117027 + 0.117027i
\(698\) 25.2886 0.957188
\(699\) 4.22309 4.22309i 0.159732 0.159732i
\(700\) 3.23938 3.08374i 0.122437 0.116554i
\(701\) 22.9970i 0.868586i −0.900772 0.434293i \(-0.856998\pi\)
0.900772 0.434293i \(-0.143002\pi\)
\(702\) 0.340304 0.340304i 0.0128439 0.0128439i
\(703\) 11.8074 11.8074i 0.445324 0.445324i
\(704\) −3.25374 3.25374i −0.122630 0.122630i
\(705\) −0.615746 0.631089i −0.0231903 0.0237682i
\(706\) −6.88469 + 6.88469i −0.259109 + 0.259109i
\(707\) 0.765427i 0.0287868i
\(708\) 2.86506i 0.107676i
\(709\) −33.5904 −1.26151 −0.630756 0.775981i \(-0.717255\pi\)
−0.630756 + 0.775981i \(0.717255\pi\)
\(710\) 13.4848 + 13.8209i 0.506077 + 0.518687i
\(711\) 0.124967 0.124967i 0.00468662 0.00468662i
\(712\) −5.88779 5.88779i −0.220654 0.220654i
\(713\) 43.9859 1.64728
\(714\) −0.0873430 0.0873430i −0.00326873 0.00326873i
\(715\) −2.06855 + 2.01826i −0.0773594 + 0.0754787i
\(716\) 23.6028 0.882077
\(717\) 0.347796i 0.0129887i
\(718\) 22.2072 + 22.2072i 0.828765 + 0.828765i
\(719\) 5.51139i 0.205540i −0.994705 0.102770i \(-0.967229\pi\)
0.994705 0.102770i \(-0.0327706\pi\)
\(720\) −4.55371 4.66718i −0.169707 0.173935i
\(721\) −13.8738 −0.516687
\(722\) −12.5703 −0.467820
\(723\) 6.55127i 0.243645i
\(724\) −20.7780 −0.772210
\(725\) 3.93663 + 26.6365i 0.146203 + 0.989255i
\(726\) −2.94646 −0.109353
\(727\) 5.28028i 0.195835i 0.995195 + 0.0979173i \(0.0312181\pi\)
−0.995195 + 0.0979173i \(0.968782\pi\)
\(728\) 0.251245 0.00931177
\(729\) −22.5755 −0.836130
\(730\) −13.3681 13.7012i −0.494774 0.507102i
\(731\) 4.08773i 0.151190i
\(732\) −1.12622 1.12622i −0.0416262 0.0416262i
\(733\) 24.3366i 0.898892i −0.893308 0.449446i \(-0.851621\pi\)
0.893308 0.449446i \(-0.148379\pi\)
\(734\) −1.97873 −0.0730363
\(735\) 2.87380 2.80393i 0.106002 0.103425i
\(736\) −3.88864 3.88864i −0.143337 0.143337i
\(737\) 51.1283 1.88333
\(738\) −18.8960 18.8960i −0.695571 0.695571i
\(739\) 24.1899 24.1899i 0.889839 0.889839i −0.104669 0.994507i \(-0.533378\pi\)
0.994507 + 0.104669i \(0.0333782\pi\)
\(740\) −10.2834 10.5396i −0.378024 0.387443i
\(741\) 0.206271 0.00757756
\(742\) 7.15449i 0.262650i
\(743\) 53.3731i 1.95807i 0.203694 + 0.979035i \(0.434705\pi\)
−0.203694 + 0.979035i \(0.565295\pi\)
\(744\) −1.63799 + 1.63799i −0.0600516 + 0.0600516i
\(745\) 4.59106 + 4.70546i 0.168204 + 0.172395i
\(746\) 19.0279 + 19.0279i 0.696659 + 0.696659i
\(747\) 2.91612 2.91612i 0.106695 0.106695i
\(748\) 1.55140 1.55140i 0.0567247 0.0567247i
\(749\) 0.853445i 0.0311842i
\(750\) −2.20357 2.37257i −0.0804629 0.0866340i
\(751\) −34.6175 + 34.6175i −1.26321 + 1.26321i −0.313682 + 0.949528i \(0.601563\pi\)
−0.949528 + 0.313682i \(0.898437\pi\)
\(752\) −1.36150 −0.0496487
\(753\) −1.23569 1.23569i −0.0450309 0.0450309i
\(754\) −0.871535 + 1.23626i −0.0317394 + 0.0450218i
\(755\) −17.3514 + 16.9296i −0.631482 + 0.616130i
\(756\) 1.08374 + 1.08374i 0.0394152 + 0.0394152i
\(757\) 33.8919i 1.23182i 0.787815 + 0.615911i \(0.211212\pi\)
−0.787815 + 0.615911i \(0.788788\pi\)
\(758\) −10.8552 10.8552i −0.394279 0.394279i
\(759\) −7.32883 −0.266020
\(760\) 0.0697654 5.66951i 0.00253066 0.205655i
\(761\) 51.3033 1.85974 0.929871 0.367886i \(-0.119918\pi\)
0.929871 + 0.367886i \(0.119918\pi\)
\(762\) 0.634016 0.0229680
\(763\) −6.59987 6.59987i −0.238931 0.238931i
\(764\) −6.90356 6.90356i −0.249762 0.249762i
\(765\) 2.22533 2.17123i 0.0804570 0.0785010i
\(766\) −22.6747 + 22.6747i −0.819269 + 0.819269i
\(767\) 1.96478 1.96478i 0.0709442 0.0709442i
\(768\) 0.289618 0.0104507
\(769\) 13.2848 + 13.2848i 0.479063 + 0.479063i 0.904832 0.425769i \(-0.139996\pi\)
−0.425769 + 0.904832i \(0.639996\pi\)
\(770\) −6.42740 6.58755i −0.231627 0.237399i
\(771\) 0.258409 + 0.258409i 0.00930636 + 0.00930636i
\(772\) 24.3879 0.877741
\(773\) 23.8909 0.859294 0.429647 0.902997i \(-0.358638\pi\)
0.429647 + 0.902997i \(0.358638\pi\)
\(774\) 25.0004i 0.898622i
\(775\) 28.9658 27.5741i 1.04048 0.990489i
\(776\) 11.8026i 0.423690i
\(777\) 1.20632 + 1.20632i 0.0432765 + 0.0432765i
\(778\) −8.76850 + 8.76850i −0.314366 + 0.314366i
\(779\) 23.2366i 0.832538i
\(780\) 0.00223816 0.181885i 8.01391e−5 0.00651253i
\(781\) 28.0976 28.0976i 1.00541 1.00541i
\(782\) 1.85412 1.85412i 0.0663032 0.0663032i
\(783\) −9.09190 + 1.57322i −0.324918 + 0.0562222i
\(784\) 6.19988i 0.221424i
\(785\) −12.3084 12.6151i −0.439307 0.450253i
\(786\) −1.24090 1.24090i −0.0442616 0.0442616i
\(787\) 18.3968 18.3968i 0.655776 0.655776i −0.298602 0.954378i \(-0.596520\pi\)
0.954378 + 0.298602i \(0.0965202\pi\)
\(788\) −2.47207 2.47207i −0.0880640 0.0880640i
\(789\) 5.88496 0.209510
\(790\) 0.00166744 0.135505i 5.93249e−5 0.00482106i
\(791\) 1.97108 1.97108i 0.0700834 0.0700834i
\(792\) −9.48830 + 9.48830i −0.337152 + 0.337152i
\(793\) 1.54466i 0.0548524i
\(794\) 18.3875 18.3875i 0.652547 0.652547i
\(795\) 5.17938 + 0.0637342i 0.183694 + 0.00226042i
\(796\) 11.3378i 0.401856i
\(797\) 16.2394i 0.575228i 0.957746 + 0.287614i \(0.0928621\pi\)
−0.957746 + 0.287614i \(0.907138\pi\)
\(798\) 0.656896i 0.0232539i
\(799\) 0.649168i 0.0229659i
\(800\) −4.99849 0.123035i −0.176723 0.00434994i
\(801\) −17.1695 + 17.1695i −0.606655 + 0.606655i
\(802\) 5.87124i 0.207321i
\(803\) −27.8542 + 27.8542i −0.982954 + 0.982954i
\(804\) −2.27548 + 2.27548i −0.0802501 + 0.0802501i
\(805\) −7.68157 7.87298i −0.270740 0.277486i
\(806\) 2.24657 0.0791322
\(807\) 5.86329 + 5.86329i 0.206397 + 0.206397i
\(808\) −0.605077 + 0.605077i −0.0212865 + 0.0212865i
\(809\) 3.52028 + 3.52028i 0.123766 + 0.123766i 0.766277 0.642510i \(-0.222107\pi\)
−0.642510 + 0.766277i \(0.722107\pi\)
\(810\) −13.2073 + 12.8862i −0.464058 + 0.452776i
\(811\) 2.40718i 0.0845277i 0.999106 + 0.0422638i \(0.0134570\pi\)
−0.999106 + 0.0422638i \(0.986543\pi\)
\(812\) −3.93701 2.77551i −0.138162 0.0974013i
\(813\) −1.04585 + 1.04585i −0.0366795 + 0.0366795i
\(814\) −21.4268 + 21.4268i −0.751010 + 0.751010i
\(815\) −35.7100 + 34.8418i −1.25087 + 1.22046i
\(816\) 0.138091i 0.00483415i
\(817\) −15.3716 + 15.3716i −0.537786 + 0.537786i
\(818\) −11.7879 11.7879i −0.412156 0.412156i
\(819\) 0.732662i 0.0256013i
\(820\) −20.4895 0.252131i −0.715524 0.00880478i
\(821\) 36.8938i 1.28760i 0.765193 + 0.643801i \(0.222643\pi\)
−0.765193 + 0.643801i \(0.777357\pi\)
\(822\) −4.09115 −0.142695
\(823\) 21.2449 0.740550 0.370275 0.928922i \(-0.379264\pi\)
0.370275 + 0.928922i \(0.379264\pi\)
\(824\) 10.9674 + 10.9674i 0.382066 + 0.382066i
\(825\) −4.82621 + 4.59433i −0.168027 + 0.159954i
\(826\) 6.25709 + 6.25709i 0.217712 + 0.217712i
\(827\) −17.7303 −0.616542 −0.308271 0.951299i \(-0.599750\pi\)
−0.308271 + 0.951299i \(0.599750\pi\)
\(828\) −11.3397 + 11.3397i −0.394083 + 0.394083i
\(829\) −16.5417 + 16.5417i −0.574516 + 0.574516i −0.933387 0.358871i \(-0.883162\pi\)
0.358871 + 0.933387i \(0.383162\pi\)
\(830\) 0.0389100 3.16204i 0.00135059 0.109756i
\(831\) 0.335567 + 0.335567i 0.0116407 + 0.0116407i
\(832\) −0.198612 0.198612i −0.00688563 0.00688563i
\(833\) 2.95613 0.102424
\(834\) −0.730562 −0.0252973
\(835\) 24.0506 + 0.295952i 0.832306 + 0.0102418i
\(836\) −11.6679 −0.403541
\(837\) 9.69054 + 9.69054i 0.334954 + 0.334954i
\(838\) 18.7077i 0.646245i
\(839\) 14.1762 + 14.1762i 0.489416 + 0.489416i 0.908122 0.418706i \(-0.137516\pi\)
−0.418706 + 0.908122i \(0.637516\pi\)
\(840\) 0.579235 + 0.00712770i 0.0199855 + 0.000245929i
\(841\) 27.3139 9.74427i 0.941859 0.336009i
\(842\) −4.16276 4.16276i −0.143458 0.143458i
\(843\) −2.57434 −0.0886649
\(844\) 11.8850 11.8850i 0.409100 0.409100i
\(845\) 20.6799 20.1771i 0.711410 0.694115i
\(846\) 3.97029i 0.136501i
\(847\) −6.43485 + 6.43485i −0.221104 + 0.221104i
\(848\) 5.65569 5.65569i 0.194217 0.194217i
\(849\) −6.64355 6.64355i −0.228006 0.228006i
\(850\) 0.0586636 2.38330i 0.00201215 0.0817465i
\(851\) −25.6078 + 25.6078i −0.877825 + 0.877825i
\(852\) 2.50099i 0.0856823i
\(853\) 29.1166i 0.996932i 0.866909 + 0.498466i \(0.166103\pi\)
−0.866909 + 0.498466i \(0.833897\pi\)
\(854\) −4.91915 −0.168330
\(855\) −16.5330 0.203445i −0.565416 0.00695766i
\(856\) 0.674656 0.674656i 0.0230593 0.0230593i
\(857\) 7.30296 + 7.30296i 0.249464 + 0.249464i 0.820751 0.571286i \(-0.193555\pi\)
−0.571286 + 0.820751i \(0.693555\pi\)
\(858\) −0.374320 −0.0127791
\(859\) 13.3341 + 13.3341i 0.454953 + 0.454953i 0.896995 0.442042i \(-0.145746\pi\)
−0.442042 + 0.896995i \(0.645746\pi\)
\(860\) 13.3876 + 13.7211i 0.456512 + 0.467887i
\(861\) 2.37401 0.0809059
\(862\) 0.757725i 0.0258082i
\(863\) −9.11507 9.11507i −0.310280 0.310280i 0.534738 0.845018i \(-0.320410\pi\)
−0.845018 + 0.534738i \(0.820410\pi\)
\(864\) 1.71341i 0.0582915i
\(865\) 0.0781599 6.35170i 0.00265752 0.215964i
\(866\) 10.8919 0.370122
\(867\) 4.85766 0.164975
\(868\) 7.15449i 0.242839i
\(869\) −0.278870 −0.00946001
\(870\) −2.04436 + 2.82541i −0.0693103 + 0.0957904i
\(871\) 3.12093 0.105749
\(872\) 10.4345i 0.353357i
\(873\) 34.4179 1.16487
\(874\) −13.9446 −0.471683
\(875\) −9.99394 0.369086i −0.337857 0.0124774i
\(876\) 2.47932i 0.0837686i
\(877\) −36.2899 36.2899i −1.22542 1.22542i −0.965677 0.259747i \(-0.916361\pi\)
−0.259747 0.965677i \(-0.583639\pi\)
\(878\) 16.0340i 0.541122i
\(879\) 4.57590 0.154341
\(880\) −0.126603 + 10.2884i −0.00426779 + 0.346823i
\(881\) −31.7249 31.7249i −1.06884 1.06884i −0.997448 0.0713908i \(-0.977256\pi\)
−0.0713908 0.997448i \(-0.522744\pi\)
\(882\) −18.0796 −0.608772
\(883\) 5.18708 + 5.18708i 0.174559 + 0.174559i 0.788979 0.614420i \(-0.210610\pi\)
−0.614420 + 0.788979i \(0.710610\pi\)
\(884\) 0.0946990 0.0946990i 0.00318507 0.00318507i
\(885\) 4.58546 4.47398i 0.154139 0.150391i
\(886\) −21.8127 −0.732812
\(887\) 45.5203i 1.52842i 0.644967 + 0.764211i \(0.276871\pi\)
−0.644967 + 0.764211i \(0.723129\pi\)
\(888\) 1.90722i 0.0640020i
\(889\) 1.38464 1.38464i 0.0464394 0.0464394i
\(890\) −0.229094 + 18.6174i −0.00767925 + 0.624057i
\(891\) 26.8503 + 26.8503i 0.899518 + 0.899518i
\(892\) −10.2691 + 10.2691i −0.343834 + 0.343834i
\(893\) −2.44116 + 2.44116i −0.0816902 + 0.0816902i
\(894\) 0.851488i 0.0284780i
\(895\) −36.8572 37.7756i −1.23200 1.26270i
\(896\) 0.632503 0.632503i 0.0211305 0.0211305i
\(897\) −0.447360 −0.0149369
\(898\) −11.8820 11.8820i −0.396509 0.396509i
\(899\) −35.2038 24.8179i −1.17411 0.827725i
\(900\) −0.358785 + 14.5762i −0.0119595 + 0.485873i
\(901\) 2.69666 + 2.69666i 0.0898387 + 0.0898387i
\(902\) 42.1674i 1.40402i
\(903\) −1.57047 1.57047i −0.0522620 0.0522620i
\(904\) −3.11631 −0.103647
\(905\) 32.4462 + 33.2547i 1.07855 + 1.10542i
\(906\) −3.13986 −0.104315
\(907\) 52.1407 1.73130 0.865652 0.500646i \(-0.166904\pi\)
0.865652 + 0.500646i \(0.166904\pi\)
\(908\) 11.4326 + 11.4326i 0.379403 + 0.379403i
\(909\) 1.76448 + 1.76448i 0.0585241 + 0.0585241i
\(910\) −0.392336 0.402112i −0.0130058 0.0133299i
\(911\) 22.5889 22.5889i 0.748403 0.748403i −0.225776 0.974179i \(-0.572492\pi\)
0.974179 + 0.225776i \(0.0724918\pi\)
\(912\) 0.519282 0.519282i 0.0171952 0.0171952i
\(913\) −6.50748 −0.215366
\(914\) −25.4126 25.4126i −0.840575 0.840575i
\(915\) −0.0438212 + 3.56114i −0.00144868 + 0.117728i
\(916\) −11.1122 11.1122i −0.367158 0.367158i
\(917\) −5.42008 −0.178987
\(918\) 0.816963 0.0269638
\(919\) 1.29013i 0.0425574i 0.999774 + 0.0212787i \(0.00677373\pi\)
−0.999774 + 0.0212787i \(0.993226\pi\)
\(920\) −0.151307 + 12.2960i −0.00498844 + 0.405388i
\(921\) 4.62183i 0.152295i
\(922\) −26.1001 26.1001i −0.859562 0.859562i
\(923\) 1.71511 1.71511i 0.0564534 0.0564534i
\(924\) 1.19207i 0.0392161i
\(925\) −0.810222 + 32.9165i −0.0266399 + 1.08229i
\(926\) 3.00076 3.00076i 0.0986111 0.0986111i
\(927\) 31.9822 31.9822i 1.05043 1.05043i
\(928\) 0.918177 + 5.30631i 0.0301406 + 0.174188i
\(929\) 29.6911i 0.974134i −0.873365 0.487067i \(-0.838067\pi\)
0.873365 0.487067i \(-0.161933\pi\)
\(930\) 5.17938 + 0.0637342i 0.169839 + 0.00208993i
\(931\) −11.1163 11.1163i −0.364323 0.364323i
\(932\) −14.5816 + 14.5816i −0.477636 + 0.477636i
\(933\) −1.47511 1.47511i −0.0482930 0.0482930i
\(934\) −4.86798 −0.159285
\(935\) −4.90557 0.0603649i −0.160429 0.00197414i
\(936\) −0.579176 + 0.579176i −0.0189310 + 0.0189310i
\(937\) −30.6659 + 30.6659i −1.00181 + 1.00181i −0.00181196 + 0.999998i \(0.500577\pi\)
−0.999998 + 0.00181196i \(0.999423\pi\)
\(938\) 9.93897i 0.324519i
\(939\) −2.78675 + 2.78675i −0.0909421 + 0.0909421i
\(940\) 2.12607 + 2.17904i 0.0693446 + 0.0710725i
\(941\) 32.2353i 1.05084i −0.850842 0.525421i \(-0.823908\pi\)
0.850842 0.525421i \(-0.176092\pi\)
\(942\) 2.28280i 0.0743776i
\(943\) 50.3954i 1.64110i
\(944\) 9.89258i 0.321976i
\(945\) 0.0421683 3.42683i 0.00137174 0.111475i
\(946\) 27.8949 27.8949i 0.906940 0.906940i
\(947\) 32.5015i 1.05616i −0.849195 0.528079i \(-0.822913\pi\)
0.849195 0.528079i \(-0.177087\pi\)
\(948\) 0.0124112 0.0124112i 0.000403097 0.000403097i
\(949\) −1.70025 + 1.70025i −0.0551925 + 0.0551925i
\(950\) −9.18285 + 8.74165i −0.297931 + 0.283617i
\(951\) −6.57215 −0.213117
\(952\) 0.301580 + 0.301580i 0.00977428 + 0.00977428i
\(953\) −23.0094 + 23.0094i −0.745348 + 0.745348i −0.973602 0.228254i \(-0.926698\pi\)
0.228254 + 0.973602i \(0.426698\pi\)
\(954\) −16.4927 16.4927i −0.533971 0.533971i
\(955\) −0.268618 + 21.8293i −0.00869226 + 0.706380i
\(956\) 1.20088i 0.0388392i
\(957\) 5.86558 + 4.13511i 0.189607 + 0.133669i
\(958\) 4.92833 4.92833i 0.159227 0.159227i
\(959\) −8.93477 + 8.93477i −0.288519 + 0.288519i
\(960\) −0.452256 0.463525i −0.0145965 0.0149602i
\(961\) 32.9737i 1.06367i
\(962\) −1.30792 + 1.30792i −0.0421689 + 0.0421689i
\(963\) −1.96738 1.96738i −0.0633979 0.0633979i
\(964\) 22.6204i 0.728555i
\(965\) −38.0833 39.0323i −1.22595 1.25649i
\(966\) 1.42467i 0.0458381i
\(967\) −0.317494 −0.0102099 −0.00510495 0.999987i \(-0.501625\pi\)
−0.00510495 + 0.999987i \(0.501625\pi\)
\(968\) 10.1736 0.326993
\(969\) 0.247596 + 0.247596i 0.00795393 + 0.00795393i
\(970\) 18.8898 18.4306i 0.606516 0.591770i
\(971\) −23.8271 23.8271i −0.764647 0.764647i 0.212512 0.977159i \(-0.431836\pi\)
−0.977159 + 0.212512i \(0.931836\pi\)
\(972\) −7.53020 −0.241531
\(973\) −1.59549 + 1.59549i −0.0511491 + 0.0511491i
\(974\) −2.73756 + 2.73756i −0.0877169 + 0.0877169i
\(975\) −0.294597 + 0.280443i −0.00943467 + 0.00898137i
\(976\) 3.88864 + 3.88864i 0.124472 + 0.124472i
\(977\) 24.5169 + 24.5169i 0.784365 + 0.784365i 0.980564 0.196199i \(-0.0628598\pi\)
−0.196199 + 0.980564i \(0.562860\pi\)
\(978\) −6.46199 −0.206632
\(979\) 38.3146 1.22454
\(980\) −9.92275 + 9.68151i −0.316970 + 0.309264i
\(981\) 30.4283 0.971501
\(982\) −16.0568 16.0568i −0.512392 0.512392i
\(983\) 59.6952i 1.90398i −0.306126 0.951991i \(-0.599033\pi\)
0.306126 0.951991i \(-0.400967\pi\)
\(984\) −1.87667 1.87667i −0.0598262 0.0598262i
\(985\) −0.0961885 + 7.81679i −0.00306482 + 0.249064i
\(986\) −2.53007 + 0.437791i −0.0805739 + 0.0139421i
\(987\) −0.249405 0.249405i −0.00793864 0.00793864i
\(988\) −0.712219 −0.0226587
\(989\) 33.3380 33.3380i 1.06009 1.06009i
\(990\) 30.0024 + 0.369190i 0.953537 + 0.0117336i
\(991\) 5.66996i 0.180112i 0.995937 + 0.0900561i \(0.0287046\pi\)
−0.995937 + 0.0900561i \(0.971295\pi\)
\(992\) 5.65569 5.65569i 0.179568 0.179568i
\(993\) 0.985439 0.985439i 0.0312720 0.0312720i
\(994\) 5.46197 + 5.46197i 0.173243 + 0.173243i
\(995\) −18.1458 + 17.7046i −0.575260 + 0.561275i
\(996\) 0.289618 0.289618i 0.00917688 0.00917688i
\(997\) 27.2996i 0.864586i 0.901733 + 0.432293i \(0.142295\pi\)
−0.901733 + 0.432293i \(0.857705\pi\)
\(998\) 11.0768i 0.350631i
\(999\) −11.2833 −0.356989
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 290.2.j.f.157.4 yes 12
5.2 odd 4 1450.2.e.h.1143.3 12
5.3 odd 4 290.2.e.f.273.4 yes 12
5.4 even 2 1450.2.j.h.157.3 12
29.17 odd 4 290.2.e.f.17.3 12
145.17 even 4 1450.2.j.h.1293.3 12
145.104 odd 4 1450.2.e.h.307.4 12
145.133 even 4 inner 290.2.j.f.133.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.e.f.17.3 12 29.17 odd 4
290.2.e.f.273.4 yes 12 5.3 odd 4
290.2.j.f.133.4 yes 12 145.133 even 4 inner
290.2.j.f.157.4 yes 12 1.1 even 1 trivial
1450.2.e.h.307.4 12 145.104 odd 4
1450.2.e.h.1143.3 12 5.2 odd 4
1450.2.j.h.157.3 12 5.4 even 2
1450.2.j.h.1293.3 12 145.17 even 4