Properties

Label 290.2.j
Level $290$
Weight $2$
Character orbit 290.j
Rep. character $\chi_{290}(133,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $30$
Newform subspaces $6$
Sturm bound $90$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 290.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(90\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(290, [\chi])\).

Total New Old
Modular forms 98 30 68
Cusp forms 82 30 52
Eisenstein series 16 0 16

Trace form

\( 30 q - 30 q^{4} + 38 q^{9} + 10 q^{10} + 8 q^{11} + 18 q^{13} + 4 q^{14} + 30 q^{16} - 16 q^{21} - 2 q^{25} - 10 q^{26} - 24 q^{27} - 16 q^{31} + 4 q^{33} - 16 q^{34} - 16 q^{35} - 38 q^{36} + 12 q^{37}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(290, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
290.2.j.a 290.j 145.e $2$ $2.316$ \(\Q(\sqrt{-1}) \) None 290.2.e.c \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}-q^{4}+(i-2)q^{5}+(-2 i-2)q^{7}+\cdots\)
290.2.j.b 290.j 145.e $2$ $2.316$ \(\Q(\sqrt{-1}) \) None 290.2.e.b \(0\) \(4\) \(-2\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}+2 q^{3}-q^{4}+(-2 i-1)q^{5}+\cdots\)
290.2.j.c 290.j 145.e $2$ $2.316$ \(\Q(\sqrt{-1}) \) None 290.2.e.a \(0\) \(4\) \(-2\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}+2 q^{3}-q^{4}+(2 i-1)q^{5}+\cdots\)
290.2.j.d 290.j 145.e $4$ $2.316$ \(\Q(i, \sqrt{19})\) None 290.2.e.d \(0\) \(-4\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{2}-q^{3}-q^{4}+(1+\beta _{3})q^{5}+\beta _{2}q^{6}+\cdots\)
290.2.j.e 290.j 145.e $8$ $2.316$ 8.0.6420496384.3 None 290.2.e.e \(0\) \(-4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{5}q^{2}+(-1+\beta _{4})q^{3}-q^{4}+(2\beta _{2}+\cdots)q^{5}+\cdots\)
290.2.j.f 290.j 145.e $12$ $2.316$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 290.2.e.f \(0\) \(0\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{7}q^{2}+(-\beta _{2}-\beta _{4}+\beta _{5}+\beta _{6}+\beta _{9}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(290, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(290, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)