Properties

Label 290.2.e.f.273.4
Level $290$
Weight $2$
Character 290.273
Analytic conductor $2.316$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [290,2,Mod(17,290)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(290, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("290.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 290.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,0,12,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.31566165862\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 346x^{6} + 397x^{4} + 80x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 273.4
Root \(-1.64632i\) of defining polynomial
Character \(\chi\) \(=\) 290.273
Dual form 290.2.e.f.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.289618i q^{3} +1.00000 q^{4} +(-1.56156 + 1.60047i) q^{5} +0.289618i q^{6} +(0.632503 - 0.632503i) q^{7} +1.00000 q^{8} +2.91612 q^{9} +(-1.56156 + 1.60047i) q^{10} +(3.25374 + 3.25374i) q^{11} +0.289618i q^{12} +(-0.198612 + 0.198612i) q^{13} +(0.632503 - 0.632503i) q^{14} +(-0.463525 - 0.452256i) q^{15} +1.00000 q^{16} +0.476804 q^{17} +2.91612 q^{18} +(-1.79299 + 1.79299i) q^{19} +(-1.56156 + 1.60047i) q^{20} +(0.183184 + 0.183184i) q^{21} +(3.25374 + 3.25374i) q^{22} +(-3.88864 - 3.88864i) q^{23} +0.289618i q^{24} +(-0.123035 - 4.99849i) q^{25} +(-0.198612 + 0.198612i) q^{26} +1.71341i q^{27} +(0.632503 - 0.632503i) q^{28} +(-5.30631 + 0.918177i) q^{29} +(-0.463525 - 0.452256i) q^{30} +(-5.65569 - 5.65569i) q^{31} +1.00000 q^{32} +(-0.942340 + 0.942340i) q^{33} +0.476804 q^{34} +(0.0246107 + 2.00000i) q^{35} +2.91612 q^{36} -6.58530i q^{37} +(-1.79299 + 1.79299i) q^{38} +(-0.0575215 - 0.0575215i) q^{39} +(-1.56156 + 1.60047i) q^{40} +(6.47983 - 6.47983i) q^{41} +(0.183184 + 0.183184i) q^{42} -8.57318i q^{43} +(3.25374 + 3.25374i) q^{44} +(-4.55371 + 4.66718i) q^{45} +(-3.88864 - 3.88864i) q^{46} +1.36150i q^{47} +0.289618i q^{48} +6.19988i q^{49} +(-0.123035 - 4.99849i) q^{50} +0.138091i q^{51} +(-0.198612 + 0.198612i) q^{52} +(5.65569 + 5.65569i) q^{53} +1.71341i q^{54} +(-10.2884 + 0.126603i) q^{55} +(0.632503 - 0.632503i) q^{56} +(-0.519282 - 0.519282i) q^{57} +(-5.30631 + 0.918177i) q^{58} +9.89258i q^{59} +(-0.463525 - 0.452256i) q^{60} +(3.88864 + 3.88864i) q^{61} +(-5.65569 - 5.65569i) q^{62} +(1.84446 - 1.84446i) q^{63} +1.00000 q^{64} +(-0.00772799 - 0.628018i) q^{65} +(-0.942340 + 0.942340i) q^{66} +(-7.85685 - 7.85685i) q^{67} +0.476804 q^{68} +(1.12622 - 1.12622i) q^{69} +(0.0246107 + 2.00000i) q^{70} -8.63547i q^{71} +2.91612 q^{72} -8.56068 q^{73} -6.58530i q^{74} +(1.44765 - 0.0356331i) q^{75} +(-1.79299 + 1.79299i) q^{76} +4.11600 q^{77} +(-0.0575215 - 0.0575215i) q^{78} +(0.0428537 - 0.0428537i) q^{79} +(-1.56156 + 1.60047i) q^{80} +8.25213 q^{81} +(6.47983 - 6.47983i) q^{82} +(-1.00000 - 1.00000i) q^{83} +(0.183184 + 0.183184i) q^{84} +(-0.744561 + 0.763113i) q^{85} -8.57318i q^{86} +(-0.265920 - 1.53680i) q^{87} +(3.25374 + 3.25374i) q^{88} +(-5.88779 + 5.88779i) q^{89} +(-4.55371 + 4.66718i) q^{90} +0.251245i q^{91} +(-3.88864 - 3.88864i) q^{92} +(1.63799 - 1.63799i) q^{93} +1.36150i q^{94} +(-0.0697654 - 5.66951i) q^{95} +0.289618i q^{96} +11.8026i q^{97} +6.19988i q^{98} +(9.48830 + 9.48830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 12 q^{4} - 6 q^{5} - 4 q^{7} + 12 q^{8} - 28 q^{9} - 6 q^{10} + 10 q^{11} - 2 q^{13} - 4 q^{14} - 16 q^{15} + 12 q^{16} - 28 q^{18} + 16 q^{19} - 6 q^{20} - 16 q^{21} + 10 q^{22} + 4 q^{23}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/290\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.289618i 0.167211i 0.996499 + 0.0836054i \(0.0266435\pi\)
−0.996499 + 0.0836054i \(0.973356\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.56156 + 1.60047i −0.698353 + 0.715754i
\(6\) 0.289618i 0.118236i
\(7\) 0.632503 0.632503i 0.239064 0.239064i −0.577399 0.816462i \(-0.695932\pi\)
0.816462 + 0.577399i \(0.195932\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.91612 0.972041
\(10\) −1.56156 + 1.60047i −0.493810 + 0.506114i
\(11\) 3.25374 + 3.25374i 0.981039 + 0.981039i 0.999824 0.0187847i \(-0.00597971\pi\)
−0.0187847 + 0.999824i \(0.505980\pi\)
\(12\) 0.289618i 0.0836054i
\(13\) −0.198612 + 0.198612i −0.0550850 + 0.0550850i −0.734113 0.679028i \(-0.762402\pi\)
0.679028 + 0.734113i \(0.262402\pi\)
\(14\) 0.632503 0.632503i 0.169044 0.169044i
\(15\) −0.463525 0.452256i −0.119682 0.116772i
\(16\) 1.00000 0.250000
\(17\) 0.476804 0.115642 0.0578210 0.998327i \(-0.481585\pi\)
0.0578210 + 0.998327i \(0.481585\pi\)
\(18\) 2.91612 0.687336
\(19\) −1.79299 + 1.79299i −0.411341 + 0.411341i −0.882205 0.470865i \(-0.843942\pi\)
0.470865 + 0.882205i \(0.343942\pi\)
\(20\) −1.56156 + 1.60047i −0.349176 + 0.357877i
\(21\) 0.183184 + 0.183184i 0.0399740 + 0.0399740i
\(22\) 3.25374 + 3.25374i 0.693699 + 0.693699i
\(23\) −3.88864 3.88864i −0.810837 0.810837i 0.173923 0.984759i \(-0.444356\pi\)
−0.984759 + 0.173923i \(0.944356\pi\)
\(24\) 0.289618i 0.0591179i
\(25\) −0.123035 4.99849i −0.0246070 0.999697i
\(26\) −0.198612 + 0.198612i −0.0389510 + 0.0389510i
\(27\) 1.71341i 0.329746i
\(28\) 0.632503 0.632503i 0.119532 0.119532i
\(29\) −5.30631 + 0.918177i −0.985357 + 0.170501i
\(30\) −0.463525 0.452256i −0.0846278 0.0825703i
\(31\) −5.65569 5.65569i −1.01579 1.01579i −0.999873 0.0159192i \(-0.994933\pi\)
−0.0159192 0.999873i \(-0.505067\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.942340 + 0.942340i −0.164040 + 0.164040i
\(34\) 0.476804 0.0817713
\(35\) 0.0246107 + 2.00000i 0.00415997 + 0.338062i
\(36\) 2.91612 0.486020
\(37\) 6.58530i 1.08262i −0.840824 0.541308i \(-0.817929\pi\)
0.840824 0.541308i \(-0.182071\pi\)
\(38\) −1.79299 + 1.79299i −0.290862 + 0.290862i
\(39\) −0.0575215 0.0575215i −0.00921081 0.00921081i
\(40\) −1.56156 + 1.60047i −0.246905 + 0.253057i
\(41\) 6.47983 6.47983i 1.01198 1.01198i 0.0120528 0.999927i \(-0.496163\pi\)
0.999927 0.0120528i \(-0.00383661\pi\)
\(42\) 0.183184 + 0.183184i 0.0282659 + 0.0282659i
\(43\) 8.57318i 1.30740i −0.756755 0.653699i \(-0.773216\pi\)
0.756755 0.653699i \(-0.226784\pi\)
\(44\) 3.25374 + 3.25374i 0.490519 + 0.490519i
\(45\) −4.55371 + 4.66718i −0.678827 + 0.695742i
\(46\) −3.88864 3.88864i −0.573348 0.573348i
\(47\) 1.36150i 0.198595i 0.995058 + 0.0992974i \(0.0316595\pi\)
−0.995058 + 0.0992974i \(0.968340\pi\)
\(48\) 0.289618i 0.0418027i
\(49\) 6.19988i 0.885697i
\(50\) −0.123035 4.99849i −0.0173998 0.706893i
\(51\) 0.138091i 0.0193366i
\(52\) −0.198612 + 0.198612i −0.0275425 + 0.0275425i
\(53\) 5.65569 + 5.65569i 0.776869 + 0.776869i 0.979297 0.202428i \(-0.0648832\pi\)
−0.202428 + 0.979297i \(0.564883\pi\)
\(54\) 1.71341i 0.233166i
\(55\) −10.2884 + 0.126603i −1.38729 + 0.0170712i
\(56\) 0.632503 0.632503i 0.0845218 0.0845218i
\(57\) −0.519282 0.519282i −0.0687806 0.0687806i
\(58\) −5.30631 + 0.918177i −0.696753 + 0.120563i
\(59\) 9.89258i 1.28790i 0.765066 + 0.643952i \(0.222706\pi\)
−0.765066 + 0.643952i \(0.777294\pi\)
\(60\) −0.463525 0.452256i −0.0598409 0.0583860i
\(61\) 3.88864 + 3.88864i 0.497889 + 0.497889i 0.910780 0.412891i \(-0.135481\pi\)
−0.412891 + 0.910780i \(0.635481\pi\)
\(62\) −5.65569 5.65569i −0.718274 0.718274i
\(63\) 1.84446 1.84446i 0.232380 0.232380i
\(64\) 1.00000 0.125000
\(65\) −0.00772799 0.628018i −0.000958539 0.0778961i
\(66\) −0.942340 + 0.942340i −0.115994 + 0.115994i
\(67\) −7.85685 7.85685i −0.959867 0.959867i 0.0393577 0.999225i \(-0.487469\pi\)
−0.999225 + 0.0393577i \(0.987469\pi\)
\(68\) 0.476804 0.0578210
\(69\) 1.12622 1.12622i 0.135581 0.135581i
\(70\) 0.0246107 + 2.00000i 0.00294154 + 0.239046i
\(71\) 8.63547i 1.02484i −0.858734 0.512421i \(-0.828749\pi\)
0.858734 0.512421i \(-0.171251\pi\)
\(72\) 2.91612 0.343668
\(73\) −8.56068 −1.00195 −0.500976 0.865461i \(-0.667026\pi\)
−0.500976 + 0.865461i \(0.667026\pi\)
\(74\) 6.58530i 0.765525i
\(75\) 1.44765 0.0356331i 0.167160 0.00411456i
\(76\) −1.79299 + 1.79299i −0.205670 + 0.205670i
\(77\) 4.11600 0.469062
\(78\) −0.0575215 0.0575215i −0.00651302 0.00651302i
\(79\) 0.0428537 0.0428537i 0.00482142 0.00482142i −0.704692 0.709513i \(-0.748915\pi\)
0.709513 + 0.704692i \(0.248915\pi\)
\(80\) −1.56156 + 1.60047i −0.174588 + 0.178938i
\(81\) 8.25213 0.916903
\(82\) 6.47983 6.47983i 0.715578 0.715578i
\(83\) −1.00000 1.00000i −0.109764 0.109764i 0.650092 0.759856i \(-0.274731\pi\)
−0.759856 + 0.650092i \(0.774731\pi\)
\(84\) 0.183184 + 0.183184i 0.0199870 + 0.0199870i
\(85\) −0.744561 + 0.763113i −0.0807589 + 0.0827712i
\(86\) 8.57318i 0.924469i
\(87\) −0.265920 1.53680i −0.0285096 0.164762i
\(88\) 3.25374 + 3.25374i 0.346850 + 0.346850i
\(89\) −5.88779 + 5.88779i −0.624104 + 0.624104i −0.946578 0.322474i \(-0.895486\pi\)
0.322474 + 0.946578i \(0.395486\pi\)
\(90\) −4.55371 + 4.66718i −0.480003 + 0.491964i
\(91\) 0.251245i 0.0263377i
\(92\) −3.88864 3.88864i −0.405418 0.405418i
\(93\) 1.63799 1.63799i 0.169851 0.169851i
\(94\) 1.36150i 0.140428i
\(95\) −0.0697654 5.66951i −0.00715778 0.581680i
\(96\) 0.289618i 0.0295590i
\(97\) 11.8026i 1.19838i 0.800608 + 0.599188i \(0.204510\pi\)
−0.800608 + 0.599188i \(0.795490\pi\)
\(98\) 6.19988i 0.626282i
\(99\) 9.48830 + 9.48830i 0.953610 + 0.953610i
\(100\) −0.123035 4.99849i −0.0123035 0.499849i
\(101\) −0.605077 0.605077i −0.0602074 0.0602074i 0.676362 0.736569i \(-0.263556\pi\)
−0.736569 + 0.676362i \(0.763556\pi\)
\(102\) 0.138091i 0.0136730i
\(103\) −10.9674 10.9674i −1.08065 1.08065i −0.996449 0.0841981i \(-0.973167\pi\)
−0.0841981 0.996449i \(-0.526833\pi\)
\(104\) −0.198612 + 0.198612i −0.0194755 + 0.0194755i
\(105\) −0.579235 + 0.00712770i −0.0565276 + 0.000695592i
\(106\) 5.65569 + 5.65569i 0.549330 + 0.549330i
\(107\) 0.674656 0.674656i 0.0652215 0.0652215i −0.673744 0.738965i \(-0.735315\pi\)
0.738965 + 0.673744i \(0.235315\pi\)
\(108\) 1.71341i 0.164873i
\(109\) 10.4345 0.999445 0.499723 0.866185i \(-0.333435\pi\)
0.499723 + 0.866185i \(0.333435\pi\)
\(110\) −10.2884 + 0.126603i −0.980965 + 0.0120711i
\(111\) 1.90722 0.181025
\(112\) 0.632503 0.632503i 0.0597660 0.0597660i
\(113\) 3.11631 0.293158 0.146579 0.989199i \(-0.453174\pi\)
0.146579 + 0.989199i \(0.453174\pi\)
\(114\) −0.519282 0.519282i −0.0486353 0.0486353i
\(115\) 12.2960 0.151307i 1.14661 0.0141095i
\(116\) −5.30631 + 0.918177i −0.492679 + 0.0852506i
\(117\) −0.579176 + 0.579176i −0.0535449 + 0.0535449i
\(118\) 9.89258i 0.910686i
\(119\) 0.301580 0.301580i 0.0276458 0.0276458i
\(120\) −0.463525 0.452256i −0.0423139 0.0412852i
\(121\) 10.1736i 0.924874i
\(122\) 3.88864 + 3.88864i 0.352061 + 0.352061i
\(123\) 1.87667 + 1.87667i 0.169214 + 0.169214i
\(124\) −5.65569 5.65569i −0.507896 0.507896i
\(125\) 8.19207 + 7.60854i 0.732721 + 0.680529i
\(126\) 1.84446 1.84446i 0.164317 0.164317i
\(127\) −2.18915 −0.194255 −0.0971277 0.995272i \(-0.530966\pi\)
−0.0971277 + 0.995272i \(0.530966\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.48294 0.218611
\(130\) −0.00772799 0.628018i −0.000677790 0.0550808i
\(131\) −4.28463 + 4.28463i −0.374350 + 0.374350i −0.869059 0.494709i \(-0.835275\pi\)
0.494709 + 0.869059i \(0.335275\pi\)
\(132\) −0.942340 + 0.942340i −0.0820201 + 0.0820201i
\(133\) 2.26815i 0.196673i
\(134\) −7.85685 7.85685i −0.678729 0.678729i
\(135\) −2.74227 2.67560i −0.236017 0.230279i
\(136\) 0.476804 0.0408856
\(137\) 14.1260 1.20687 0.603435 0.797413i \(-0.293798\pi\)
0.603435 + 0.797413i \(0.293798\pi\)
\(138\) 1.12622 1.12622i 0.0958700 0.0958700i
\(139\) 2.52250i 0.213956i −0.994261 0.106978i \(-0.965883\pi\)
0.994261 0.106978i \(-0.0341174\pi\)
\(140\) 0.0246107 + 2.00000i 0.00207999 + 0.169031i
\(141\) −0.394314 −0.0332072
\(142\) 8.63547i 0.724673i
\(143\) −1.29246 −0.108081
\(144\) 2.91612 0.243010
\(145\) 6.81663 9.92641i 0.566090 0.824343i
\(146\) −8.56068 −0.708487
\(147\) −1.79559 −0.148098
\(148\) 6.58530i 0.541308i
\(149\) −2.94004 −0.240858 −0.120429 0.992722i \(-0.538427\pi\)
−0.120429 + 0.992722i \(0.538427\pi\)
\(150\) 1.44765 0.0356331i 0.118200 0.00290943i
\(151\) 10.8414i 0.882262i 0.897443 + 0.441131i \(0.145423\pi\)
−0.897443 + 0.441131i \(0.854577\pi\)
\(152\) −1.79299 + 1.79299i −0.145431 + 0.145431i
\(153\) 1.39042 0.112409
\(154\) 4.11600 0.331677
\(155\) 17.8835 0.220063i 1.43644 0.0176759i
\(156\) −0.0575215 0.0575215i −0.00460540 0.00460540i
\(157\) 7.88212i 0.629061i 0.949247 + 0.314531i \(0.101847\pi\)
−0.949247 + 0.314531i \(0.898153\pi\)
\(158\) 0.0428537 0.0428537i 0.00340926 0.00340926i
\(159\) −1.63799 + 1.63799i −0.129901 + 0.129901i
\(160\) −1.56156 + 1.60047i −0.123452 + 0.126529i
\(161\) −4.91915 −0.387683
\(162\) 8.25213 0.648349
\(163\) −22.3121 −1.74762 −0.873811 0.486266i \(-0.838359\pi\)
−0.873811 + 0.486266i \(0.838359\pi\)
\(164\) 6.47983 6.47983i 0.505990 0.505990i
\(165\) −0.0366665 2.97971i −0.00285448 0.231970i
\(166\) −1.00000 1.00000i −0.0776151 0.0776151i
\(167\) −7.60605 7.60605i −0.588574 0.588574i 0.348671 0.937245i \(-0.386633\pi\)
−0.937245 + 0.348671i \(0.886633\pi\)
\(168\) 0.183184 + 0.183184i 0.0141330 + 0.0141330i
\(169\) 12.9211i 0.993931i
\(170\) −0.744561 + 0.763113i −0.0571052 + 0.0585281i
\(171\) −5.22859 + 5.22859i −0.399840 + 0.399840i
\(172\) 8.57318i 0.653699i
\(173\) 2.00873 2.00873i 0.152721 0.152721i −0.626611 0.779332i \(-0.715558\pi\)
0.779332 + 0.626611i \(0.215558\pi\)
\(174\) −0.265920 1.53680i −0.0201594 0.116505i
\(175\) −3.23938 3.08374i −0.244874 0.233109i
\(176\) 3.25374 + 3.25374i 0.245260 + 0.245260i
\(177\) −2.86506 −0.215351
\(178\) −5.88779 + 5.88779i −0.441308 + 0.441308i
\(179\) 23.6028 1.76415 0.882077 0.471106i \(-0.156145\pi\)
0.882077 + 0.471106i \(0.156145\pi\)
\(180\) −4.55371 + 4.66718i −0.339414 + 0.347871i
\(181\) 20.7780 1.54442 0.772210 0.635368i \(-0.219152\pi\)
0.772210 + 0.635368i \(0.219152\pi\)
\(182\) 0.251245i 0.0186235i
\(183\) −1.12622 + 1.12622i −0.0832524 + 0.0832524i
\(184\) −3.88864 3.88864i −0.286674 0.286674i
\(185\) 10.5396 + 10.2834i 0.774886 + 0.756048i
\(186\) 1.63799 1.63799i 0.120103 0.120103i
\(187\) 1.55140 + 1.55140i 0.113449 + 0.113449i
\(188\) 1.36150i 0.0992974i
\(189\) 1.08374 + 1.08374i 0.0788304 + 0.0788304i
\(190\) −0.0697654 5.66951i −0.00506132 0.411310i
\(191\) 6.90356 + 6.90356i 0.499524 + 0.499524i 0.911290 0.411766i \(-0.135088\pi\)
−0.411766 + 0.911290i \(0.635088\pi\)
\(192\) 0.289618i 0.0209013i
\(193\) 24.3879i 1.75548i −0.479135 0.877741i \(-0.659050\pi\)
0.479135 0.877741i \(-0.340950\pi\)
\(194\) 11.8026i 0.847380i
\(195\) 0.181885 0.00223816i 0.0130251 0.000160278i
\(196\) 6.19988i 0.442848i
\(197\) 2.47207 2.47207i 0.176128 0.176128i −0.613538 0.789666i \(-0.710254\pi\)
0.789666 + 0.613538i \(0.210254\pi\)
\(198\) 9.48830 + 9.48830i 0.674304 + 0.674304i
\(199\) 11.3378i 0.803712i −0.915703 0.401856i \(-0.868365\pi\)
0.915703 0.401856i \(-0.131635\pi\)
\(200\) −0.123035 4.99849i −0.00869989 0.353446i
\(201\) 2.27548 2.27548i 0.160500 0.160500i
\(202\) −0.605077 0.605077i −0.0425731 0.0425731i
\(203\) −2.77551 + 3.93701i −0.194803 + 0.276324i
\(204\) 0.138091i 0.00966830i
\(205\) 0.252131 + 20.4895i 0.0176096 + 1.43105i
\(206\) −10.9674 10.9674i −0.764133 0.764133i
\(207\) −11.3397 11.3397i −0.788166 0.788166i
\(208\) −0.198612 + 0.198612i −0.0137713 + 0.0137713i
\(209\) −11.6679 −0.807083
\(210\) −0.579235 + 0.00712770i −0.0399710 + 0.000491858i
\(211\) −11.8850 + 11.8850i −0.818199 + 0.818199i −0.985847 0.167648i \(-0.946383\pi\)
0.167648 + 0.985847i \(0.446383\pi\)
\(212\) 5.65569 + 5.65569i 0.388435 + 0.388435i
\(213\) 2.50099 0.171365
\(214\) 0.674656 0.674656i 0.0461185 0.0461185i
\(215\) 13.7211 + 13.3876i 0.935775 + 0.913024i
\(216\) 1.71341i 0.116583i
\(217\) −7.15449 −0.485678
\(218\) 10.4345 0.706715
\(219\) 2.47932i 0.167537i
\(220\) −10.2884 + 0.126603i −0.693647 + 0.00853558i
\(221\) −0.0946990 + 0.0946990i −0.00637014 + 0.00637014i
\(222\) 1.90722 0.128004
\(223\) 10.2691 + 10.2691i 0.687668 + 0.687668i 0.961716 0.274048i \(-0.0883628\pi\)
−0.274048 + 0.961716i \(0.588363\pi\)
\(224\) 0.632503 0.632503i 0.0422609 0.0422609i
\(225\) −0.358785 14.5762i −0.0239190 0.971746i
\(226\) 3.11631 0.207294
\(227\) −11.4326 + 11.4326i −0.758806 + 0.758806i −0.976105 0.217299i \(-0.930275\pi\)
0.217299 + 0.976105i \(0.430275\pi\)
\(228\) −0.519282 0.519282i −0.0343903 0.0343903i
\(229\) −11.1122 11.1122i −0.734316 0.734316i 0.237156 0.971472i \(-0.423785\pi\)
−0.971472 + 0.237156i \(0.923785\pi\)
\(230\) 12.2960 0.151307i 0.810775 0.00997689i
\(231\) 1.19207i 0.0784322i
\(232\) −5.30631 + 0.918177i −0.348376 + 0.0602813i
\(233\) 14.5816 + 14.5816i 0.955273 + 0.955273i 0.999042 0.0437692i \(-0.0139366\pi\)
−0.0437692 + 0.999042i \(0.513937\pi\)
\(234\) −0.579176 + 0.579176i −0.0378619 + 0.0378619i
\(235\) −2.17904 2.12607i −0.142145 0.138689i
\(236\) 9.89258i 0.643952i
\(237\) 0.0124112 + 0.0124112i 0.000806194 + 0.000806194i
\(238\) 0.301580 0.301580i 0.0195486 0.0195486i
\(239\) 1.20088i 0.0776785i −0.999245 0.0388392i \(-0.987634\pi\)
0.999245 0.0388392i \(-0.0123660\pi\)
\(240\) −0.463525 0.452256i −0.0299204 0.0291930i
\(241\) 22.6204i 1.45711i −0.684987 0.728555i \(-0.740192\pi\)
0.684987 0.728555i \(-0.259808\pi\)
\(242\) 10.1736i 0.653985i
\(243\) 7.53020i 0.483063i
\(244\) 3.88864 + 3.88864i 0.248944 + 0.248944i
\(245\) −9.92275 9.68151i −0.633941 0.618529i
\(246\) 1.87667 + 1.87667i 0.119652 + 0.119652i
\(247\) 0.712219i 0.0453174i
\(248\) −5.65569 5.65569i −0.359137 0.359137i
\(249\) 0.289618 0.289618i 0.0183538 0.0183538i
\(250\) 8.19207 + 7.60854i 0.518112 + 0.481206i
\(251\) −4.26661 4.26661i −0.269306 0.269306i 0.559514 0.828821i \(-0.310988\pi\)
−0.828821 + 0.559514i \(0.810988\pi\)
\(252\) 1.84446 1.84446i 0.116190 0.116190i
\(253\) 25.3052i 1.59092i
\(254\) −2.18915 −0.137359
\(255\) −0.221011 0.215638i −0.0138402 0.0135038i
\(256\) 1.00000 0.0625000
\(257\) 0.892241 0.892241i 0.0556564 0.0556564i −0.678731 0.734387i \(-0.737470\pi\)
0.734387 + 0.678731i \(0.237470\pi\)
\(258\) 2.48294 0.154581
\(259\) −4.16522 4.16522i −0.258814 0.258814i
\(260\) −0.00772799 0.628018i −0.000479270 0.0389480i
\(261\) −15.4739 + 2.67752i −0.957807 + 0.165734i
\(262\) −4.28463 + 4.28463i −0.264705 + 0.264705i
\(263\) 20.3198i 1.25297i 0.779433 + 0.626486i \(0.215507\pi\)
−0.779433 + 0.626486i \(0.784493\pi\)
\(264\) −0.942340 + 0.942340i −0.0579970 + 0.0579970i
\(265\) −17.8835 + 0.220063i −1.09858 + 0.0135184i
\(266\) 2.26815i 0.139069i
\(267\) −1.70521 1.70521i −0.104357 0.104357i
\(268\) −7.85685 7.85685i −0.479934 0.479934i
\(269\) −20.2449 20.2449i −1.23436 1.23436i −0.962274 0.272081i \(-0.912288\pi\)
−0.272081 0.962274i \(-0.587712\pi\)
\(270\) −2.74227 2.67560i −0.166889 0.162832i
\(271\) −3.61114 + 3.61114i −0.219361 + 0.219361i −0.808229 0.588868i \(-0.799574\pi\)
0.588868 + 0.808229i \(0.299574\pi\)
\(272\) 0.476804 0.0289105
\(273\) −0.0727650 −0.00440394
\(274\) 14.1260 0.853385
\(275\) 15.8634 16.6641i 0.956601 1.00488i
\(276\) 1.12622 1.12622i 0.0677903 0.0677903i
\(277\) 1.15866 1.15866i 0.0696169 0.0696169i −0.671441 0.741058i \(-0.734324\pi\)
0.741058 + 0.671441i \(0.234324\pi\)
\(278\) 2.52250i 0.151290i
\(279\) −16.4927 16.4927i −0.987392 0.987392i
\(280\) 0.0246107 + 2.00000i 0.00147077 + 0.119523i
\(281\) −8.88875 −0.530258 −0.265129 0.964213i \(-0.585415\pi\)
−0.265129 + 0.964213i \(0.585415\pi\)
\(282\) −0.394314 −0.0234810
\(283\) 22.9390 22.9390i 1.36358 1.36358i 0.494284 0.869301i \(-0.335430\pi\)
0.869301 0.494284i \(-0.164570\pi\)
\(284\) 8.63547i 0.512421i
\(285\) 1.64199 0.0202053i 0.0972631 0.00119686i
\(286\) −1.29246 −0.0764248
\(287\) 8.19704i 0.483856i
\(288\) 2.91612 0.171834
\(289\) −16.7727 −0.986627
\(290\) 6.81663 9.92641i 0.400286 0.582899i
\(291\) −3.41825 −0.200382
\(292\) −8.56068 −0.500976
\(293\) 15.7998i 0.923035i 0.887131 + 0.461517i \(0.152695\pi\)
−0.887131 + 0.461517i \(0.847305\pi\)
\(294\) −1.79559 −0.104721
\(295\) −15.8328 15.4479i −0.921822 0.899411i
\(296\) 6.58530i 0.382763i
\(297\) −5.57500 + 5.57500i −0.323494 + 0.323494i
\(298\) −2.94004 −0.170312
\(299\) 1.54466 0.0893299
\(300\) 1.44765 0.0356331i 0.0835801 0.00205728i
\(301\) −5.42256 5.42256i −0.312551 0.312551i
\(302\) 10.8414i 0.623853i
\(303\) 0.175241 0.175241i 0.0100673 0.0100673i
\(304\) −1.79299 + 1.79299i −0.102835 + 0.102835i
\(305\) −12.2960 + 0.151307i −0.704068 + 0.00866381i
\(306\) 1.39042 0.0794850
\(307\) −15.9584 −0.910794 −0.455397 0.890289i \(-0.650503\pi\)
−0.455397 + 0.890289i \(0.650503\pi\)
\(308\) 4.11600 0.234531
\(309\) 3.17634 3.17634i 0.180696 0.180696i
\(310\) 17.8835 0.220063i 1.01572 0.0124988i
\(311\) −5.09331 5.09331i −0.288815 0.288815i 0.547797 0.836612i \(-0.315467\pi\)
−0.836612 + 0.547797i \(0.815467\pi\)
\(312\) −0.0575215 0.0575215i −0.00325651 0.00325651i
\(313\) −9.62217 9.62217i −0.543877 0.543877i 0.380786 0.924663i \(-0.375653\pi\)
−0.924663 + 0.380786i \(0.875653\pi\)
\(314\) 7.88212i 0.444814i
\(315\) 0.0717679 + 5.83224i 0.00404366 + 0.328610i
\(316\) 0.0428537 0.0428537i 0.00241071 0.00241071i
\(317\) 22.6925i 1.27454i 0.770641 + 0.637269i \(0.219936\pi\)
−0.770641 + 0.637269i \(0.780064\pi\)
\(318\) −1.63799 + 1.63799i −0.0918538 + 0.0918538i
\(319\) −20.2529 14.2778i −1.13394 0.799406i
\(320\) −1.56156 + 1.60047i −0.0872941 + 0.0894692i
\(321\) 0.195392 + 0.195392i 0.0109057 + 0.0109057i
\(322\) −4.91915 −0.274134
\(323\) −0.854907 + 0.854907i −0.0475683 + 0.0475683i
\(324\) 8.25213 0.458452
\(325\) 1.01719 + 0.968322i 0.0564238 + 0.0537128i
\(326\) −22.3121 −1.23576
\(327\) 3.02202i 0.167118i
\(328\) 6.47983 6.47983i 0.357789 0.357789i
\(329\) 0.861152 + 0.861152i 0.0474768 + 0.0474768i
\(330\) −0.0366665 2.97971i −0.00201842 0.164028i
\(331\) 3.40255 3.40255i 0.187021 0.187021i −0.607386 0.794407i \(-0.707782\pi\)
0.794407 + 0.607386i \(0.207782\pi\)
\(332\) −1.00000 1.00000i −0.0548821 0.0548821i
\(333\) 19.2035i 1.05235i
\(334\) −7.60605 7.60605i −0.416185 0.416185i
\(335\) 24.8437 0.305710i 1.35735 0.0167027i
\(336\) 0.183184 + 0.183184i 0.00999351 + 0.00999351i
\(337\) 20.6557i 1.12519i 0.826734 + 0.562593i \(0.190196\pi\)
−0.826734 + 0.562593i \(0.809804\pi\)
\(338\) 12.9211i 0.702816i
\(339\) 0.902538i 0.0490191i
\(340\) −0.744561 + 0.763113i −0.0403795 + 0.0413856i
\(341\) 36.8043i 1.99306i
\(342\) −5.22859 + 5.22859i −0.282730 + 0.282730i
\(343\) 8.34897 + 8.34897i 0.450802 + 0.450802i
\(344\) 8.57318i 0.462235i
\(345\) 0.0438212 + 3.56114i 0.00235925 + 0.191725i
\(346\) 2.00873 2.00873i 0.107990 0.107990i
\(347\) 23.4372 + 23.4372i 1.25818 + 1.25818i 0.951963 + 0.306213i \(0.0990621\pi\)
0.306213 + 0.951963i \(0.400938\pi\)
\(348\) −0.265920 1.53680i −0.0142548 0.0823812i
\(349\) 25.2886i 1.35367i 0.736136 + 0.676834i \(0.236649\pi\)
−0.736136 + 0.676834i \(0.763351\pi\)
\(350\) −3.23938 3.08374i −0.173152 0.164833i
\(351\) −0.340304 0.340304i −0.0181641 0.0181641i
\(352\) 3.25374 + 3.25374i 0.173425 + 0.173425i
\(353\) −6.88469 + 6.88469i −0.366435 + 0.366435i −0.866175 0.499740i \(-0.833429\pi\)
0.499740 + 0.866175i \(0.333429\pi\)
\(354\) −2.86506 −0.152276
\(355\) 13.8209 + 13.4848i 0.733535 + 0.715701i
\(356\) −5.88779 + 5.88779i −0.312052 + 0.312052i
\(357\) 0.0873430 + 0.0873430i 0.00462268 + 0.00462268i
\(358\) 23.6028 1.24745
\(359\) −22.2072 + 22.2072i −1.17205 + 1.17205i −0.190330 + 0.981720i \(0.560956\pi\)
−0.981720 + 0.190330i \(0.939044\pi\)
\(360\) −4.55371 + 4.66718i −0.240002 + 0.245982i
\(361\) 12.5703i 0.661597i
\(362\) 20.7780 1.09207
\(363\) −2.94646 −0.154649
\(364\) 0.251245i 0.0131688i
\(365\) 13.3681 13.7012i 0.699716 0.717151i
\(366\) −1.12622 + 1.12622i −0.0588683 + 0.0588683i
\(367\) 1.97873 0.103289 0.0516445 0.998666i \(-0.483554\pi\)
0.0516445 + 0.998666i \(0.483554\pi\)
\(368\) −3.88864 3.88864i −0.202709 0.202709i
\(369\) 18.8960 18.8960i 0.983686 0.983686i
\(370\) 10.5396 + 10.2834i 0.547927 + 0.534607i
\(371\) 7.15449 0.371443
\(372\) 1.63799 1.63799i 0.0849257 0.0849257i
\(373\) 19.0279 + 19.0279i 0.985225 + 0.985225i 0.999892 0.0146674i \(-0.00466895\pi\)
−0.0146674 + 0.999892i \(0.504669\pi\)
\(374\) 1.55140 + 1.55140i 0.0802208 + 0.0802208i
\(375\) −2.20357 + 2.37257i −0.113792 + 0.122519i
\(376\) 1.36150i 0.0702139i
\(377\) 0.871535 1.23626i 0.0448864 0.0636705i
\(378\) 1.08374 + 1.08374i 0.0557415 + 0.0557415i
\(379\) 10.8552 10.8552i 0.557595 0.557595i −0.371027 0.928622i \(-0.620994\pi\)
0.928622 + 0.371027i \(0.120994\pi\)
\(380\) −0.0697654 5.66951i −0.00357889 0.290840i
\(381\) 0.634016i 0.0324816i
\(382\) 6.90356 + 6.90356i 0.353217 + 0.353217i
\(383\) −22.6747 + 22.6747i −1.15862 + 1.15862i −0.173848 + 0.984772i \(0.555620\pi\)
−0.984772 + 0.173848i \(0.944380\pi\)
\(384\) 0.289618i 0.0147795i
\(385\) −6.42740 + 6.58755i −0.327571 + 0.335733i
\(386\) 24.3879i 1.24131i
\(387\) 25.0004i 1.27084i
\(388\) 11.8026i 0.599188i
\(389\) −8.76850 8.76850i −0.444581 0.444581i 0.448967 0.893548i \(-0.351792\pi\)
−0.893548 + 0.448967i \(0.851792\pi\)
\(390\) 0.181885 0.00223816i 0.00921011 0.000113334i
\(391\) −1.85412 1.85412i −0.0937668 0.0937668i
\(392\) 6.19988i 0.313141i
\(393\) −1.24090 1.24090i −0.0625953 0.0625953i
\(394\) 2.47207 2.47207i 0.124541 0.124541i
\(395\) 0.00166744 + 0.135505i 8.38980e−5 + 0.00681801i
\(396\) 9.48830 + 9.48830i 0.476805 + 0.476805i
\(397\) −18.3875 + 18.3875i −0.922841 + 0.922841i −0.997229 0.0743886i \(-0.976299\pi\)
0.0743886 + 0.997229i \(0.476299\pi\)
\(398\) 11.3378i 0.568310i
\(399\) −0.656896 −0.0328859
\(400\) −0.123035 4.99849i −0.00615175 0.249924i
\(401\) 5.87124 0.293196 0.146598 0.989196i \(-0.453168\pi\)
0.146598 + 0.989196i \(0.453168\pi\)
\(402\) 2.27548 2.27548i 0.113491 0.113491i
\(403\) 2.24657 0.111910
\(404\) −0.605077 0.605077i −0.0301037 0.0301037i
\(405\) −12.8862 + 13.2073i −0.640322 + 0.656277i
\(406\) −2.77551 + 3.93701i −0.137746 + 0.195391i
\(407\) 21.4268 21.4268i 1.06209 1.06209i
\(408\) 0.138091i 0.00683652i
\(409\) 11.7879 11.7879i 0.582876 0.582876i −0.352816 0.935693i \(-0.614776\pi\)
0.935693 + 0.352816i \(0.114776\pi\)
\(410\) 0.252131 + 20.4895i 0.0124518 + 1.01190i
\(411\) 4.09115i 0.201802i
\(412\) −10.9674 10.9674i −0.540324 0.540324i
\(413\) 6.25709 + 6.25709i 0.307891 + 0.307891i
\(414\) −11.3397 11.3397i −0.557318 0.557318i
\(415\) 3.16204 0.0389100i 0.155218 0.00191002i
\(416\) −0.198612 + 0.198612i −0.00973774 + 0.00973774i
\(417\) 0.730562 0.0357758
\(418\) −11.6679 −0.570694
\(419\) 18.7077 0.913929 0.456964 0.889485i \(-0.348937\pi\)
0.456964 + 0.889485i \(0.348937\pi\)
\(420\) −0.579235 + 0.00712770i −0.0282638 + 0.000347796i
\(421\) −4.16276 + 4.16276i −0.202880 + 0.202880i −0.801233 0.598353i \(-0.795822\pi\)
0.598353 + 0.801233i \(0.295822\pi\)
\(422\) −11.8850 + 11.8850i −0.578554 + 0.578554i
\(423\) 3.97029i 0.193042i
\(424\) 5.65569 + 5.65569i 0.274665 + 0.274665i
\(425\) −0.0586636 2.38330i −0.00284560 0.115607i
\(426\) 2.50099 0.121173
\(427\) 4.91915 0.238054
\(428\) 0.674656 0.674656i 0.0326107 0.0326107i
\(429\) 0.374320i 0.0180723i
\(430\) 13.7211 + 13.3876i 0.661693 + 0.645606i
\(431\) 0.757725 0.0364983 0.0182492 0.999833i \(-0.494191\pi\)
0.0182492 + 0.999833i \(0.494191\pi\)
\(432\) 1.71341i 0.0824366i
\(433\) 10.8919 0.523431 0.261716 0.965145i \(-0.415712\pi\)
0.261716 + 0.965145i \(0.415712\pi\)
\(434\) −7.15449 −0.343427
\(435\) 2.87486 + 1.97422i 0.137839 + 0.0946564i
\(436\) 10.4345 0.499723
\(437\) 13.9446 0.667061
\(438\) 2.47932i 0.118467i
\(439\) 16.0340 0.765261 0.382631 0.923901i \(-0.375018\pi\)
0.382631 + 0.923901i \(0.375018\pi\)
\(440\) −10.2884 + 0.126603i −0.490482 + 0.00603556i
\(441\) 18.0796i 0.860933i
\(442\) −0.0946990 + 0.0946990i −0.00450437 + 0.00450437i
\(443\) −21.8127 −1.03635 −0.518176 0.855274i \(-0.673389\pi\)
−0.518176 + 0.855274i \(0.673389\pi\)
\(444\) 1.90722 0.0905125
\(445\) −0.229094 18.6174i −0.0108601 0.882550i
\(446\) 10.2691 + 10.2691i 0.486255 + 0.486255i
\(447\) 0.851488i 0.0402740i
\(448\) 0.632503 0.632503i 0.0298830 0.0298830i
\(449\) 11.8820 11.8820i 0.560748 0.560748i −0.368772 0.929520i \(-0.620222\pi\)
0.929520 + 0.368772i \(0.120222\pi\)
\(450\) −0.358785 14.5762i −0.0169133 0.687128i
\(451\) 42.1674 1.98558
\(452\) 3.11631 0.146579
\(453\) −3.13986 −0.147524
\(454\) −11.4326 + 11.4326i −0.536557 + 0.536557i
\(455\) −0.402112 0.392336i −0.0188513 0.0183930i
\(456\) −0.519282 0.519282i −0.0243176 0.0243176i
\(457\) 25.4126 + 25.4126i 1.18875 + 1.18875i 0.977413 + 0.211340i \(0.0677828\pi\)
0.211340 + 0.977413i \(0.432217\pi\)
\(458\) −11.1122 11.1122i −0.519240 0.519240i
\(459\) 0.816963i 0.0381325i
\(460\) 12.2960 0.151307i 0.573305 0.00705473i
\(461\) −26.1001 + 26.1001i −1.21560 + 1.21560i −0.246449 + 0.969156i \(0.579264\pi\)
−0.969156 + 0.246449i \(0.920736\pi\)
\(462\) 1.19207i 0.0554599i
\(463\) 3.00076 3.00076i 0.139457 0.139457i −0.633932 0.773389i \(-0.718560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(464\) −5.30631 + 0.918177i −0.246339 + 0.0426253i
\(465\) 0.0637342 + 5.17938i 0.00295560 + 0.240188i
\(466\) 14.5816 + 14.5816i 0.675480 + 0.675480i
\(467\) 4.86798 0.225263 0.112632 0.993637i \(-0.464072\pi\)
0.112632 + 0.993637i \(0.464072\pi\)
\(468\) −0.579176 + 0.579176i −0.0267724 + 0.0267724i
\(469\) −9.93897 −0.458939
\(470\) −2.17904 2.12607i −0.100512 0.0980681i
\(471\) −2.28280 −0.105186
\(472\) 9.89258i 0.455343i
\(473\) 27.8949 27.8949i 1.28261 1.28261i
\(474\) 0.0124112 + 0.0124112i 0.000570065 + 0.000570065i
\(475\) 9.18285 + 8.74165i 0.421338 + 0.401094i
\(476\) 0.301580 0.301580i 0.0138229 0.0138229i
\(477\) 16.4927 + 16.4927i 0.755148 + 0.755148i
\(478\) 1.20088i 0.0549270i
\(479\) 4.92833 + 4.92833i 0.225181 + 0.225181i 0.810676 0.585495i \(-0.199100\pi\)
−0.585495 + 0.810676i \(0.699100\pi\)
\(480\) −0.463525 0.452256i −0.0211569 0.0206426i
\(481\) 1.30792 + 1.30792i 0.0596359 + 0.0596359i
\(482\) 22.6204i 1.03033i
\(483\) 1.42467i 0.0648249i
\(484\) 10.1736i 0.462437i
\(485\) −18.8898 18.4306i −0.857743 0.836890i
\(486\) 7.53020i 0.341577i
\(487\) 2.73756 2.73756i 0.124050 0.124050i −0.642356 0.766406i \(-0.722043\pi\)
0.766406 + 0.642356i \(0.222043\pi\)
\(488\) 3.88864 + 3.88864i 0.176030 + 0.176030i
\(489\) 6.46199i 0.292221i
\(490\) −9.92275 9.68151i −0.448264 0.437366i
\(491\) −16.0568 + 16.0568i −0.724631 + 0.724631i −0.969545 0.244914i \(-0.921240\pi\)
0.244914 + 0.969545i \(0.421240\pi\)
\(492\) 1.87667 + 1.87667i 0.0846070 + 0.0846070i
\(493\) −2.53007 + 0.437791i −0.113949 + 0.0197171i
\(494\) 0.712219i 0.0320443i
\(495\) −30.0024 + 0.369190i −1.34851 + 0.0165939i
\(496\) −5.65569 5.65569i −0.253948 0.253948i
\(497\) −5.46197 5.46197i −0.245003 0.245003i
\(498\) 0.289618 0.289618i 0.0129781 0.0129781i
\(499\) 11.0768 0.495867 0.247934 0.968777i \(-0.420249\pi\)
0.247934 + 0.968777i \(0.420249\pi\)
\(500\) 8.19207 + 7.60854i 0.366361 + 0.340264i
\(501\) 2.20285 2.20285i 0.0984159 0.0984159i
\(502\) −4.26661 4.26661i −0.190428 0.190428i
\(503\) 8.08426 0.360459 0.180230 0.983625i \(-0.442316\pi\)
0.180230 + 0.983625i \(0.442316\pi\)
\(504\) 1.84446 1.84446i 0.0821586 0.0821586i
\(505\) 1.91328 0.0235436i 0.0851397 0.00104768i
\(506\) 25.3052i 1.12495i
\(507\) −3.74218 −0.166196
\(508\) −2.18915 −0.0971277
\(509\) 12.9806i 0.575354i −0.957728 0.287677i \(-0.907117\pi\)
0.957728 0.287677i \(-0.0928829\pi\)
\(510\) −0.221011 0.215638i −0.00978653 0.00954860i
\(511\) −5.41466 + 5.41466i −0.239531 + 0.239531i
\(512\) 1.00000 0.0441942
\(513\) −3.07214 3.07214i −0.135638 0.135638i
\(514\) 0.892241 0.892241i 0.0393550 0.0393550i
\(515\) 34.6792 0.426741i 1.52815 0.0188044i
\(516\) 2.48294 0.109305
\(517\) −4.42996 + 4.42996i −0.194829 + 0.194829i
\(518\) −4.16522 4.16522i −0.183009 0.183009i
\(519\) 0.581765 + 0.581765i 0.0255366 + 0.0255366i
\(520\) −0.00772799 0.628018i −0.000338895 0.0275404i
\(521\) 18.4390i 0.807827i −0.914797 0.403914i \(-0.867650\pi\)
0.914797 0.403914i \(-0.132350\pi\)
\(522\) −15.4739 + 2.67752i −0.677272 + 0.117192i
\(523\) 13.6216 + 13.6216i 0.595631 + 0.595631i 0.939147 0.343516i \(-0.111618\pi\)
−0.343516 + 0.939147i \(0.611618\pi\)
\(524\) −4.28463 + 4.28463i −0.187175 + 0.187175i
\(525\) 0.893105 0.938181i 0.0389783 0.0409456i
\(526\) 20.3198i 0.885984i
\(527\) −2.69666 2.69666i −0.117468 0.117468i
\(528\) −0.942340 + 0.942340i −0.0410101 + 0.0410101i
\(529\) 7.24299i 0.314913i
\(530\) −17.8835 + 0.220063i −0.776810 + 0.00955894i
\(531\) 28.8480i 1.25190i
\(532\) 2.26815i 0.0983367i
\(533\) 2.57394i 0.111490i
\(534\) −1.70521 1.70521i −0.0737915 0.0737915i
\(535\) 0.0262509 + 2.13329i 0.00113493 + 0.0922301i
\(536\) −7.85685 7.85685i −0.339364 0.339364i
\(537\) 6.83578i 0.294986i
\(538\) −20.2449 20.2449i −0.872821 0.872821i
\(539\) −20.1728 + 20.1728i −0.868903 + 0.868903i
\(540\) −2.74227 2.67560i −0.118009 0.115140i
\(541\) −16.5747 16.5747i −0.712602 0.712602i 0.254477 0.967079i \(-0.418097\pi\)
−0.967079 + 0.254477i \(0.918097\pi\)
\(542\) −3.61114 + 3.61114i −0.155112 + 0.155112i
\(543\) 6.01768i 0.258244i
\(544\) 0.476804 0.0204428
\(545\) −16.2942 + 16.7002i −0.697965 + 0.715357i
\(546\) −0.0727650 −0.00311406
\(547\) −8.23169 + 8.23169i −0.351961 + 0.351961i −0.860839 0.508877i \(-0.830061\pi\)
0.508877 + 0.860839i \(0.330061\pi\)
\(548\) 14.1260 0.603435
\(549\) 11.3397 + 11.3397i 0.483968 + 0.483968i
\(550\) 15.8634 16.6641i 0.676419 0.710559i
\(551\) 7.86790 11.1605i 0.335184 0.475452i
\(552\) 1.12622 1.12622i 0.0479350 0.0479350i
\(553\) 0.0542103i 0.00230526i
\(554\) 1.15866 1.15866i 0.0492266 0.0492266i
\(555\) −2.97824 + 3.05245i −0.126419 + 0.129569i
\(556\) 2.52250i 0.106978i
\(557\) −23.6717 23.6717i −1.00300 1.00300i −0.999995 0.00300753i \(-0.999043\pi\)
−0.00300753 0.999995i \(-0.500957\pi\)
\(558\) −16.4927 16.4927i −0.698191 0.698191i
\(559\) 1.70273 + 1.70273i 0.0720180 + 0.0720180i
\(560\) 0.0246107 + 2.00000i 0.00103999 + 0.0845154i
\(561\) −0.449312 + 0.449312i −0.0189700 + 0.0189700i
\(562\) −8.88875 −0.374949
\(563\) 38.2332 1.61134 0.805670 0.592365i \(-0.201806\pi\)
0.805670 + 0.592365i \(0.201806\pi\)
\(564\) −0.394314 −0.0166036
\(565\) −4.86632 + 4.98757i −0.204728 + 0.209829i
\(566\) 22.9390 22.9390i 0.964200 0.964200i
\(567\) 5.21950 5.21950i 0.219198 0.219198i
\(568\) 8.63547i 0.362336i
\(569\) −10.6612 10.6612i −0.446939 0.446939i 0.447397 0.894336i \(-0.352351\pi\)
−0.894336 + 0.447397i \(0.852351\pi\)
\(570\) 1.64199 0.0202053i 0.0687754 0.000846307i
\(571\) −12.7145 −0.532085 −0.266042 0.963961i \(-0.585716\pi\)
−0.266042 + 0.963961i \(0.585716\pi\)
\(572\) −1.29246 −0.0540405
\(573\) −1.99939 + 1.99939i −0.0835258 + 0.0835258i
\(574\) 8.19704i 0.342138i
\(575\) −18.9589 + 19.9157i −0.790639 + 0.830544i
\(576\) 2.91612 0.121505
\(577\) 24.2872i 1.01109i −0.862800 0.505545i \(-0.831291\pi\)
0.862800 0.505545i \(-0.168709\pi\)
\(578\) −16.7727 −0.697651
\(579\) 7.06318 0.293536
\(580\) 6.81663 9.92641i 0.283045 0.412172i
\(581\) −1.26501 −0.0524813
\(582\) −3.41825 −0.141691
\(583\) 36.8043i 1.52428i
\(584\) −8.56068 −0.354244
\(585\) −0.0225358 1.83138i −0.000931739 0.0757181i
\(586\) 15.7998i 0.652684i
\(587\) 5.49283 5.49283i 0.226714 0.226714i −0.584605 0.811318i \(-0.698750\pi\)
0.811318 + 0.584605i \(0.198750\pi\)
\(588\) −1.79559 −0.0740490
\(589\) 20.2812 0.835674
\(590\) −15.8328 15.4479i −0.651827 0.635980i
\(591\) 0.715956 + 0.715956i 0.0294505 + 0.0294505i
\(592\) 6.58530i 0.270654i
\(593\) −28.1924 + 28.1924i −1.15772 + 1.15772i −0.172761 + 0.984964i \(0.555269\pi\)
−0.984964 + 0.172761i \(0.944731\pi\)
\(594\) −5.57500 + 5.57500i −0.228745 + 0.228745i
\(595\) 0.0117345 + 0.953609i 0.000481068 + 0.0390941i
\(596\) −2.94004 −0.120429
\(597\) 3.28361 0.134389
\(598\) 1.54466 0.0631658
\(599\) 20.0950 20.0950i 0.821059 0.821059i −0.165201 0.986260i \(-0.552827\pi\)
0.986260 + 0.165201i \(0.0528271\pi\)
\(600\) 1.44765 0.0356331i 0.0591000 0.00145472i
\(601\) −2.21091 2.21091i −0.0901848 0.0901848i 0.660575 0.750760i \(-0.270313\pi\)
−0.750760 + 0.660575i \(0.770313\pi\)
\(602\) −5.42256 5.42256i −0.221007 0.221007i
\(603\) −22.9115 22.9115i −0.933030 0.933030i
\(604\) 10.8414i 0.441131i
\(605\) −16.2826 15.8868i −0.661982 0.645889i
\(606\) 0.175241 0.175241i 0.00711868 0.00711868i
\(607\) 37.1113i 1.50630i −0.657849 0.753150i \(-0.728533\pi\)
0.657849 0.753150i \(-0.271467\pi\)
\(608\) −1.79299 + 1.79299i −0.0727155 + 0.0727155i
\(609\) −1.14023 0.803837i −0.0462043 0.0325731i
\(610\) −12.2960 + 0.151307i −0.497851 + 0.00612624i
\(611\) −0.270409 0.270409i −0.0109396 0.0109396i
\(612\) 1.39042 0.0562044
\(613\) 20.5386 20.5386i 0.829547 0.829547i −0.157907 0.987454i \(-0.550475\pi\)
0.987454 + 0.157907i \(0.0504745\pi\)
\(614\) −15.9584 −0.644028
\(615\) −5.93411 + 0.0730214i −0.239287 + 0.00294451i
\(616\) 4.11600 0.165838
\(617\) 1.48087i 0.0596176i −0.999556 0.0298088i \(-0.990510\pi\)
0.999556 0.0298088i \(-0.00948984\pi\)
\(618\) 3.17634 3.17634i 0.127771 0.127771i
\(619\) 31.9416 + 31.9416i 1.28384 + 1.28384i 0.938463 + 0.345380i \(0.112250\pi\)
0.345380 + 0.938463i \(0.387750\pi\)
\(620\) 17.8835 0.220063i 0.718219 0.00883795i
\(621\) 6.66284 6.66284i 0.267371 0.267371i
\(622\) −5.09331 5.09331i −0.204223 0.204223i
\(623\) 7.44809i 0.298402i
\(624\) −0.0575215 0.0575215i −0.00230270 0.00230270i
\(625\) −24.9697 + 1.22998i −0.998789 + 0.0491991i
\(626\) −9.62217 9.62217i −0.384579 0.384579i
\(627\) 3.37922i 0.134953i
\(628\) 7.88212i 0.314531i
\(629\) 3.13990i 0.125196i
\(630\) 0.0717679 + 5.83224i 0.00285930 + 0.232362i
\(631\) 32.1454i 1.27969i −0.768505 0.639844i \(-0.778999\pi\)
0.768505 0.639844i \(-0.221001\pi\)
\(632\) 0.0428537 0.0428537i 0.00170463 0.00170463i
\(633\) −3.44211 3.44211i −0.136812 0.136812i
\(634\) 22.6925i 0.901235i
\(635\) 3.41849 3.50367i 0.135659 0.139039i
\(636\) −1.63799 + 1.63799i −0.0649505 + 0.0649505i
\(637\) −1.23137 1.23137i −0.0487886 0.0487886i
\(638\) −20.2529 14.2778i −0.801818 0.565265i
\(639\) 25.1821i 0.996188i
\(640\) −1.56156 + 1.60047i −0.0617262 + 0.0632643i
\(641\) −30.2409 30.2409i −1.19444 1.19444i −0.975806 0.218636i \(-0.929839\pi\)
−0.218636 0.975806i \(-0.570161\pi\)
\(642\) 0.195392 + 0.195392i 0.00771152 + 0.00771152i
\(643\) −7.79835 + 7.79835i −0.307537 + 0.307537i −0.843953 0.536417i \(-0.819778\pi\)
0.536417 + 0.843953i \(0.319778\pi\)
\(644\) −4.91915 −0.193842
\(645\) −3.87727 + 3.97389i −0.152668 + 0.156472i
\(646\) −0.854907 + 0.854907i −0.0336359 + 0.0336359i
\(647\) −16.6166 16.6166i −0.653268 0.653268i 0.300511 0.953778i \(-0.402843\pi\)
−0.953778 + 0.300511i \(0.902843\pi\)
\(648\) 8.25213 0.324174
\(649\) −32.1879 + 32.1879i −1.26348 + 1.26348i
\(650\) 1.01719 + 0.968322i 0.0398977 + 0.0379807i
\(651\) 2.07207i 0.0812107i
\(652\) −22.3121 −0.873811
\(653\) −45.8616 −1.79470 −0.897352 0.441317i \(-0.854512\pi\)
−0.897352 + 0.441317i \(0.854512\pi\)
\(654\) 3.02202i 0.118170i
\(655\) −0.166715 13.5482i −0.00651410 0.529370i
\(656\) 6.47983 6.47983i 0.252995 0.252995i
\(657\) −24.9640 −0.973938
\(658\) 0.861152 + 0.861152i 0.0335712 + 0.0335712i
\(659\) −8.87020 + 8.87020i −0.345534 + 0.345534i −0.858443 0.512909i \(-0.828568\pi\)
0.512909 + 0.858443i \(0.328568\pi\)
\(660\) −0.0366665 2.97971i −0.00142724 0.115985i
\(661\) 25.4205 0.988743 0.494371 0.869251i \(-0.335398\pi\)
0.494371 + 0.869251i \(0.335398\pi\)
\(662\) 3.40255 3.40255i 0.132244 0.132244i
\(663\) −0.0274265 0.0274265i −0.00106516 0.00106516i
\(664\) −1.00000 1.00000i −0.0388075 0.0388075i
\(665\) −3.63011 3.54186i −0.140770 0.137347i
\(666\) 19.2035i 0.744121i
\(667\) 24.2048 + 17.0639i 0.937213 + 0.660715i
\(668\) −7.60605 7.60605i −0.294287 0.294287i
\(669\) −2.97410 + 2.97410i −0.114985 + 0.114985i
\(670\) 24.8437 0.305710i 0.959795 0.0118106i
\(671\) 25.3052i 0.976897i
\(672\) 0.183184 + 0.183184i 0.00706648 + 0.00706648i
\(673\) 28.6125 28.6125i 1.10293 1.10293i 0.108874 0.994056i \(-0.465275\pi\)
0.994056 0.108874i \(-0.0347246\pi\)
\(674\) 20.6557i 0.795626i
\(675\) 8.56447 0.210810i 0.329647 0.00811407i
\(676\) 12.9211i 0.496966i
\(677\) 1.01813i 0.0391300i −0.999809 0.0195650i \(-0.993772\pi\)
0.999809 0.0195650i \(-0.00622813\pi\)
\(678\) 0.902538i 0.0346618i
\(679\) 7.46521 + 7.46521i 0.286489 + 0.286489i
\(680\) −0.744561 + 0.763113i −0.0285526 + 0.0292640i
\(681\) −3.31107 3.31107i −0.126881 0.126881i
\(682\) 36.8043i 1.40931i
\(683\) −13.6805 13.6805i −0.523470 0.523470i 0.395147 0.918618i \(-0.370694\pi\)
−0.918618 + 0.395147i \(0.870694\pi\)
\(684\) −5.22859 + 5.22859i −0.199920 + 0.199920i
\(685\) −22.0587 + 22.6084i −0.842820 + 0.863821i
\(686\) 8.34897 + 8.34897i 0.318765 + 0.318765i
\(687\) 3.21829 3.21829i 0.122786 0.122786i
\(688\) 8.57318i 0.326849i
\(689\) −2.24657 −0.0855877
\(690\) 0.0438212 + 3.56114i 0.00166824 + 0.135570i
\(691\) 39.6924 1.50997 0.754985 0.655742i \(-0.227644\pi\)
0.754985 + 0.655742i \(0.227644\pi\)
\(692\) 2.00873 2.00873i 0.0763606 0.0763606i
\(693\) 12.0028 0.455947
\(694\) 23.4372 + 23.4372i 0.889665 + 0.889665i
\(695\) 4.03720 + 3.93905i 0.153140 + 0.149417i
\(696\) −0.265920 1.53680i −0.0100797 0.0582523i
\(697\) 3.08961 3.08961i 0.117027 0.117027i
\(698\) 25.2886i 0.957188i
\(699\) −4.22309 + 4.22309i −0.159732 + 0.159732i
\(700\) −3.23938 3.08374i −0.122437 0.116554i
\(701\) 22.9970i 0.868586i −0.900772 0.434293i \(-0.856998\pi\)
0.900772 0.434293i \(-0.143002\pi\)
\(702\) −0.340304 0.340304i −0.0128439 0.0128439i
\(703\) 11.8074 + 11.8074i 0.445324 + 0.445324i
\(704\) 3.25374 + 3.25374i 0.122630 + 0.122630i
\(705\) 0.615746 0.631089i 0.0231903 0.0237682i
\(706\) −6.88469 + 6.88469i −0.259109 + 0.259109i
\(707\) −0.765427 −0.0287868
\(708\) −2.86506 −0.107676
\(709\) 33.5904 1.26151 0.630756 0.775981i \(-0.282745\pi\)
0.630756 + 0.775981i \(0.282745\pi\)
\(710\) 13.8209 + 13.4848i 0.518687 + 0.506077i
\(711\) 0.124967 0.124967i 0.00468662 0.00468662i
\(712\) −5.88779 + 5.88779i −0.220654 + 0.220654i
\(713\) 43.9859i 1.64728i
\(714\) 0.0873430 + 0.0873430i 0.00326873 + 0.00326873i
\(715\) 2.01826 2.06855i 0.0754787 0.0773594i
\(716\) 23.6028 0.882077
\(717\) 0.347796 0.0129887
\(718\) −22.2072 + 22.2072i −0.828765 + 0.828765i
\(719\) 5.51139i 0.205540i 0.994705 + 0.102770i \(0.0327706\pi\)
−0.994705 + 0.102770i \(0.967229\pi\)
\(720\) −4.55371 + 4.66718i −0.169707 + 0.173935i
\(721\) −13.8738 −0.516687
\(722\) 12.5703i 0.467820i
\(723\) 6.55127 0.243645
\(724\) 20.7780 0.772210
\(725\) 5.24236 + 26.4106i 0.194696 + 0.980864i
\(726\) −2.94646 −0.109353
\(727\) 5.28028 0.195835 0.0979173 0.995195i \(-0.468782\pi\)
0.0979173 + 0.995195i \(0.468782\pi\)
\(728\) 0.251245i 0.00931177i
\(729\) 22.5755 0.836130
\(730\) 13.3681 13.7012i 0.494774 0.507102i
\(731\) 4.08773i 0.151190i
\(732\) −1.12622 + 1.12622i −0.0416262 + 0.0416262i
\(733\) 24.3366 0.898892 0.449446 0.893308i \(-0.351621\pi\)
0.449446 + 0.893308i \(0.351621\pi\)
\(734\) 1.97873 0.0730363
\(735\) 2.80393 2.87380i 0.103425 0.106002i
\(736\) −3.88864 3.88864i −0.143337 0.143337i
\(737\) 51.1283i 1.88333i
\(738\) 18.8960 18.8960i 0.695571 0.695571i
\(739\) −24.1899 + 24.1899i −0.889839 + 0.889839i −0.994507 0.104669i \(-0.966622\pi\)
0.104669 + 0.994507i \(0.466622\pi\)
\(740\) 10.5396 + 10.2834i 0.387443 + 0.378024i
\(741\) 0.206271 0.00757756
\(742\) 7.15449 0.262650
\(743\) −53.3731 −1.95807 −0.979035 0.203694i \(-0.934705\pi\)
−0.979035 + 0.203694i \(0.934705\pi\)
\(744\) 1.63799 1.63799i 0.0600516 0.0600516i
\(745\) 4.59106 4.70546i 0.168204 0.172395i
\(746\) 19.0279 + 19.0279i 0.696659 + 0.696659i
\(747\) −2.91612 2.91612i −0.106695 0.106695i
\(748\) 1.55140 + 1.55140i 0.0567247 + 0.0567247i
\(749\) 0.853445i 0.0311842i
\(750\) −2.20357 + 2.37257i −0.0804629 + 0.0866340i
\(751\) −34.6175 + 34.6175i −1.26321 + 1.26321i −0.313682 + 0.949528i \(0.601563\pi\)
−0.949528 + 0.313682i \(0.898437\pi\)
\(752\) 1.36150i 0.0496487i
\(753\) 1.23569 1.23569i 0.0450309 0.0450309i
\(754\) 0.871535 1.23626i 0.0317394 0.0450218i
\(755\) −17.3514 16.9296i −0.631482 0.616130i
\(756\) 1.08374 + 1.08374i 0.0394152 + 0.0394152i
\(757\) 33.8919 1.23182 0.615911 0.787815i \(-0.288788\pi\)
0.615911 + 0.787815i \(0.288788\pi\)
\(758\) 10.8552 10.8552i 0.394279 0.394279i
\(759\) 7.32883 0.266020
\(760\) −0.0697654 5.66951i −0.00253066 0.205655i
\(761\) 51.3033 1.85974 0.929871 0.367886i \(-0.119918\pi\)
0.929871 + 0.367886i \(0.119918\pi\)
\(762\) 0.634016i 0.0229680i
\(763\) 6.59987 6.59987i 0.238931 0.238931i
\(764\) 6.90356 + 6.90356i 0.249762 + 0.249762i
\(765\) −2.17123 + 2.22533i −0.0785010 + 0.0804570i
\(766\) −22.6747 + 22.6747i −0.819269 + 0.819269i
\(767\) −1.96478 1.96478i −0.0709442 0.0709442i
\(768\) 0.289618i 0.0104507i
\(769\) −13.2848 13.2848i −0.479063 0.479063i 0.425769 0.904832i \(-0.360004\pi\)
−0.904832 + 0.425769i \(0.860004\pi\)
\(770\) −6.42740 + 6.58755i −0.231627 + 0.237399i
\(771\) 0.258409 + 0.258409i 0.00930636 + 0.00930636i
\(772\) 24.3879i 0.877741i
\(773\) 23.8909i 0.859294i 0.902997 + 0.429647i \(0.141362\pi\)
−0.902997 + 0.429647i \(0.858638\pi\)
\(774\) 25.0004i 0.898622i
\(775\) −27.5741 + 28.9658i −0.990489 + 1.04048i
\(776\) 11.8026i 0.423690i
\(777\) 1.20632 1.20632i 0.0432765 0.0432765i
\(778\) −8.76850 8.76850i −0.314366 0.314366i
\(779\) 23.2366i 0.832538i
\(780\) 0.181885 0.00223816i 0.00651253 8.01391e-5i
\(781\) 28.0976 28.0976i 1.00541 1.00541i
\(782\) −1.85412 1.85412i −0.0663032 0.0663032i
\(783\) −1.57322 9.09190i −0.0562222 0.324918i
\(784\) 6.19988i 0.221424i
\(785\) −12.6151 12.3084i −0.450253 0.439307i
\(786\) −1.24090 1.24090i −0.0442616 0.0442616i
\(787\) −18.3968 18.3968i −0.655776 0.655776i 0.298602 0.954378i \(-0.403480\pi\)
−0.954378 + 0.298602i \(0.903480\pi\)
\(788\) 2.47207 2.47207i 0.0880640 0.0880640i
\(789\) −5.88496 −0.209510
\(790\) 0.00166744 + 0.135505i 5.93249e−5 + 0.00482106i
\(791\) 1.97108 1.97108i 0.0700834 0.0700834i
\(792\) 9.48830 + 9.48830i 0.337152 + 0.337152i
\(793\) −1.54466 −0.0548524
\(794\) −18.3875 + 18.3875i −0.652547 + 0.652547i
\(795\) −0.0637342 5.17938i −0.00226042 0.183694i
\(796\) 11.3378i 0.401856i
\(797\) 16.2394 0.575228 0.287614 0.957746i \(-0.407138\pi\)
0.287614 + 0.957746i \(0.407138\pi\)
\(798\) −0.656896 −0.0232539
\(799\) 0.649168i 0.0229659i
\(800\) −0.123035 4.99849i −0.00434994 0.176723i
\(801\) −17.1695 + 17.1695i −0.606655 + 0.606655i
\(802\) 5.87124 0.207321
\(803\) −27.8542 27.8542i −0.982954 0.982954i
\(804\) 2.27548 2.27548i 0.0802501 0.0802501i
\(805\) 7.68157 7.87298i 0.270740 0.277486i
\(806\) 2.24657 0.0791322
\(807\) 5.86329 5.86329i 0.206397 0.206397i
\(808\) −0.605077 0.605077i −0.0212865 0.0212865i
\(809\) −3.52028 3.52028i −0.123766 0.123766i 0.642510 0.766277i \(-0.277893\pi\)
−0.766277 + 0.642510i \(0.777893\pi\)
\(810\) −12.8862 + 13.2073i −0.452776 + 0.464058i
\(811\) 2.40718i 0.0845277i 0.999106 + 0.0422638i \(0.0134570\pi\)
−0.999106 + 0.0422638i \(0.986543\pi\)
\(812\) −2.77551 + 3.93701i −0.0974013 + 0.138162i
\(813\) −1.04585 1.04585i −0.0366795 0.0366795i
\(814\) 21.4268 21.4268i 0.751010 0.751010i
\(815\) 34.8418 35.7100i 1.22046 1.25087i
\(816\) 0.138091i 0.00483415i
\(817\) 15.3716 + 15.3716i 0.537786 + 0.537786i
\(818\) 11.7879 11.7879i 0.412156 0.412156i
\(819\) 0.732662i 0.0256013i
\(820\) 0.252131 + 20.4895i 0.00880478 + 0.715524i
\(821\) 36.8938i 1.28760i 0.765193 + 0.643801i \(0.222643\pi\)
−0.765193 + 0.643801i \(0.777357\pi\)
\(822\) 4.09115i 0.142695i
\(823\) 21.2449i 0.740550i 0.928922 + 0.370275i \(0.120736\pi\)
−0.928922 + 0.370275i \(0.879264\pi\)
\(824\) −10.9674 10.9674i −0.382066 0.382066i
\(825\) 4.82621 + 4.59433i 0.168027 + 0.159954i
\(826\) 6.25709 + 6.25709i 0.217712 + 0.217712i
\(827\) 17.7303i 0.616542i 0.951299 + 0.308271i \(0.0997504\pi\)
−0.951299 + 0.308271i \(0.900250\pi\)
\(828\) −11.3397 11.3397i −0.394083 0.394083i
\(829\) 16.5417 16.5417i 0.574516 0.574516i −0.358871 0.933387i \(-0.616838\pi\)
0.933387 + 0.358871i \(0.116838\pi\)
\(830\) 3.16204 0.0389100i 0.109756 0.00135059i
\(831\) 0.335567 + 0.335567i 0.0116407 + 0.0116407i
\(832\) −0.198612 + 0.198612i −0.00688563 + 0.00688563i
\(833\) 2.95613i 0.102424i
\(834\) 0.730562 0.0252973
\(835\) 24.0506 0.295952i 0.832306 0.0102418i
\(836\) −11.6679 −0.403541
\(837\) 9.69054 9.69054i 0.334954 0.334954i
\(838\) 18.7077 0.646245
\(839\) −14.1762 14.1762i −0.489416 0.489416i 0.418706 0.908122i \(-0.362484\pi\)
−0.908122 + 0.418706i \(0.862484\pi\)
\(840\) −0.579235 + 0.00712770i −0.0199855 + 0.000245929i
\(841\) 27.3139 9.74427i 0.941859 0.336009i
\(842\) −4.16276 + 4.16276i −0.143458 + 0.143458i
\(843\) 2.57434i 0.0886649i
\(844\) −11.8850 + 11.8850i −0.409100 + 0.409100i
\(845\) −20.6799 20.1771i −0.711410 0.694115i
\(846\) 3.97029i 0.136501i
\(847\) 6.43485 + 6.43485i 0.221104 + 0.221104i
\(848\) 5.65569 + 5.65569i 0.194217 + 0.194217i
\(849\) 6.64355 + 6.64355i 0.228006 + 0.228006i
\(850\) −0.0586636 2.38330i −0.00201215 0.0817465i
\(851\) −25.6078 + 25.6078i −0.877825 + 0.877825i
\(852\) 2.50099 0.0856823
\(853\) −29.1166 −0.996932 −0.498466 0.866909i \(-0.666103\pi\)
−0.498466 + 0.866909i \(0.666103\pi\)
\(854\) 4.91915 0.168330
\(855\) −0.203445 16.5330i −0.00695766 0.565416i
\(856\) 0.674656 0.674656i 0.0230593 0.0230593i
\(857\) 7.30296 7.30296i 0.249464 0.249464i −0.571286 0.820751i \(-0.693555\pi\)
0.820751 + 0.571286i \(0.193555\pi\)
\(858\) 0.374320i 0.0127791i
\(859\) −13.3341 13.3341i −0.454953 0.454953i 0.442042 0.896995i \(-0.354254\pi\)
−0.896995 + 0.442042i \(0.854254\pi\)
\(860\) 13.7211 + 13.3876i 0.467887 + 0.456512i
\(861\) 2.37401 0.0809059
\(862\) 0.757725 0.0258082
\(863\) 9.11507 9.11507i 0.310280 0.310280i −0.534738 0.845018i \(-0.679590\pi\)
0.845018 + 0.534738i \(0.179590\pi\)
\(864\) 1.71341i 0.0582915i
\(865\) 0.0781599 + 6.35170i 0.00265752 + 0.215964i
\(866\) 10.8919 0.370122
\(867\) 4.85766i 0.164975i
\(868\) −7.15449 −0.242839
\(869\) 0.278870 0.00946001
\(870\) 2.87486 + 1.97422i 0.0974670 + 0.0669322i
\(871\) 3.12093 0.105749
\(872\) 10.4345 0.353357
\(873\) 34.4179i 1.16487i
\(874\) 13.9446 0.471683
\(875\) 9.99394 0.369086i 0.337857 0.0124774i
\(876\) 2.47932i 0.0837686i
\(877\) −36.2899 + 36.2899i −1.22542 + 1.22542i −0.259747 + 0.965677i \(0.583639\pi\)
−0.965677 + 0.259747i \(0.916361\pi\)
\(878\) 16.0340 0.541122
\(879\) −4.57590 −0.154341
\(880\) −10.2884 + 0.126603i −0.346823 + 0.00426779i
\(881\) −31.7249 31.7249i −1.06884 1.06884i −0.997448 0.0713908i \(-0.977256\pi\)
−0.0713908 0.997448i \(-0.522744\pi\)
\(882\) 18.0796i 0.608772i
\(883\) −5.18708 + 5.18708i −0.174559 + 0.174559i −0.788979 0.614420i \(-0.789390\pi\)
0.614420 + 0.788979i \(0.289390\pi\)
\(884\) −0.0946990 + 0.0946990i −0.00318507 + 0.00318507i
\(885\) 4.47398 4.58546i 0.150391 0.154139i
\(886\) −21.8127 −0.732812
\(887\) 45.5203 1.52842 0.764211 0.644967i \(-0.223129\pi\)
0.764211 + 0.644967i \(0.223129\pi\)
\(888\) 1.90722 0.0640020
\(889\) −1.38464 + 1.38464i −0.0464394 + 0.0464394i
\(890\) −0.229094 18.6174i −0.00767925 0.624057i
\(891\) 26.8503 + 26.8503i 0.899518 + 0.899518i
\(892\) 10.2691 + 10.2691i 0.343834 + 0.343834i
\(893\) −2.44116 2.44116i −0.0816902 0.0816902i
\(894\) 0.851488i 0.0284780i
\(895\) −36.8572 + 37.7756i −1.23200 + 1.26270i
\(896\) 0.632503 0.632503i 0.0211305 0.0211305i
\(897\) 0.447360i 0.0149369i
\(898\) 11.8820 11.8820i 0.396509 0.396509i
\(899\) 35.2038 + 24.8179i 1.17411 + 0.827725i
\(900\) −0.358785 14.5762i −0.0119595 0.485873i
\(901\) 2.69666 + 2.69666i 0.0898387 + 0.0898387i
\(902\) 42.1674 1.40402
\(903\) 1.57047 1.57047i 0.0522620 0.0522620i
\(904\) 3.11631 0.103647
\(905\) −32.4462 + 33.2547i −1.07855 + 1.10542i
\(906\) −3.13986 −0.104315
\(907\) 52.1407i 1.73130i −0.500646 0.865652i \(-0.666904\pi\)
0.500646 0.865652i \(-0.333096\pi\)
\(908\) −11.4326 + 11.4326i −0.379403 + 0.379403i
\(909\) −1.76448 1.76448i −0.0585241 0.0585241i
\(910\) −0.402112 0.392336i −0.0133299 0.0130058i
\(911\) 22.5889 22.5889i 0.748403 0.748403i −0.225776 0.974179i \(-0.572492\pi\)
0.974179 + 0.225776i \(0.0724918\pi\)
\(912\) −0.519282 0.519282i −0.0171952 0.0171952i
\(913\) 6.50748i 0.215366i
\(914\) 25.4126 + 25.4126i 0.840575 + 0.840575i
\(915\) −0.0438212 3.56114i −0.00144868 0.117728i
\(916\) −11.1122 11.1122i −0.367158 0.367158i
\(917\) 5.42008i 0.178987i
\(918\) 0.816963i 0.0269638i
\(919\) 1.29013i 0.0425574i −0.999774 0.0212787i \(-0.993226\pi\)
0.999774 0.0212787i \(-0.00677373\pi\)
\(920\) 12.2960 0.151307i 0.405388 0.00498844i
\(921\) 4.62183i 0.152295i
\(922\) −26.1001 + 26.1001i −0.859562 + 0.859562i
\(923\) 1.71511 + 1.71511i 0.0564534 + 0.0564534i
\(924\) 1.19207i 0.0392161i
\(925\) −32.9165 + 0.810222i −1.08229 + 0.0266399i
\(926\) 3.00076 3.00076i 0.0986111 0.0986111i
\(927\) −31.9822 31.9822i −1.05043 1.05043i
\(928\) −5.30631 + 0.918177i −0.174188 + 0.0301406i
\(929\) 29.6911i 0.974134i 0.873365 + 0.487067i \(0.161933\pi\)
−0.873365 + 0.487067i \(0.838067\pi\)
\(930\) 0.0637342 + 5.17938i 0.00208993 + 0.169839i
\(931\) −11.1163 11.1163i −0.364323 0.364323i
\(932\) 14.5816 + 14.5816i 0.477636 + 0.477636i
\(933\) 1.47511 1.47511i 0.0482930 0.0482930i
\(934\) 4.86798 0.159285
\(935\) −4.90557 + 0.0603649i −0.160429 + 0.00197414i
\(936\) −0.579176 + 0.579176i −0.0189310 + 0.0189310i
\(937\) 30.6659 + 30.6659i 1.00181 + 1.00181i 0.999998 + 0.00181196i \(0.000576765\pi\)
0.00181196 + 0.999998i \(0.499423\pi\)
\(938\) −9.93897 −0.324519
\(939\) 2.78675 2.78675i 0.0909421 0.0909421i
\(940\) −2.17904 2.12607i −0.0710725 0.0693446i
\(941\) 32.2353i 1.05084i −0.850842 0.525421i \(-0.823908\pi\)
0.850842 0.525421i \(-0.176092\pi\)
\(942\) −2.28280 −0.0743776
\(943\) −50.3954 −1.64110
\(944\) 9.89258i 0.321976i
\(945\) −3.42683 + 0.0421683i −0.111475 + 0.00137174i
\(946\) 27.8949 27.8949i 0.906940 0.906940i
\(947\) −32.5015 −1.05616 −0.528079 0.849195i \(-0.677087\pi\)
−0.528079 + 0.849195i \(0.677087\pi\)
\(948\) 0.0124112 + 0.0124112i 0.000403097 + 0.000403097i
\(949\) 1.70025 1.70025i 0.0551925 0.0551925i
\(950\) 9.18285 + 8.74165i 0.297931 + 0.283617i
\(951\) −6.57215 −0.213117
\(952\) 0.301580 0.301580i 0.00977428 0.00977428i
\(953\) −23.0094 23.0094i −0.745348 0.745348i 0.228254 0.973602i \(-0.426698\pi\)
−0.973602 + 0.228254i \(0.926698\pi\)
\(954\) 16.4927 + 16.4927i 0.533971 + 0.533971i
\(955\) −21.8293 + 0.268618i −0.706380 + 0.00869226i
\(956\) 1.20088i 0.0388392i
\(957\) 4.13511 5.86558i 0.133669 0.189607i
\(958\) 4.92833 + 4.92833i 0.159227 + 0.159227i
\(959\) 8.93477 8.93477i 0.288519 0.288519i
\(960\) −0.463525 0.452256i −0.0149602 0.0145965i
\(961\) 32.9737i 1.06367i
\(962\) 1.30792 + 1.30792i 0.0421689 + 0.0421689i
\(963\) 1.96738 1.96738i 0.0633979 0.0633979i
\(964\) 22.6204i 0.728555i
\(965\) 39.0323 + 38.0833i 1.25649 + 1.22595i
\(966\) 1.42467i 0.0458381i
\(967\) 0.317494i 0.0102099i 0.999987 + 0.00510495i \(0.00162496\pi\)
−0.999987 + 0.00510495i \(0.998375\pi\)
\(968\) 10.1736i 0.326993i
\(969\) −0.247596 0.247596i −0.00795393 0.00795393i
\(970\) −18.8898 18.4306i −0.606516 0.591770i
\(971\) −23.8271 23.8271i −0.764647 0.764647i 0.212512 0.977159i \(-0.431836\pi\)
−0.977159 + 0.212512i \(0.931836\pi\)
\(972\) 7.53020i 0.241531i
\(973\) −1.59549 1.59549i −0.0511491 0.0511491i
\(974\) 2.73756 2.73756i 0.0877169 0.0877169i
\(975\) −0.280443 + 0.294597i −0.00898137 + 0.00943467i
\(976\) 3.88864 + 3.88864i 0.124472 + 0.124472i
\(977\) 24.5169 24.5169i 0.784365 0.784365i −0.196199 0.980564i \(-0.562860\pi\)
0.980564 + 0.196199i \(0.0628598\pi\)
\(978\) 6.46199i 0.206632i
\(979\) −38.3146 −1.22454
\(980\) −9.92275 9.68151i −0.316970 0.309264i
\(981\) 30.4283 0.971501
\(982\) −16.0568 + 16.0568i −0.512392 + 0.512392i
\(983\) 59.6952 1.90398 0.951991 0.306126i \(-0.0990330\pi\)
0.951991 + 0.306126i \(0.0990330\pi\)
\(984\) 1.87667 + 1.87667i 0.0598262 + 0.0598262i
\(985\) 0.0961885 + 7.81679i 0.00306482 + 0.249064i
\(986\) −2.53007 + 0.437791i −0.0805739 + 0.0139421i
\(987\) −0.249405 + 0.249405i −0.00793864 + 0.00793864i
\(988\) 0.712219i 0.0226587i
\(989\) −33.3380 + 33.3380i −1.06009 + 1.06009i
\(990\) −30.0024 + 0.369190i −0.953537 + 0.0117336i
\(991\) 5.66996i 0.180112i 0.995937 + 0.0900561i \(0.0287046\pi\)
−0.995937 + 0.0900561i \(0.971295\pi\)
\(992\) −5.65569 5.65569i −0.179568 0.179568i
\(993\) 0.985439 + 0.985439i 0.0312720 + 0.0312720i
\(994\) −5.46197 5.46197i −0.173243 0.173243i
\(995\) 18.1458 + 17.7046i 0.575260 + 0.561275i
\(996\) 0.289618 0.289618i 0.00917688 0.00917688i
\(997\) 27.2996 0.864586 0.432293 0.901733i \(-0.357705\pi\)
0.432293 + 0.901733i \(0.357705\pi\)
\(998\) 11.0768 0.350631
\(999\) 11.2833 0.356989
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 290.2.e.f.273.4 yes 12
5.2 odd 4 290.2.j.f.157.4 yes 12
5.3 odd 4 1450.2.j.h.157.3 12
5.4 even 2 1450.2.e.h.1143.3 12
29.17 odd 4 290.2.j.f.133.4 yes 12
145.17 even 4 inner 290.2.e.f.17.3 12
145.104 odd 4 1450.2.j.h.1293.3 12
145.133 even 4 1450.2.e.h.307.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
290.2.e.f.17.3 12 145.17 even 4 inner
290.2.e.f.273.4 yes 12 1.1 even 1 trivial
290.2.j.f.133.4 yes 12 29.17 odd 4
290.2.j.f.157.4 yes 12 5.2 odd 4
1450.2.e.h.307.4 12 145.133 even 4
1450.2.e.h.1143.3 12 5.4 even 2
1450.2.j.h.157.3 12 5.3 odd 4
1450.2.j.h.1293.3 12 145.104 odd 4