Defining parameters
Level: | \( N \) | \(=\) | \( 290 = 2 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 290.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 145 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(290, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 98 | 30 | 68 |
Cusp forms | 82 | 30 | 52 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(290, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
290.2.e.a | $2$ | $2.316$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(2\) | \(6\) | \(q-q^{2}+2 i q^{3}+q^{4}+(2 i+1)q^{5}+\cdots\) |
290.2.e.b | $2$ | $2.316$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(2\) | \(6\) | \(q+q^{2}+2 i q^{3}+q^{4}+(-2 i+1)q^{5}+\cdots\) |
290.2.e.c | $2$ | $2.316$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(4\) | \(-4\) | \(q+q^{2}+q^{4}+(i+2)q^{5}+(2 i-2)q^{7}+\cdots\) |
290.2.e.d | $4$ | $2.316$ | \(\Q(i, \sqrt{19})\) | None | \(-4\) | \(0\) | \(-2\) | \(0\) | \(q-q^{2}-\beta _{2}q^{3}+q^{4}+\beta _{3}q^{5}+\beta _{2}q^{6}+\cdots\) |
290.2.e.e | $8$ | $2.316$ | 8.0.6420496384.3 | None | \(-8\) | \(0\) | \(0\) | \(-4\) | \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(-2\beta _{2}+\beta _{3}+\cdots)q^{5}+\cdots\) |
290.2.e.f | $12$ | $2.316$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(12\) | \(0\) | \(-6\) | \(-4\) | \(q+q^{2}+(-1-\beta _{1}-\beta _{2}-\beta _{4}+\beta _{5}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(290, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(290, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)