L(s) = 1 | + i·2-s − 0.289·3-s − 4-s − 0.289i·6-s + (−0.632 + 0.632i)7-s − i·8-s − 2.91·9-s + (3.25 − 3.25i)11-s + 0.289·12-s + (−0.198 + 0.198i)13-s + (−0.632 − 0.632i)14-s + 16-s + 0.476i·17-s − 2.91i·18-s + (1.79 + 1.79i)19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.167·3-s − 0.5·4-s − 0.118i·6-s + (−0.239 + 0.239i)7-s − 0.353i·8-s − 0.972·9-s + (0.981 − 0.981i)11-s + 0.0836·12-s + (−0.0550 + 0.0550i)13-s + (−0.169 − 0.169i)14-s + 0.250·16-s + 0.115i·17-s − 0.687i·18-s + (0.411 + 0.411i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.190 - 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.190 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.241418644\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.241418644\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (-5.30 - 0.918i)T \) |
good | 3 | \( 1 + 0.289T + 3T^{2} \) |
| 7 | \( 1 + (0.632 - 0.632i)T - 7iT^{2} \) |
| 11 | \( 1 + (-3.25 + 3.25i)T - 11iT^{2} \) |
| 13 | \( 1 + (0.198 - 0.198i)T - 13iT^{2} \) |
| 17 | \( 1 - 0.476iT - 17T^{2} \) |
| 19 | \( 1 + (-1.79 - 1.79i)T + 19iT^{2} \) |
| 23 | \( 1 + (-3.88 - 3.88i)T + 23iT^{2} \) |
| 31 | \( 1 + (5.65 - 5.65i)T - 31iT^{2} \) |
| 37 | \( 1 + 6.58T + 37T^{2} \) |
| 41 | \( 1 + (-6.47 - 6.47i)T + 41iT^{2} \) |
| 43 | \( 1 - 8.57T + 43T^{2} \) |
| 47 | \( 1 - 1.36T + 47T^{2} \) |
| 53 | \( 1 + (5.65 + 5.65i)T + 53iT^{2} \) |
| 59 | \( 1 - 9.89iT - 59T^{2} \) |
| 61 | \( 1 + (-3.88 + 3.88i)T - 61iT^{2} \) |
| 67 | \( 1 + (7.85 + 7.85i)T + 67iT^{2} \) |
| 71 | \( 1 - 8.63iT - 71T^{2} \) |
| 73 | \( 1 - 8.56iT - 73T^{2} \) |
| 79 | \( 1 + (0.0428 + 0.0428i)T + 79iT^{2} \) |
| 83 | \( 1 + (-1 - i)T + 83iT^{2} \) |
| 89 | \( 1 + (-5.88 - 5.88i)T + 89iT^{2} \) |
| 97 | \( 1 - 11.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.338012949483512006265047898321, −8.963956497277987138207194794871, −8.201610734029262201878127255690, −7.24948152999173490378162203415, −6.35538876656130824280092124335, −5.78056040803242220881389004309, −5.00004641014641137723351253856, −3.72690929732037493997340295618, −2.95176867728438406720047130006, −1.11907273236633721528759515011,
0.61223786155932895025300196749, 2.08537980055689689577572416063, 3.09146571889776384456036910397, 4.11333302718312384419199319871, 4.94578662428127166656100325640, 5.94410749719364896871366507022, 6.87006994475756621952824513713, 7.68644762047870423408439626122, 8.934114812241924040281109605163, 9.171180056581513668464080786570