Properties

Label 1445.2.a.o.1.6
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(1,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,4,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7718912.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 4x^{3} + 9x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.254679\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51230 q^{2} +1.25468 q^{3} +4.31167 q^{4} +1.00000 q^{5} +3.15213 q^{6} +1.61485 q^{7} +5.80761 q^{8} -1.42578 q^{9} +2.51230 q^{10} +3.28669 q^{11} +5.40976 q^{12} -6.35524 q^{13} +4.05699 q^{14} +1.25468 q^{15} +5.96715 q^{16} -3.58200 q^{18} -0.747167 q^{19} +4.31167 q^{20} +2.02612 q^{21} +8.25715 q^{22} -0.143175 q^{23} +7.28669 q^{24} +1.00000 q^{25} -15.9663 q^{26} -5.55293 q^{27} +6.96269 q^{28} +8.80316 q^{29} +3.15213 q^{30} -7.21615 q^{31} +3.37606 q^{32} +4.12374 q^{33} +1.61485 q^{35} -6.14750 q^{36} +0.621115 q^{37} -1.87711 q^{38} -7.97379 q^{39} +5.80761 q^{40} -6.36239 q^{41} +5.09022 q^{42} -2.74801 q^{43} +14.1711 q^{44} -1.42578 q^{45} -0.359700 q^{46} +11.9308 q^{47} +7.48685 q^{48} -4.39226 q^{49} +2.51230 q^{50} -27.4017 q^{52} +2.71404 q^{53} -13.9507 q^{54} +3.28669 q^{55} +9.37841 q^{56} -0.937454 q^{57} +22.1162 q^{58} -12.6815 q^{59} +5.40976 q^{60} +0.464091 q^{61} -18.1292 q^{62} -2.30242 q^{63} -3.45261 q^{64} -6.35524 q^{65} +10.3601 q^{66} +1.81686 q^{67} -0.179639 q^{69} +4.05699 q^{70} +4.25738 q^{71} -8.28039 q^{72} -1.21126 q^{73} +1.56043 q^{74} +1.25468 q^{75} -3.22154 q^{76} +5.30750 q^{77} -20.0326 q^{78} +5.04874 q^{79} +5.96715 q^{80} -2.68980 q^{81} -15.9843 q^{82} -3.58494 q^{83} +8.73594 q^{84} -6.90384 q^{86} +11.0451 q^{87} +19.0878 q^{88} +10.5906 q^{89} -3.58200 q^{90} -10.2628 q^{91} -0.617325 q^{92} -9.05395 q^{93} +29.9739 q^{94} -0.747167 q^{95} +4.23587 q^{96} -6.96870 q^{97} -11.0347 q^{98} -4.68610 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{3} + 6 q^{4} + 6 q^{5} + 4 q^{6} + 8 q^{7} + 6 q^{8} + 2 q^{9} + 2 q^{10} + 8 q^{12} + 8 q^{14} + 4 q^{15} + 2 q^{16} + 14 q^{18} - 12 q^{19} + 6 q^{20} + 8 q^{21} + 16 q^{22} + 24 q^{24}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51230 1.77647 0.888233 0.459392i \(-0.151933\pi\)
0.888233 + 0.459392i \(0.151933\pi\)
\(3\) 1.25468 0.724389 0.362195 0.932103i \(-0.382028\pi\)
0.362195 + 0.932103i \(0.382028\pi\)
\(4\) 4.31167 2.15583
\(5\) 1.00000 0.447214
\(6\) 3.15213 1.28685
\(7\) 1.61485 0.610355 0.305178 0.952295i \(-0.401284\pi\)
0.305178 + 0.952295i \(0.401284\pi\)
\(8\) 5.80761 2.05330
\(9\) −1.42578 −0.475261
\(10\) 2.51230 0.794460
\(11\) 3.28669 0.990973 0.495487 0.868616i \(-0.334990\pi\)
0.495487 + 0.868616i \(0.334990\pi\)
\(12\) 5.40976 1.56166
\(13\) −6.35524 −1.76263 −0.881314 0.472531i \(-0.843340\pi\)
−0.881314 + 0.472531i \(0.843340\pi\)
\(14\) 4.05699 1.08428
\(15\) 1.25468 0.323957
\(16\) 5.96715 1.49179
\(17\) 0 0
\(18\) −3.58200 −0.844284
\(19\) −0.747167 −0.171412 −0.0857059 0.996320i \(-0.527315\pi\)
−0.0857059 + 0.996320i \(0.527315\pi\)
\(20\) 4.31167 0.964118
\(21\) 2.02612 0.442135
\(22\) 8.25715 1.76043
\(23\) −0.143175 −0.0298541 −0.0149271 0.999889i \(-0.504752\pi\)
−0.0149271 + 0.999889i \(0.504752\pi\)
\(24\) 7.28669 1.48739
\(25\) 1.00000 0.200000
\(26\) −15.9663 −3.13125
\(27\) −5.55293 −1.06866
\(28\) 6.96269 1.31583
\(29\) 8.80316 1.63471 0.817353 0.576138i \(-0.195441\pi\)
0.817353 + 0.576138i \(0.195441\pi\)
\(30\) 3.15213 0.575498
\(31\) −7.21615 −1.29606 −0.648029 0.761615i \(-0.724407\pi\)
−0.648029 + 0.761615i \(0.724407\pi\)
\(32\) 3.37606 0.596809
\(33\) 4.12374 0.717850
\(34\) 0 0
\(35\) 1.61485 0.272959
\(36\) −6.14750 −1.02458
\(37\) 0.621115 0.102111 0.0510554 0.998696i \(-0.483742\pi\)
0.0510554 + 0.998696i \(0.483742\pi\)
\(38\) −1.87711 −0.304507
\(39\) −7.97379 −1.27683
\(40\) 5.80761 0.918264
\(41\) −6.36239 −0.993639 −0.496819 0.867854i \(-0.665499\pi\)
−0.496819 + 0.867854i \(0.665499\pi\)
\(42\) 5.09022 0.785438
\(43\) −2.74801 −0.419068 −0.209534 0.977801i \(-0.567195\pi\)
−0.209534 + 0.977801i \(0.567195\pi\)
\(44\) 14.1711 2.13637
\(45\) −1.42578 −0.212543
\(46\) −0.359700 −0.0530349
\(47\) 11.9308 1.74029 0.870146 0.492794i \(-0.164024\pi\)
0.870146 + 0.492794i \(0.164024\pi\)
\(48\) 7.48685 1.08063
\(49\) −4.39226 −0.627466
\(50\) 2.51230 0.355293
\(51\) 0 0
\(52\) −27.4017 −3.79993
\(53\) 2.71404 0.372802 0.186401 0.982474i \(-0.440318\pi\)
0.186401 + 0.982474i \(0.440318\pi\)
\(54\) −13.9507 −1.89844
\(55\) 3.28669 0.443177
\(56\) 9.37841 1.25324
\(57\) −0.937454 −0.124169
\(58\) 22.1162 2.90400
\(59\) −12.6815 −1.65099 −0.825493 0.564413i \(-0.809103\pi\)
−0.825493 + 0.564413i \(0.809103\pi\)
\(60\) 5.40976 0.698397
\(61\) 0.464091 0.0594207 0.0297104 0.999559i \(-0.490542\pi\)
0.0297104 + 0.999559i \(0.490542\pi\)
\(62\) −18.1292 −2.30241
\(63\) −2.30242 −0.290078
\(64\) −3.45261 −0.431576
\(65\) −6.35524 −0.788271
\(66\) 10.3601 1.27524
\(67\) 1.81686 0.221965 0.110982 0.993822i \(-0.464600\pi\)
0.110982 + 0.993822i \(0.464600\pi\)
\(68\) 0 0
\(69\) −0.179639 −0.0216260
\(70\) 4.05699 0.484903
\(71\) 4.25738 0.505259 0.252629 0.967563i \(-0.418705\pi\)
0.252629 + 0.967563i \(0.418705\pi\)
\(72\) −8.28039 −0.975853
\(73\) −1.21126 −0.141767 −0.0708835 0.997485i \(-0.522582\pi\)
−0.0708835 + 0.997485i \(0.522582\pi\)
\(74\) 1.56043 0.181396
\(75\) 1.25468 0.144878
\(76\) −3.22154 −0.369535
\(77\) 5.30750 0.604846
\(78\) −20.0326 −2.26824
\(79\) 5.04874 0.568028 0.284014 0.958820i \(-0.408334\pi\)
0.284014 + 0.958820i \(0.408334\pi\)
\(80\) 5.96715 0.667147
\(81\) −2.68980 −0.298867
\(82\) −15.9843 −1.76517
\(83\) −3.58494 −0.393498 −0.196749 0.980454i \(-0.563038\pi\)
−0.196749 + 0.980454i \(0.563038\pi\)
\(84\) 8.73594 0.953169
\(85\) 0 0
\(86\) −6.90384 −0.744460
\(87\) 11.0451 1.18416
\(88\) 19.0878 2.03477
\(89\) 10.5906 1.12260 0.561300 0.827613i \(-0.310302\pi\)
0.561300 + 0.827613i \(0.310302\pi\)
\(90\) −3.58200 −0.377576
\(91\) −10.2628 −1.07583
\(92\) −0.617325 −0.0643606
\(93\) −9.05395 −0.938851
\(94\) 29.9739 3.09157
\(95\) −0.747167 −0.0766577
\(96\) 4.23587 0.432322
\(97\) −6.96870 −0.707565 −0.353782 0.935328i \(-0.615105\pi\)
−0.353782 + 0.935328i \(0.615105\pi\)
\(98\) −11.0347 −1.11467
\(99\) −4.68610 −0.470971
\(100\) 4.31167 0.431167
\(101\) −0.679421 −0.0676049 −0.0338025 0.999429i \(-0.510762\pi\)
−0.0338025 + 0.999429i \(0.510762\pi\)
\(102\) 0 0
\(103\) −0.156455 −0.0154160 −0.00770798 0.999970i \(-0.502454\pi\)
−0.00770798 + 0.999970i \(0.502454\pi\)
\(104\) −36.9088 −3.61921
\(105\) 2.02612 0.197729
\(106\) 6.81849 0.662270
\(107\) 17.9652 1.73676 0.868379 0.495901i \(-0.165162\pi\)
0.868379 + 0.495901i \(0.165162\pi\)
\(108\) −23.9424 −2.30386
\(109\) 5.81215 0.556703 0.278352 0.960479i \(-0.410212\pi\)
0.278352 + 0.960479i \(0.410212\pi\)
\(110\) 8.25715 0.787289
\(111\) 0.779300 0.0739679
\(112\) 9.63604 0.910520
\(113\) 9.29716 0.874603 0.437302 0.899315i \(-0.355934\pi\)
0.437302 + 0.899315i \(0.355934\pi\)
\(114\) −2.35517 −0.220582
\(115\) −0.143175 −0.0133512
\(116\) 37.9563 3.52415
\(117\) 9.06119 0.837707
\(118\) −31.8597 −2.93292
\(119\) 0 0
\(120\) 7.28669 0.665180
\(121\) −0.197689 −0.0179717
\(122\) 1.16594 0.105559
\(123\) −7.98276 −0.719781
\(124\) −31.1136 −2.79409
\(125\) 1.00000 0.0894427
\(126\) −5.78438 −0.515314
\(127\) −15.1796 −1.34698 −0.673488 0.739198i \(-0.735205\pi\)
−0.673488 + 0.739198i \(0.735205\pi\)
\(128\) −15.4261 −1.36349
\(129\) −3.44787 −0.303568
\(130\) −15.9663 −1.40034
\(131\) 1.98251 0.173212 0.0866062 0.996243i \(-0.472398\pi\)
0.0866062 + 0.996243i \(0.472398\pi\)
\(132\) 17.7802 1.54757
\(133\) −1.20656 −0.104622
\(134\) 4.56450 0.394313
\(135\) −5.55293 −0.477920
\(136\) 0 0
\(137\) 19.6088 1.67530 0.837648 0.546211i \(-0.183930\pi\)
0.837648 + 0.546211i \(0.183930\pi\)
\(138\) −0.451308 −0.0384179
\(139\) 3.61139 0.306314 0.153157 0.988202i \(-0.451056\pi\)
0.153157 + 0.988202i \(0.451056\pi\)
\(140\) 6.96269 0.588455
\(141\) 14.9694 1.26065
\(142\) 10.6958 0.897575
\(143\) −20.8877 −1.74672
\(144\) −8.50785 −0.708987
\(145\) 8.80316 0.731062
\(146\) −3.04305 −0.251844
\(147\) −5.51088 −0.454530
\(148\) 2.67804 0.220134
\(149\) 1.26402 0.103553 0.0517763 0.998659i \(-0.483512\pi\)
0.0517763 + 0.998659i \(0.483512\pi\)
\(150\) 3.15213 0.257371
\(151\) −16.2206 −1.32002 −0.660009 0.751258i \(-0.729447\pi\)
−0.660009 + 0.751258i \(0.729447\pi\)
\(152\) −4.33926 −0.351960
\(153\) 0 0
\(154\) 13.3341 1.07449
\(155\) −7.21615 −0.579615
\(156\) −34.3803 −2.75263
\(157\) 8.52619 0.680464 0.340232 0.940341i \(-0.389494\pi\)
0.340232 + 0.940341i \(0.389494\pi\)
\(158\) 12.6840 1.00908
\(159\) 3.40525 0.270054
\(160\) 3.37606 0.266901
\(161\) −0.231207 −0.0182216
\(162\) −6.75760 −0.530927
\(163\) −15.4603 −1.21094 −0.605472 0.795867i \(-0.707016\pi\)
−0.605472 + 0.795867i \(0.707016\pi\)
\(164\) −27.4325 −2.14212
\(165\) 4.12374 0.321032
\(166\) −9.00646 −0.699037
\(167\) 3.67070 0.284048 0.142024 0.989863i \(-0.454639\pi\)
0.142024 + 0.989863i \(0.454639\pi\)
\(168\) 11.7669 0.907836
\(169\) 27.3891 2.10686
\(170\) 0 0
\(171\) 1.06530 0.0814653
\(172\) −11.8485 −0.903441
\(173\) 9.14139 0.695007 0.347503 0.937679i \(-0.387030\pi\)
0.347503 + 0.937679i \(0.387030\pi\)
\(174\) 27.7487 2.10363
\(175\) 1.61485 0.122071
\(176\) 19.6121 1.47832
\(177\) −15.9112 −1.19596
\(178\) 26.6067 1.99426
\(179\) −8.76138 −0.654857 −0.327428 0.944876i \(-0.606182\pi\)
−0.327428 + 0.944876i \(0.606182\pi\)
\(180\) −6.14750 −0.458207
\(181\) −4.86717 −0.361774 −0.180887 0.983504i \(-0.557897\pi\)
−0.180887 + 0.983504i \(0.557897\pi\)
\(182\) −25.7832 −1.91118
\(183\) 0.582285 0.0430437
\(184\) −0.831507 −0.0612995
\(185\) 0.621115 0.0456653
\(186\) −22.7463 −1.66784
\(187\) 0 0
\(188\) 51.4418 3.75178
\(189\) −8.96715 −0.652264
\(190\) −1.87711 −0.136180
\(191\) −11.2751 −0.815838 −0.407919 0.913018i \(-0.633745\pi\)
−0.407919 + 0.913018i \(0.633745\pi\)
\(192\) −4.33191 −0.312629
\(193\) −4.58171 −0.329798 −0.164899 0.986310i \(-0.552730\pi\)
−0.164899 + 0.986310i \(0.552730\pi\)
\(194\) −17.5075 −1.25697
\(195\) −7.97379 −0.571015
\(196\) −18.9380 −1.35271
\(197\) −13.2481 −0.943887 −0.471944 0.881629i \(-0.656447\pi\)
−0.471944 + 0.881629i \(0.656447\pi\)
\(198\) −11.7729 −0.836663
\(199\) −2.63839 −0.187031 −0.0935153 0.995618i \(-0.529810\pi\)
−0.0935153 + 0.995618i \(0.529810\pi\)
\(200\) 5.80761 0.410660
\(201\) 2.27957 0.160789
\(202\) −1.70691 −0.120098
\(203\) 14.2158 0.997751
\(204\) 0 0
\(205\) −6.36239 −0.444369
\(206\) −0.393062 −0.0273860
\(207\) 0.204137 0.0141885
\(208\) −37.9227 −2.62946
\(209\) −2.45570 −0.169865
\(210\) 5.09022 0.351258
\(211\) 7.13489 0.491186 0.245593 0.969373i \(-0.421017\pi\)
0.245593 + 0.969373i \(0.421017\pi\)
\(212\) 11.7020 0.803699
\(213\) 5.34165 0.366004
\(214\) 45.1340 3.08529
\(215\) −2.74801 −0.187413
\(216\) −32.2493 −2.19429
\(217\) −11.6530 −0.791057
\(218\) 14.6019 0.988965
\(219\) −1.51974 −0.102694
\(220\) 14.1711 0.955416
\(221\) 0 0
\(222\) 1.95784 0.131402
\(223\) 12.1709 0.815025 0.407512 0.913200i \(-0.366396\pi\)
0.407512 + 0.913200i \(0.366396\pi\)
\(224\) 5.45183 0.364265
\(225\) −1.42578 −0.0950521
\(226\) 23.3573 1.55370
\(227\) 0.835635 0.0554630 0.0277315 0.999615i \(-0.491172\pi\)
0.0277315 + 0.999615i \(0.491172\pi\)
\(228\) −4.04199 −0.267687
\(229\) 6.13420 0.405360 0.202680 0.979245i \(-0.435035\pi\)
0.202680 + 0.979245i \(0.435035\pi\)
\(230\) −0.359700 −0.0237179
\(231\) 6.65921 0.438144
\(232\) 51.1253 3.35654
\(233\) −16.8371 −1.10303 −0.551516 0.834164i \(-0.685951\pi\)
−0.551516 + 0.834164i \(0.685951\pi\)
\(234\) 22.7645 1.48816
\(235\) 11.9308 0.778282
\(236\) −54.6783 −3.55925
\(237\) 6.33455 0.411473
\(238\) 0 0
\(239\) 6.95301 0.449753 0.224876 0.974387i \(-0.427802\pi\)
0.224876 + 0.974387i \(0.427802\pi\)
\(240\) 7.48685 0.483274
\(241\) 30.7215 1.97895 0.989473 0.144714i \(-0.0462263\pi\)
0.989473 + 0.144714i \(0.0462263\pi\)
\(242\) −0.496655 −0.0319262
\(243\) 13.2840 0.852167
\(244\) 2.00101 0.128101
\(245\) −4.39226 −0.280611
\(246\) −20.0551 −1.27867
\(247\) 4.74843 0.302135
\(248\) −41.9086 −2.66120
\(249\) −4.49795 −0.285046
\(250\) 2.51230 0.158892
\(251\) −22.5294 −1.42204 −0.711021 0.703171i \(-0.751767\pi\)
−0.711021 + 0.703171i \(0.751767\pi\)
\(252\) −9.92728 −0.625360
\(253\) −0.470573 −0.0295846
\(254\) −38.1359 −2.39286
\(255\) 0 0
\(256\) −31.8499 −1.99062
\(257\) −1.90476 −0.118816 −0.0594079 0.998234i \(-0.518921\pi\)
−0.0594079 + 0.998234i \(0.518921\pi\)
\(258\) −8.66210 −0.539279
\(259\) 1.00301 0.0623238
\(260\) −27.4017 −1.69938
\(261\) −12.5514 −0.776911
\(262\) 4.98066 0.307706
\(263\) 7.80192 0.481087 0.240543 0.970638i \(-0.422674\pi\)
0.240543 + 0.970638i \(0.422674\pi\)
\(264\) 23.9491 1.47396
\(265\) 2.71404 0.166722
\(266\) −3.03125 −0.185858
\(267\) 13.2878 0.813199
\(268\) 7.83369 0.478519
\(269\) −13.7440 −0.837987 −0.418993 0.907989i \(-0.637617\pi\)
−0.418993 + 0.907989i \(0.637617\pi\)
\(270\) −13.9507 −0.849010
\(271\) −12.4855 −0.758438 −0.379219 0.925307i \(-0.623807\pi\)
−0.379219 + 0.925307i \(0.623807\pi\)
\(272\) 0 0
\(273\) −12.8765 −0.779319
\(274\) 49.2633 2.97611
\(275\) 3.28669 0.198195
\(276\) −0.774544 −0.0466221
\(277\) −26.8602 −1.61387 −0.806935 0.590640i \(-0.798875\pi\)
−0.806935 + 0.590640i \(0.798875\pi\)
\(278\) 9.07291 0.544157
\(279\) 10.2887 0.615966
\(280\) 9.37841 0.560467
\(281\) 15.5290 0.926385 0.463193 0.886258i \(-0.346704\pi\)
0.463193 + 0.886258i \(0.346704\pi\)
\(282\) 37.6076 2.23950
\(283\) 10.4395 0.620565 0.310283 0.950644i \(-0.399576\pi\)
0.310283 + 0.950644i \(0.399576\pi\)
\(284\) 18.3564 1.08925
\(285\) −0.937454 −0.0555300
\(286\) −52.4762 −3.10298
\(287\) −10.2743 −0.606473
\(288\) −4.81352 −0.283640
\(289\) 0 0
\(290\) 22.1162 1.29871
\(291\) −8.74348 −0.512552
\(292\) −5.22254 −0.305626
\(293\) −7.10645 −0.415163 −0.207581 0.978218i \(-0.566559\pi\)
−0.207581 + 0.978218i \(0.566559\pi\)
\(294\) −13.8450 −0.807457
\(295\) −12.6815 −0.738343
\(296\) 3.60720 0.209664
\(297\) −18.2508 −1.05902
\(298\) 3.17560 0.183958
\(299\) 0.909915 0.0526217
\(300\) 5.40976 0.312333
\(301\) −4.43762 −0.255780
\(302\) −40.7512 −2.34497
\(303\) −0.852455 −0.0489723
\(304\) −4.45845 −0.255710
\(305\) 0.464091 0.0265738
\(306\) 0 0
\(307\) 4.80512 0.274243 0.137121 0.990554i \(-0.456215\pi\)
0.137121 + 0.990554i \(0.456215\pi\)
\(308\) 22.8842 1.30395
\(309\) −0.196301 −0.0111672
\(310\) −18.1292 −1.02967
\(311\) −8.02933 −0.455301 −0.227651 0.973743i \(-0.573104\pi\)
−0.227651 + 0.973743i \(0.573104\pi\)
\(312\) −46.3087 −2.62171
\(313\) 22.1020 1.24928 0.624640 0.780913i \(-0.285246\pi\)
0.624640 + 0.780913i \(0.285246\pi\)
\(314\) 21.4204 1.20882
\(315\) −2.30242 −0.129727
\(316\) 21.7685 1.22457
\(317\) 15.9647 0.896669 0.448335 0.893866i \(-0.352017\pi\)
0.448335 + 0.893866i \(0.352017\pi\)
\(318\) 8.55501 0.479741
\(319\) 28.9332 1.61995
\(320\) −3.45261 −0.193007
\(321\) 22.5405 1.25809
\(322\) −0.580861 −0.0323701
\(323\) 0 0
\(324\) −11.5975 −0.644308
\(325\) −6.35524 −0.352526
\(326\) −38.8410 −2.15120
\(327\) 7.29238 0.403270
\(328\) −36.9503 −2.04024
\(329\) 19.2665 1.06220
\(330\) 10.3601 0.570303
\(331\) 3.87911 0.213215 0.106608 0.994301i \(-0.466001\pi\)
0.106608 + 0.994301i \(0.466001\pi\)
\(332\) −15.4571 −0.848317
\(333\) −0.885575 −0.0485292
\(334\) 9.22192 0.504601
\(335\) 1.81686 0.0992656
\(336\) 12.0901 0.659571
\(337\) 24.3854 1.32836 0.664178 0.747574i \(-0.268782\pi\)
0.664178 + 0.747574i \(0.268782\pi\)
\(338\) 68.8098 3.74276
\(339\) 11.6649 0.633553
\(340\) 0 0
\(341\) −23.7172 −1.28436
\(342\) 2.67635 0.144720
\(343\) −18.3968 −0.993333
\(344\) −15.9594 −0.860473
\(345\) −0.179639 −0.00967144
\(346\) 22.9659 1.23466
\(347\) 10.6306 0.570681 0.285341 0.958426i \(-0.407893\pi\)
0.285341 + 0.958426i \(0.407893\pi\)
\(348\) 47.6229 2.55286
\(349\) 11.5579 0.618682 0.309341 0.950951i \(-0.399892\pi\)
0.309341 + 0.950951i \(0.399892\pi\)
\(350\) 4.05699 0.216855
\(351\) 35.2903 1.88365
\(352\) 11.0961 0.591421
\(353\) 11.3682 0.605070 0.302535 0.953138i \(-0.402167\pi\)
0.302535 + 0.953138i \(0.402167\pi\)
\(354\) −39.9737 −2.12458
\(355\) 4.25738 0.225958
\(356\) 45.6631 2.42014
\(357\) 0 0
\(358\) −22.0113 −1.16333
\(359\) 32.1310 1.69581 0.847906 0.530147i \(-0.177863\pi\)
0.847906 + 0.530147i \(0.177863\pi\)
\(360\) −8.28039 −0.436415
\(361\) −18.4417 −0.970618
\(362\) −12.2278 −0.642680
\(363\) −0.248036 −0.0130185
\(364\) −44.2496 −2.31931
\(365\) −1.21126 −0.0634001
\(366\) 1.46288 0.0764657
\(367\) −19.2552 −1.00511 −0.502557 0.864544i \(-0.667607\pi\)
−0.502557 + 0.864544i \(0.667607\pi\)
\(368\) −0.854349 −0.0445360
\(369\) 9.07138 0.472237
\(370\) 1.56043 0.0811229
\(371\) 4.38276 0.227542
\(372\) −39.0376 −2.02401
\(373\) −20.3136 −1.05180 −0.525900 0.850547i \(-0.676271\pi\)
−0.525900 + 0.850547i \(0.676271\pi\)
\(374\) 0 0
\(375\) 1.25468 0.0647913
\(376\) 69.2897 3.57334
\(377\) −55.9462 −2.88138
\(378\) −22.5282 −1.15873
\(379\) 34.3004 1.76189 0.880946 0.473217i \(-0.156907\pi\)
0.880946 + 0.473217i \(0.156907\pi\)
\(380\) −3.22154 −0.165261
\(381\) −19.0456 −0.975734
\(382\) −28.3265 −1.44931
\(383\) −21.3225 −1.08953 −0.544764 0.838589i \(-0.683381\pi\)
−0.544764 + 0.838589i \(0.683381\pi\)
\(384\) −19.3548 −0.987697
\(385\) 5.30750 0.270495
\(386\) −11.5106 −0.585876
\(387\) 3.91807 0.199166
\(388\) −30.0467 −1.52539
\(389\) −11.7682 −0.596672 −0.298336 0.954461i \(-0.596432\pi\)
−0.298336 + 0.954461i \(0.596432\pi\)
\(390\) −20.0326 −1.01439
\(391\) 0 0
\(392\) −25.5086 −1.28838
\(393\) 2.48741 0.125473
\(394\) −33.2832 −1.67678
\(395\) 5.04874 0.254030
\(396\) −20.2049 −1.01533
\(397\) −3.35896 −0.168581 −0.0842907 0.996441i \(-0.526862\pi\)
−0.0842907 + 0.996441i \(0.526862\pi\)
\(398\) −6.62844 −0.332254
\(399\) −1.51385 −0.0757871
\(400\) 5.96715 0.298357
\(401\) −2.59437 −0.129557 −0.0647784 0.997900i \(-0.520634\pi\)
−0.0647784 + 0.997900i \(0.520634\pi\)
\(402\) 5.72698 0.285636
\(403\) 45.8604 2.28447
\(404\) −2.92944 −0.145745
\(405\) −2.68980 −0.133657
\(406\) 35.7143 1.77247
\(407\) 2.04141 0.101189
\(408\) 0 0
\(409\) −30.8364 −1.52476 −0.762381 0.647129i \(-0.775970\pi\)
−0.762381 + 0.647129i \(0.775970\pi\)
\(410\) −15.9843 −0.789406
\(411\) 24.6028 1.21357
\(412\) −0.674582 −0.0332343
\(413\) −20.4786 −1.00769
\(414\) 0.512854 0.0252054
\(415\) −3.58494 −0.175978
\(416\) −21.4557 −1.05195
\(417\) 4.53114 0.221891
\(418\) −6.16947 −0.301759
\(419\) −18.6672 −0.911954 −0.455977 0.889991i \(-0.650710\pi\)
−0.455977 + 0.889991i \(0.650710\pi\)
\(420\) 8.73594 0.426270
\(421\) 29.5695 1.44113 0.720565 0.693388i \(-0.243883\pi\)
0.720565 + 0.693388i \(0.243883\pi\)
\(422\) 17.9250 0.872576
\(423\) −17.0108 −0.827092
\(424\) 15.7621 0.765475
\(425\) 0 0
\(426\) 13.4198 0.650193
\(427\) 0.749436 0.0362678
\(428\) 77.4598 3.74416
\(429\) −26.2074 −1.26530
\(430\) −6.90384 −0.332933
\(431\) −16.3459 −0.787355 −0.393678 0.919249i \(-0.628797\pi\)
−0.393678 + 0.919249i \(0.628797\pi\)
\(432\) −33.1352 −1.59422
\(433\) −14.3256 −0.688446 −0.344223 0.938888i \(-0.611858\pi\)
−0.344223 + 0.938888i \(0.611858\pi\)
\(434\) −29.2758 −1.40529
\(435\) 11.0451 0.529574
\(436\) 25.0601 1.20016
\(437\) 0.106976 0.00511735
\(438\) −3.81805 −0.182433
\(439\) 30.4292 1.45231 0.726154 0.687532i \(-0.241306\pi\)
0.726154 + 0.687532i \(0.241306\pi\)
\(440\) 19.0878 0.909975
\(441\) 6.26241 0.298210
\(442\) 0 0
\(443\) 26.5036 1.25922 0.629612 0.776909i \(-0.283214\pi\)
0.629612 + 0.776909i \(0.283214\pi\)
\(444\) 3.36008 0.159463
\(445\) 10.5906 0.502042
\(446\) 30.5770 1.44786
\(447\) 1.58594 0.0750124
\(448\) −5.57544 −0.263415
\(449\) 15.8391 0.747492 0.373746 0.927531i \(-0.378073\pi\)
0.373746 + 0.927531i \(0.378073\pi\)
\(450\) −3.58200 −0.168857
\(451\) −20.9112 −0.984669
\(452\) 40.0863 1.88550
\(453\) −20.3517 −0.956206
\(454\) 2.09937 0.0985283
\(455\) −10.2628 −0.481126
\(456\) −5.44437 −0.254956
\(457\) −4.25348 −0.198969 −0.0994847 0.995039i \(-0.531719\pi\)
−0.0994847 + 0.995039i \(0.531719\pi\)
\(458\) 15.4110 0.720108
\(459\) 0 0
\(460\) −0.617325 −0.0287829
\(461\) −23.9740 −1.11658 −0.558290 0.829646i \(-0.688542\pi\)
−0.558290 + 0.829646i \(0.688542\pi\)
\(462\) 16.7300 0.778348
\(463\) −23.0127 −1.06949 −0.534746 0.845013i \(-0.679593\pi\)
−0.534746 + 0.845013i \(0.679593\pi\)
\(464\) 52.5297 2.43863
\(465\) −9.05395 −0.419867
\(466\) −42.2998 −1.95950
\(467\) 21.7845 1.00807 0.504033 0.863684i \(-0.331849\pi\)
0.504033 + 0.863684i \(0.331849\pi\)
\(468\) 39.0688 1.80596
\(469\) 2.93395 0.135477
\(470\) 29.9739 1.38259
\(471\) 10.6976 0.492921
\(472\) −73.6490 −3.38997
\(473\) −9.03186 −0.415285
\(474\) 15.9143 0.730968
\(475\) −0.747167 −0.0342824
\(476\) 0 0
\(477\) −3.86963 −0.177178
\(478\) 17.4681 0.798971
\(479\) 32.9304 1.50463 0.752313 0.658806i \(-0.228938\pi\)
0.752313 + 0.658806i \(0.228938\pi\)
\(480\) 4.23587 0.193340
\(481\) −3.94734 −0.179983
\(482\) 77.1818 3.51553
\(483\) −0.290090 −0.0131995
\(484\) −0.852369 −0.0387441
\(485\) −6.96870 −0.316433
\(486\) 33.3733 1.51385
\(487\) 18.6484 0.845042 0.422521 0.906353i \(-0.361145\pi\)
0.422521 + 0.906353i \(0.361145\pi\)
\(488\) 2.69526 0.122009
\(489\) −19.3977 −0.877195
\(490\) −11.0347 −0.498497
\(491\) −3.97306 −0.179302 −0.0896508 0.995973i \(-0.528575\pi\)
−0.0896508 + 0.995973i \(0.528575\pi\)
\(492\) −34.4190 −1.55173
\(493\) 0 0
\(494\) 11.9295 0.536733
\(495\) −4.68610 −0.210624
\(496\) −43.0598 −1.93344
\(497\) 6.87503 0.308387
\(498\) −11.3002 −0.506375
\(499\) 34.1286 1.52781 0.763903 0.645331i \(-0.223281\pi\)
0.763903 + 0.645331i \(0.223281\pi\)
\(500\) 4.31167 0.192824
\(501\) 4.60555 0.205761
\(502\) −56.6007 −2.52621
\(503\) 39.4109 1.75725 0.878623 0.477515i \(-0.158463\pi\)
0.878623 + 0.477515i \(0.158463\pi\)
\(504\) −13.3716 −0.595617
\(505\) −0.679421 −0.0302338
\(506\) −1.18222 −0.0525561
\(507\) 34.3646 1.52618
\(508\) −65.4496 −2.90386
\(509\) 8.87274 0.393277 0.196639 0.980476i \(-0.436997\pi\)
0.196639 + 0.980476i \(0.436997\pi\)
\(510\) 0 0
\(511\) −1.95600 −0.0865282
\(512\) −49.1643 −2.17278
\(513\) 4.14897 0.183181
\(514\) −4.78534 −0.211072
\(515\) −0.156455 −0.00689423
\(516\) −14.8661 −0.654443
\(517\) 39.2129 1.72458
\(518\) 2.51986 0.110716
\(519\) 11.4695 0.503455
\(520\) −36.9088 −1.61856
\(521\) −17.5909 −0.770673 −0.385337 0.922776i \(-0.625915\pi\)
−0.385337 + 0.922776i \(0.625915\pi\)
\(522\) −31.5329 −1.38016
\(523\) 20.1681 0.881892 0.440946 0.897534i \(-0.354643\pi\)
0.440946 + 0.897534i \(0.354643\pi\)
\(524\) 8.54791 0.373417
\(525\) 2.02612 0.0884270
\(526\) 19.6008 0.854635
\(527\) 0 0
\(528\) 24.6069 1.07088
\(529\) −22.9795 −0.999109
\(530\) 6.81849 0.296176
\(531\) 18.0810 0.784648
\(532\) −5.20229 −0.225548
\(533\) 40.4346 1.75141
\(534\) 33.3829 1.44462
\(535\) 17.9652 0.776702
\(536\) 10.5516 0.455760
\(537\) −10.9927 −0.474371
\(538\) −34.5291 −1.48866
\(539\) −14.4360 −0.621802
\(540\) −23.9424 −1.03032
\(541\) −42.7378 −1.83744 −0.918720 0.394908i \(-0.870776\pi\)
−0.918720 + 0.394908i \(0.870776\pi\)
\(542\) −31.3673 −1.34734
\(543\) −6.10674 −0.262065
\(544\) 0 0
\(545\) 5.81215 0.248965
\(546\) −32.3496 −1.38443
\(547\) −14.2143 −0.607760 −0.303880 0.952710i \(-0.598282\pi\)
−0.303880 + 0.952710i \(0.598282\pi\)
\(548\) 84.5468 3.61166
\(549\) −0.661692 −0.0282403
\(550\) 8.25715 0.352086
\(551\) −6.57743 −0.280208
\(552\) −1.04327 −0.0444047
\(553\) 8.15295 0.346699
\(554\) −67.4809 −2.86699
\(555\) 0.779300 0.0330795
\(556\) 15.5711 0.660363
\(557\) 4.00971 0.169897 0.0849484 0.996385i \(-0.472927\pi\)
0.0849484 + 0.996385i \(0.472927\pi\)
\(558\) 25.8482 1.09424
\(559\) 17.4643 0.738661
\(560\) 9.63604 0.407197
\(561\) 0 0
\(562\) 39.0137 1.64569
\(563\) 5.66772 0.238866 0.119433 0.992842i \(-0.461892\pi\)
0.119433 + 0.992842i \(0.461892\pi\)
\(564\) 64.5430 2.71775
\(565\) 9.29716 0.391134
\(566\) 26.2272 1.10241
\(567\) −4.34362 −0.182415
\(568\) 24.7252 1.03745
\(569\) −0.249161 −0.0104454 −0.00522269 0.999986i \(-0.501662\pi\)
−0.00522269 + 0.999986i \(0.501662\pi\)
\(570\) −2.35517 −0.0986472
\(571\) 34.1645 1.42974 0.714869 0.699258i \(-0.246486\pi\)
0.714869 + 0.699258i \(0.246486\pi\)
\(572\) −90.0608 −3.76563
\(573\) −14.1466 −0.590984
\(574\) −25.8122 −1.07738
\(575\) −0.143175 −0.00597083
\(576\) 4.92267 0.205111
\(577\) 28.3587 1.18059 0.590295 0.807188i \(-0.299011\pi\)
0.590295 + 0.807188i \(0.299011\pi\)
\(578\) 0 0
\(579\) −5.74857 −0.238902
\(580\) 37.9563 1.57605
\(581\) −5.78914 −0.240174
\(582\) −21.9663 −0.910532
\(583\) 8.92020 0.369437
\(584\) −7.03451 −0.291090
\(585\) 9.06119 0.374634
\(586\) −17.8535 −0.737523
\(587\) 22.8461 0.942960 0.471480 0.881877i \(-0.343720\pi\)
0.471480 + 0.881877i \(0.343720\pi\)
\(588\) −23.7611 −0.979891
\(589\) 5.39167 0.222160
\(590\) −31.8597 −1.31164
\(591\) −16.6221 −0.683742
\(592\) 3.70629 0.152327
\(593\) −10.3077 −0.423285 −0.211642 0.977347i \(-0.567881\pi\)
−0.211642 + 0.977347i \(0.567881\pi\)
\(594\) −45.8514 −1.88131
\(595\) 0 0
\(596\) 5.45004 0.223242
\(597\) −3.31033 −0.135483
\(598\) 2.28598 0.0934807
\(599\) −25.2157 −1.03028 −0.515142 0.857105i \(-0.672261\pi\)
−0.515142 + 0.857105i \(0.672261\pi\)
\(600\) 7.28669 0.297478
\(601\) 8.56378 0.349324 0.174662 0.984628i \(-0.444117\pi\)
0.174662 + 0.984628i \(0.444117\pi\)
\(602\) −11.1487 −0.454385
\(603\) −2.59044 −0.105491
\(604\) −69.9380 −2.84574
\(605\) −0.197689 −0.00803720
\(606\) −2.14163 −0.0869976
\(607\) 9.82021 0.398590 0.199295 0.979940i \(-0.436135\pi\)
0.199295 + 0.979940i \(0.436135\pi\)
\(608\) −2.52248 −0.102300
\(609\) 17.8362 0.722760
\(610\) 1.16594 0.0472074
\(611\) −75.8234 −3.06749
\(612\) 0 0
\(613\) 22.3926 0.904427 0.452214 0.891910i \(-0.350635\pi\)
0.452214 + 0.891910i \(0.350635\pi\)
\(614\) 12.0719 0.487183
\(615\) −7.98276 −0.321896
\(616\) 30.8239 1.24193
\(617\) −21.3447 −0.859304 −0.429652 0.902995i \(-0.641364\pi\)
−0.429652 + 0.902995i \(0.641364\pi\)
\(618\) −0.493167 −0.0198381
\(619\) −15.0557 −0.605142 −0.302571 0.953127i \(-0.597845\pi\)
−0.302571 + 0.953127i \(0.597845\pi\)
\(620\) −31.1136 −1.24955
\(621\) 0.795043 0.0319040
\(622\) −20.1721 −0.808828
\(623\) 17.1022 0.685184
\(624\) −47.5808 −1.90476
\(625\) 1.00000 0.0400000
\(626\) 55.5270 2.21930
\(627\) −3.08112 −0.123048
\(628\) 36.7621 1.46697
\(629\) 0 0
\(630\) −5.78438 −0.230455
\(631\) −41.6046 −1.65625 −0.828127 0.560540i \(-0.810594\pi\)
−0.828127 + 0.560540i \(0.810594\pi\)
\(632\) 29.3211 1.16633
\(633\) 8.95199 0.355810
\(634\) 40.1083 1.59290
\(635\) −15.1796 −0.602386
\(636\) 14.6823 0.582191
\(637\) 27.9139 1.10599
\(638\) 72.6890 2.87779
\(639\) −6.07010 −0.240129
\(640\) −15.4261 −0.609771
\(641\) 8.86384 0.350101 0.175050 0.984559i \(-0.443991\pi\)
0.175050 + 0.984559i \(0.443991\pi\)
\(642\) 56.6286 2.23495
\(643\) 30.0257 1.18410 0.592050 0.805901i \(-0.298319\pi\)
0.592050 + 0.805901i \(0.298319\pi\)
\(644\) −0.996886 −0.0392828
\(645\) −3.44787 −0.135760
\(646\) 0 0
\(647\) 0.383859 0.0150911 0.00754553 0.999972i \(-0.497598\pi\)
0.00754553 + 0.999972i \(0.497598\pi\)
\(648\) −15.6213 −0.613664
\(649\) −41.6800 −1.63608
\(650\) −15.9663 −0.626250
\(651\) −14.6208 −0.573033
\(652\) −66.6597 −2.61059
\(653\) 1.44734 0.0566388 0.0283194 0.999599i \(-0.490984\pi\)
0.0283194 + 0.999599i \(0.490984\pi\)
\(654\) 18.3207 0.716395
\(655\) 1.98251 0.0774629
\(656\) −37.9653 −1.48230
\(657\) 1.72699 0.0673762
\(658\) 48.4033 1.88696
\(659\) 21.8603 0.851555 0.425777 0.904828i \(-0.360001\pi\)
0.425777 + 0.904828i \(0.360001\pi\)
\(660\) 17.7802 0.692093
\(661\) 40.5201 1.57605 0.788024 0.615644i \(-0.211104\pi\)
0.788024 + 0.615644i \(0.211104\pi\)
\(662\) 9.74551 0.378770
\(663\) 0 0
\(664\) −20.8200 −0.807971
\(665\) −1.20656 −0.0467884
\(666\) −2.22483 −0.0862105
\(667\) −1.26040 −0.0488027
\(668\) 15.8269 0.612359
\(669\) 15.2706 0.590395
\(670\) 4.56450 0.176342
\(671\) 1.52532 0.0588844
\(672\) 6.84029 0.263870
\(673\) −7.93749 −0.305968 −0.152984 0.988229i \(-0.548888\pi\)
−0.152984 + 0.988229i \(0.548888\pi\)
\(674\) 61.2635 2.35978
\(675\) −5.55293 −0.213733
\(676\) 118.093 4.54203
\(677\) 2.56547 0.0985990 0.0492995 0.998784i \(-0.484301\pi\)
0.0492995 + 0.998784i \(0.484301\pi\)
\(678\) 29.3059 1.12549
\(679\) −11.2534 −0.431866
\(680\) 0 0
\(681\) 1.04845 0.0401768
\(682\) −59.5849 −2.28162
\(683\) 14.5646 0.557299 0.278650 0.960393i \(-0.410113\pi\)
0.278650 + 0.960393i \(0.410113\pi\)
\(684\) 4.59321 0.175626
\(685\) 19.6088 0.749215
\(686\) −46.2183 −1.76462
\(687\) 7.69645 0.293638
\(688\) −16.3978 −0.625160
\(689\) −17.2484 −0.657111
\(690\) −0.451308 −0.0171810
\(691\) −42.9625 −1.63437 −0.817185 0.576376i \(-0.804467\pi\)
−0.817185 + 0.576376i \(0.804467\pi\)
\(692\) 39.4146 1.49832
\(693\) −7.56734 −0.287459
\(694\) 26.7073 1.01380
\(695\) 3.61139 0.136988
\(696\) 64.1458 2.43144
\(697\) 0 0
\(698\) 29.0370 1.09907
\(699\) −21.1251 −0.799025
\(700\) 6.96269 0.263165
\(701\) −46.4002 −1.75251 −0.876256 0.481846i \(-0.839967\pi\)
−0.876256 + 0.481846i \(0.839967\pi\)
\(702\) 88.6598 3.34625
\(703\) −0.464077 −0.0175030
\(704\) −11.3476 −0.427680
\(705\) 14.9694 0.563779
\(706\) 28.5605 1.07489
\(707\) −1.09716 −0.0412630
\(708\) −68.6036 −2.57828
\(709\) −41.5322 −1.55977 −0.779887 0.625920i \(-0.784724\pi\)
−0.779887 + 0.625920i \(0.784724\pi\)
\(710\) 10.6958 0.401408
\(711\) −7.19840 −0.269961
\(712\) 61.5060 2.30503
\(713\) 1.03317 0.0386927
\(714\) 0 0
\(715\) −20.8877 −0.781156
\(716\) −37.7762 −1.41176
\(717\) 8.72379 0.325796
\(718\) 80.7229 3.01255
\(719\) −0.644319 −0.0240290 −0.0120145 0.999928i \(-0.503824\pi\)
−0.0120145 + 0.999928i \(0.503824\pi\)
\(720\) −8.50785 −0.317069
\(721\) −0.252651 −0.00940922
\(722\) −46.3313 −1.72427
\(723\) 38.5456 1.43353
\(724\) −20.9856 −0.779925
\(725\) 8.80316 0.326941
\(726\) −0.623142 −0.0231270
\(727\) 42.4141 1.57305 0.786525 0.617558i \(-0.211878\pi\)
0.786525 + 0.617558i \(0.211878\pi\)
\(728\) −59.6021 −2.20900
\(729\) 24.7365 0.916167
\(730\) −3.04305 −0.112628
\(731\) 0 0
\(732\) 2.51062 0.0927951
\(733\) −43.4227 −1.60386 −0.801928 0.597421i \(-0.796192\pi\)
−0.801928 + 0.597421i \(0.796192\pi\)
\(734\) −48.3749 −1.78555
\(735\) −5.51088 −0.203272
\(736\) −0.483369 −0.0178172
\(737\) 5.97145 0.219961
\(738\) 22.7901 0.838914
\(739\) −28.0864 −1.03318 −0.516588 0.856234i \(-0.672798\pi\)
−0.516588 + 0.856234i \(0.672798\pi\)
\(740\) 2.67804 0.0984468
\(741\) 5.95775 0.218863
\(742\) 11.0108 0.404220
\(743\) −45.2000 −1.65823 −0.829114 0.559079i \(-0.811155\pi\)
−0.829114 + 0.559079i \(0.811155\pi\)
\(744\) −52.5818 −1.92774
\(745\) 1.26402 0.0463101
\(746\) −51.0340 −1.86849
\(747\) 5.11134 0.187014
\(748\) 0 0
\(749\) 29.0110 1.06004
\(750\) 3.15213 0.115100
\(751\) −24.0654 −0.878158 −0.439079 0.898448i \(-0.644695\pi\)
−0.439079 + 0.898448i \(0.644695\pi\)
\(752\) 71.1931 2.59614
\(753\) −28.2671 −1.03011
\(754\) −140.554 −5.11867
\(755\) −16.2206 −0.590330
\(756\) −38.6634 −1.40617
\(757\) −18.0018 −0.654285 −0.327143 0.944975i \(-0.606086\pi\)
−0.327143 + 0.944975i \(0.606086\pi\)
\(758\) 86.1730 3.12994
\(759\) −0.590417 −0.0214308
\(760\) −4.33926 −0.157401
\(761\) −23.4172 −0.848874 −0.424437 0.905458i \(-0.639528\pi\)
−0.424437 + 0.905458i \(0.639528\pi\)
\(762\) −47.8483 −1.73336
\(763\) 9.38575 0.339787
\(764\) −48.6145 −1.75881
\(765\) 0 0
\(766\) −53.5685 −1.93551
\(767\) 80.5938 2.91007
\(768\) −39.9614 −1.44198
\(769\) −9.52627 −0.343526 −0.171763 0.985138i \(-0.554946\pi\)
−0.171763 + 0.985138i \(0.554946\pi\)
\(770\) 13.3341 0.480526
\(771\) −2.38986 −0.0860688
\(772\) −19.7548 −0.710991
\(773\) 20.0047 0.719519 0.359759 0.933045i \(-0.382859\pi\)
0.359759 + 0.933045i \(0.382859\pi\)
\(774\) 9.84337 0.353813
\(775\) −7.21615 −0.259212
\(776\) −40.4715 −1.45284
\(777\) 1.25845 0.0451467
\(778\) −29.5653 −1.05997
\(779\) 4.75377 0.170321
\(780\) −34.3803 −1.23101
\(781\) 13.9927 0.500698
\(782\) 0 0
\(783\) −48.8833 −1.74695
\(784\) −26.2093 −0.936046
\(785\) 8.52619 0.304313
\(786\) 6.24912 0.222899
\(787\) −18.1104 −0.645566 −0.322783 0.946473i \(-0.604618\pi\)
−0.322783 + 0.946473i \(0.604618\pi\)
\(788\) −57.1214 −2.03486
\(789\) 9.78890 0.348494
\(790\) 12.6840 0.451275
\(791\) 15.0135 0.533819
\(792\) −27.2150 −0.967044
\(793\) −2.94941 −0.104737
\(794\) −8.43873 −0.299479
\(795\) 3.40525 0.120772
\(796\) −11.3759 −0.403207
\(797\) 44.1981 1.56558 0.782788 0.622289i \(-0.213797\pi\)
0.782788 + 0.622289i \(0.213797\pi\)
\(798\) −3.80324 −0.134633
\(799\) 0 0
\(800\) 3.37606 0.119362
\(801\) −15.0999 −0.533527
\(802\) −6.51785 −0.230153
\(803\) −3.98102 −0.140487
\(804\) 9.82877 0.346634
\(805\) −0.231207 −0.00814896
\(806\) 115.215 4.05828
\(807\) −17.2443 −0.607029
\(808\) −3.94581 −0.138813
\(809\) −20.3971 −0.717123 −0.358562 0.933506i \(-0.616733\pi\)
−0.358562 + 0.933506i \(0.616733\pi\)
\(810\) −6.75760 −0.237438
\(811\) −2.09854 −0.0736896 −0.0368448 0.999321i \(-0.511731\pi\)
−0.0368448 + 0.999321i \(0.511731\pi\)
\(812\) 61.2937 2.15099
\(813\) −15.6653 −0.549404
\(814\) 5.12865 0.179759
\(815\) −15.4603 −0.541551
\(816\) 0 0
\(817\) 2.05322 0.0718332
\(818\) −77.4704 −2.70869
\(819\) 14.6325 0.511299
\(820\) −27.4325 −0.957985
\(821\) −4.94235 −0.172489 −0.0862446 0.996274i \(-0.527487\pi\)
−0.0862446 + 0.996274i \(0.527487\pi\)
\(822\) 61.8096 2.15586
\(823\) 11.4540 0.399261 0.199631 0.979871i \(-0.436026\pi\)
0.199631 + 0.979871i \(0.436026\pi\)
\(824\) −0.908630 −0.0316536
\(825\) 4.12374 0.143570
\(826\) −51.4486 −1.79012
\(827\) 19.3443 0.672666 0.336333 0.941743i \(-0.390813\pi\)
0.336333 + 0.941743i \(0.390813\pi\)
\(828\) 0.880170 0.0305880
\(829\) −26.7634 −0.929530 −0.464765 0.885434i \(-0.653861\pi\)
−0.464765 + 0.885434i \(0.653861\pi\)
\(830\) −9.00646 −0.312619
\(831\) −33.7009 −1.16907
\(832\) 21.9422 0.760708
\(833\) 0 0
\(834\) 11.3836 0.394182
\(835\) 3.67070 0.127030
\(836\) −10.5882 −0.366200
\(837\) 40.0708 1.38505
\(838\) −46.8978 −1.62006
\(839\) −52.3721 −1.80809 −0.904043 0.427441i \(-0.859415\pi\)
−0.904043 + 0.427441i \(0.859415\pi\)
\(840\) 11.7669 0.405996
\(841\) 48.4956 1.67226
\(842\) 74.2876 2.56012
\(843\) 19.4840 0.671063
\(844\) 30.7633 1.05892
\(845\) 27.3891 0.942215
\(846\) −42.7362 −1.46930
\(847\) −0.319238 −0.0109691
\(848\) 16.1951 0.556141
\(849\) 13.0982 0.449531
\(850\) 0 0
\(851\) −0.0889284 −0.00304843
\(852\) 23.0314 0.789043
\(853\) −0.124531 −0.00426387 −0.00213193 0.999998i \(-0.500679\pi\)
−0.00213193 + 0.999998i \(0.500679\pi\)
\(854\) 1.88281 0.0644285
\(855\) 1.06530 0.0364324
\(856\) 104.335 3.56609
\(857\) −22.6150 −0.772513 −0.386257 0.922391i \(-0.626232\pi\)
−0.386257 + 0.922391i \(0.626232\pi\)
\(858\) −65.8408 −2.24777
\(859\) −38.2254 −1.30423 −0.652117 0.758118i \(-0.726119\pi\)
−0.652117 + 0.758118i \(0.726119\pi\)
\(860\) −11.8485 −0.404031
\(861\) −12.8909 −0.439322
\(862\) −41.0659 −1.39871
\(863\) 22.1777 0.754939 0.377469 0.926022i \(-0.376794\pi\)
0.377469 + 0.926022i \(0.376794\pi\)
\(864\) −18.7470 −0.637787
\(865\) 9.14139 0.310816
\(866\) −35.9904 −1.22300
\(867\) 0 0
\(868\) −50.2438 −1.70539
\(869\) 16.5936 0.562901
\(870\) 27.7487 0.940770
\(871\) −11.5466 −0.391241
\(872\) 33.7547 1.14308
\(873\) 9.93585 0.336278
\(874\) 0.268756 0.00909080
\(875\) 1.61485 0.0545918
\(876\) −6.55261 −0.221392
\(877\) 27.0578 0.913676 0.456838 0.889550i \(-0.348982\pi\)
0.456838 + 0.889550i \(0.348982\pi\)
\(878\) 76.4475 2.57998
\(879\) −8.91630 −0.300739
\(880\) 19.6121 0.661125
\(881\) 36.8510 1.24154 0.620771 0.783992i \(-0.286820\pi\)
0.620771 + 0.783992i \(0.286820\pi\)
\(882\) 15.7331 0.529760
\(883\) 20.6901 0.696277 0.348138 0.937443i \(-0.386814\pi\)
0.348138 + 0.937443i \(0.386814\pi\)
\(884\) 0 0
\(885\) −15.9112 −0.534848
\(886\) 66.5851 2.23697
\(887\) 14.9256 0.501152 0.250576 0.968097i \(-0.419380\pi\)
0.250576 + 0.968097i \(0.419380\pi\)
\(888\) 4.52587 0.151878
\(889\) −24.5128 −0.822134
\(890\) 26.6067 0.891860
\(891\) −8.84054 −0.296169
\(892\) 52.4770 1.75706
\(893\) −8.91433 −0.298307
\(894\) 3.98436 0.133257
\(895\) −8.76138 −0.292861
\(896\) −24.9108 −0.832213
\(897\) 1.14165 0.0381186
\(898\) 39.7925 1.32789
\(899\) −63.5249 −2.11867
\(900\) −6.14750 −0.204917
\(901\) 0 0
\(902\) −52.5352 −1.74923
\(903\) −5.56779 −0.185285
\(904\) 53.9943 1.79582
\(905\) −4.86717 −0.161790
\(906\) −51.1296 −1.69867
\(907\) 27.3287 0.907435 0.453717 0.891146i \(-0.350098\pi\)
0.453717 + 0.891146i \(0.350098\pi\)
\(908\) 3.60298 0.119569
\(909\) 0.968706 0.0321299
\(910\) −25.7832 −0.854703
\(911\) 47.3659 1.56930 0.784650 0.619939i \(-0.212843\pi\)
0.784650 + 0.619939i \(0.212843\pi\)
\(912\) −5.59393 −0.185233
\(913\) −11.7826 −0.389947
\(914\) −10.6860 −0.353463
\(915\) 0.582285 0.0192497
\(916\) 26.4486 0.873888
\(917\) 3.20145 0.105721
\(918\) 0 0
\(919\) 25.7946 0.850884 0.425442 0.904986i \(-0.360119\pi\)
0.425442 + 0.904986i \(0.360119\pi\)
\(920\) −0.831507 −0.0274140
\(921\) 6.02888 0.198658
\(922\) −60.2300 −1.98357
\(923\) −27.0567 −0.890583
\(924\) 28.7123 0.944565
\(925\) 0.621115 0.0204222
\(926\) −57.8150 −1.89992
\(927\) 0.223071 0.00732660
\(928\) 29.7200 0.975606
\(929\) 24.7022 0.810452 0.405226 0.914217i \(-0.367193\pi\)
0.405226 + 0.914217i \(0.367193\pi\)
\(930\) −22.7463 −0.745879
\(931\) 3.28175 0.107555
\(932\) −72.5958 −2.37796
\(933\) −10.0742 −0.329815
\(934\) 54.7292 1.79080
\(935\) 0 0
\(936\) 52.6239 1.72007
\(937\) 37.0383 1.20999 0.604994 0.796230i \(-0.293175\pi\)
0.604994 + 0.796230i \(0.293175\pi\)
\(938\) 7.37098 0.240671
\(939\) 27.7309 0.904964
\(940\) 51.4418 1.67785
\(941\) −34.2914 −1.11787 −0.558934 0.829212i \(-0.688790\pi\)
−0.558934 + 0.829212i \(0.688790\pi\)
\(942\) 26.8757 0.875657
\(943\) 0.910938 0.0296642
\(944\) −75.6721 −2.46292
\(945\) −8.96715 −0.291701
\(946\) −22.6908 −0.737740
\(947\) 37.1012 1.20563 0.602814 0.797882i \(-0.294046\pi\)
0.602814 + 0.797882i \(0.294046\pi\)
\(948\) 27.3125 0.887068
\(949\) 7.69784 0.249882
\(950\) −1.87711 −0.0609015
\(951\) 20.0306 0.649537
\(952\) 0 0
\(953\) 26.9203 0.872033 0.436016 0.899939i \(-0.356389\pi\)
0.436016 + 0.899939i \(0.356389\pi\)
\(954\) −9.72168 −0.314751
\(955\) −11.2751 −0.364854
\(956\) 29.9791 0.969592
\(957\) 36.3019 1.17347
\(958\) 82.7311 2.67292
\(959\) 31.6653 1.02253
\(960\) −4.33191 −0.139812
\(961\) 21.0728 0.679768
\(962\) −9.91692 −0.319734
\(963\) −25.6144 −0.825413
\(964\) 132.461 4.26628
\(965\) −4.58171 −0.147490
\(966\) −0.728794 −0.0234486
\(967\) 26.4462 0.850452 0.425226 0.905087i \(-0.360195\pi\)
0.425226 + 0.905087i \(0.360195\pi\)
\(968\) −1.14810 −0.0369014
\(969\) 0 0
\(970\) −17.5075 −0.562132
\(971\) 9.69327 0.311072 0.155536 0.987830i \(-0.450290\pi\)
0.155536 + 0.987830i \(0.450290\pi\)
\(972\) 57.2760 1.83713
\(973\) 5.83185 0.186961
\(974\) 46.8506 1.50119
\(975\) −7.97379 −0.255366
\(976\) 2.76930 0.0886431
\(977\) 5.81399 0.186006 0.0930029 0.995666i \(-0.470353\pi\)
0.0930029 + 0.995666i \(0.470353\pi\)
\(978\) −48.7329 −1.55831
\(979\) 34.8079 1.11247
\(980\) −18.9380 −0.604952
\(981\) −8.28686 −0.264579
\(982\) −9.98153 −0.318523
\(983\) −31.6929 −1.01085 −0.505423 0.862872i \(-0.668663\pi\)
−0.505423 + 0.862872i \(0.668663\pi\)
\(984\) −46.3608 −1.47793
\(985\) −13.2481 −0.422119
\(986\) 0 0
\(987\) 24.1733 0.769443
\(988\) 20.4736 0.651353
\(989\) 0.393448 0.0125109
\(990\) −11.7729 −0.374167
\(991\) 48.4673 1.53961 0.769807 0.638277i \(-0.220352\pi\)
0.769807 + 0.638277i \(0.220352\pi\)
\(992\) −24.3622 −0.773499
\(993\) 4.86704 0.154451
\(994\) 17.2722 0.547840
\(995\) −2.63839 −0.0836426
\(996\) −19.3937 −0.614512
\(997\) −6.08879 −0.192834 −0.0964170 0.995341i \(-0.530738\pi\)
−0.0964170 + 0.995341i \(0.530738\pi\)
\(998\) 85.7414 2.71410
\(999\) −3.44901 −0.109122
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.o.1.6 6
5.4 even 2 7225.2.a.z.1.1 6
17.4 even 4 1445.2.d.g.866.1 12
17.8 even 8 85.2.e.a.81.1 yes 12
17.13 even 4 1445.2.d.g.866.2 12
17.15 even 8 85.2.e.a.21.6 12
17.16 even 2 1445.2.a.n.1.6 6
51.8 odd 8 765.2.k.b.676.6 12
51.32 odd 8 765.2.k.b.361.1 12
68.15 odd 8 1360.2.bt.d.1041.4 12
68.59 odd 8 1360.2.bt.d.81.4 12
85.8 odd 8 425.2.j.b.149.1 12
85.32 odd 8 425.2.j.b.174.1 12
85.42 odd 8 425.2.j.c.149.6 12
85.49 even 8 425.2.e.f.276.1 12
85.59 even 8 425.2.e.f.251.6 12
85.83 odd 8 425.2.j.c.174.6 12
85.84 even 2 7225.2.a.bb.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.6 12 17.15 even 8
85.2.e.a.81.1 yes 12 17.8 even 8
425.2.e.f.251.6 12 85.59 even 8
425.2.e.f.276.1 12 85.49 even 8
425.2.j.b.149.1 12 85.8 odd 8
425.2.j.b.174.1 12 85.32 odd 8
425.2.j.c.149.6 12 85.42 odd 8
425.2.j.c.174.6 12 85.83 odd 8
765.2.k.b.361.1 12 51.32 odd 8
765.2.k.b.676.6 12 51.8 odd 8
1360.2.bt.d.81.4 12 68.59 odd 8
1360.2.bt.d.1041.4 12 68.15 odd 8
1445.2.a.n.1.6 6 17.16 even 2
1445.2.a.o.1.6 6 1.1 even 1 trivial
1445.2.d.g.866.1 12 17.4 even 4
1445.2.d.g.866.2 12 17.13 even 4
7225.2.a.z.1.1 6 5.4 even 2
7225.2.a.bb.1.1 6 85.84 even 2