Properties

Label 765.2.k.b.361.1
Level $765$
Weight $2$
Character 765.361
Analytic conductor $6.109$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [765,2,Mod(361,765)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("765.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 361.1
Root \(-0.254679i\) of defining polynomial
Character \(\chi\) \(=\) 765.361
Dual form 765.2.k.b.676.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51230i q^{2} -4.31167 q^{4} +(-0.707107 + 0.707107i) q^{5} +(1.14187 + 1.14187i) q^{7} +5.80761i q^{8} +(1.77647 + 1.77647i) q^{10} +(2.32404 + 2.32404i) q^{11} +6.35524 q^{13} +(2.86872 - 2.86872i) q^{14} +5.96715 q^{16} +(0.768287 - 4.05089i) q^{17} -0.747167i q^{19} +(3.04881 - 3.04881i) q^{20} +(5.83869 - 5.83869i) q^{22} +(-0.101240 - 0.101240i) q^{23} -1.00000i q^{25} -15.9663i q^{26} +(-4.92337 - 4.92337i) q^{28} +(-6.22477 + 6.22477i) q^{29} +(5.10259 - 5.10259i) q^{31} -3.37606i q^{32} +(-10.1771 - 1.93017i) q^{34} -1.61485 q^{35} +(-0.439195 + 0.439195i) q^{37} -1.87711 q^{38} +(-4.10660 - 4.10660i) q^{40} +(4.49889 + 4.49889i) q^{41} +2.74801i q^{43} +(-10.0205 - 10.0205i) q^{44} +(-0.254346 + 0.254346i) q^{46} +11.9308 q^{47} -4.39226i q^{49} -2.51230 q^{50} -27.4017 q^{52} -2.71404i q^{53} -3.28669 q^{55} +(-6.63154 + 6.63154i) q^{56} +(15.6385 + 15.6385i) q^{58} -12.6815i q^{59} +(0.328162 + 0.328162i) q^{61} +(-12.8193 - 12.8193i) q^{62} +3.45261 q^{64} +(-4.49384 + 4.49384i) q^{65} +1.81686 q^{67} +(-3.31260 + 17.4661i) q^{68} +4.05699i q^{70} +(3.01043 - 3.01043i) q^{71} +(-0.856488 + 0.856488i) q^{73} +(1.10339 + 1.10339i) q^{74} +3.22154i q^{76} +5.30750i q^{77} +(-3.57000 - 3.57000i) q^{79} +(-4.21941 + 4.21941i) q^{80} +(11.3026 - 11.3026i) q^{82} +3.58494i q^{83} +(2.32115 + 3.40767i) q^{85} +6.90384 q^{86} +(-13.4971 + 13.4971i) q^{88} +10.5906 q^{89} +(7.25687 + 7.25687i) q^{91} +(0.436515 + 0.436515i) q^{92} -29.9739i q^{94} +(0.528327 + 0.528327i) q^{95} +(-4.92762 + 4.92762i) q^{97} -11.0347 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 4 q^{10} + 4 q^{11} + 4 q^{14} + 4 q^{16} - 12 q^{17} + 8 q^{20} + 20 q^{22} - 12 q^{23} + 4 q^{28} + 12 q^{29} - 12 q^{34} - 16 q^{35} + 12 q^{37} - 24 q^{38} - 8 q^{40} + 24 q^{41} - 8 q^{44}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51230i 1.77647i −0.459392 0.888233i \(-0.651933\pi\)
0.459392 0.888233i \(-0.348067\pi\)
\(3\) 0 0
\(4\) −4.31167 −2.15583
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 1.14187 + 1.14187i 0.431586 + 0.431586i 0.889168 0.457581i \(-0.151284\pi\)
−0.457581 + 0.889168i \(0.651284\pi\)
\(8\) 5.80761i 2.05330i
\(9\) 0 0
\(10\) 1.77647 + 1.77647i 0.561768 + 0.561768i
\(11\) 2.32404 + 2.32404i 0.700724 + 0.700724i 0.964566 0.263842i \(-0.0849897\pi\)
−0.263842 + 0.964566i \(0.584990\pi\)
\(12\) 0 0
\(13\) 6.35524 1.76263 0.881314 0.472531i \(-0.156660\pi\)
0.881314 + 0.472531i \(0.156660\pi\)
\(14\) 2.86872 2.86872i 0.766699 0.766699i
\(15\) 0 0
\(16\) 5.96715 1.49179
\(17\) 0.768287 4.05089i 0.186337 0.982486i
\(18\) 0 0
\(19\) 0.747167i 0.171412i −0.996320 0.0857059i \(-0.972685\pi\)
0.996320 0.0857059i \(-0.0273145\pi\)
\(20\) 3.04881 3.04881i 0.681735 0.681735i
\(21\) 0 0
\(22\) 5.83869 5.83869i 1.24481 1.24481i
\(23\) −0.101240 0.101240i −0.0211101 0.0211101i 0.696473 0.717583i \(-0.254752\pi\)
−0.717583 + 0.696473i \(0.754752\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 15.9663i 3.13125i
\(27\) 0 0
\(28\) −4.92337 4.92337i −0.930429 0.930429i
\(29\) −6.22477 + 6.22477i −1.15591 + 1.15591i −0.170565 + 0.985346i \(0.554559\pi\)
−0.985346 + 0.170565i \(0.945441\pi\)
\(30\) 0 0
\(31\) 5.10259 5.10259i 0.916452 0.916452i −0.0803174 0.996769i \(-0.525593\pi\)
0.996769 + 0.0803174i \(0.0255934\pi\)
\(32\) 3.37606i 0.596809i
\(33\) 0 0
\(34\) −10.1771 1.93017i −1.74535 0.331021i
\(35\) −1.61485 −0.272959
\(36\) 0 0
\(37\) −0.439195 + 0.439195i −0.0722032 + 0.0722032i −0.742286 0.670083i \(-0.766258\pi\)
0.670083 + 0.742286i \(0.266258\pi\)
\(38\) −1.87711 −0.304507
\(39\) 0 0
\(40\) −4.10660 4.10660i −0.649311 0.649311i
\(41\) 4.49889 + 4.49889i 0.702609 + 0.702609i 0.964970 0.262361i \(-0.0845012\pi\)
−0.262361 + 0.964970i \(0.584501\pi\)
\(42\) 0 0
\(43\) 2.74801i 0.419068i 0.977801 + 0.209534i \(0.0671947\pi\)
−0.977801 + 0.209534i \(0.932805\pi\)
\(44\) −10.0205 10.0205i −1.51064 1.51064i
\(45\) 0 0
\(46\) −0.254346 + 0.254346i −0.0375013 + 0.0375013i
\(47\) 11.9308 1.74029 0.870146 0.492794i \(-0.164024\pi\)
0.870146 + 0.492794i \(0.164024\pi\)
\(48\) 0 0
\(49\) 4.39226i 0.627466i
\(50\) −2.51230 −0.355293
\(51\) 0 0
\(52\) −27.4017 −3.79993
\(53\) 2.71404i 0.372802i −0.982474 0.186401i \(-0.940318\pi\)
0.982474 0.186401i \(-0.0596823\pi\)
\(54\) 0 0
\(55\) −3.28669 −0.443177
\(56\) −6.63154 + 6.63154i −0.886177 + 0.886177i
\(57\) 0 0
\(58\) 15.6385 + 15.6385i 2.05344 + 2.05344i
\(59\) 12.6815i 1.65099i −0.564413 0.825493i \(-0.690897\pi\)
0.564413 0.825493i \(-0.309103\pi\)
\(60\) 0 0
\(61\) 0.328162 + 0.328162i 0.0420168 + 0.0420168i 0.727803 0.685786i \(-0.240542\pi\)
−0.685786 + 0.727803i \(0.740542\pi\)
\(62\) −12.8193 12.8193i −1.62805 1.62805i
\(63\) 0 0
\(64\) 3.45261 0.431576
\(65\) −4.49384 + 4.49384i −0.557392 + 0.557392i
\(66\) 0 0
\(67\) 1.81686 0.221965 0.110982 0.993822i \(-0.464600\pi\)
0.110982 + 0.993822i \(0.464600\pi\)
\(68\) −3.31260 + 17.4661i −0.401712 + 2.11808i
\(69\) 0 0
\(70\) 4.05699i 0.484903i
\(71\) 3.01043 3.01043i 0.357272 0.357272i −0.505535 0.862806i \(-0.668705\pi\)
0.862806 + 0.505535i \(0.168705\pi\)
\(72\) 0 0
\(73\) −0.856488 + 0.856488i −0.100244 + 0.100244i −0.755450 0.655206i \(-0.772582\pi\)
0.655206 + 0.755450i \(0.272582\pi\)
\(74\) 1.10339 + 1.10339i 0.128267 + 0.128267i
\(75\) 0 0
\(76\) 3.22154i 0.369535i
\(77\) 5.30750i 0.604846i
\(78\) 0 0
\(79\) −3.57000 3.57000i −0.401656 0.401656i 0.477160 0.878816i \(-0.341666\pi\)
−0.878816 + 0.477160i \(0.841666\pi\)
\(80\) −4.21941 + 4.21941i −0.471744 + 0.471744i
\(81\) 0 0
\(82\) 11.3026 11.3026i 1.24816 1.24816i
\(83\) 3.58494i 0.393498i 0.980454 + 0.196749i \(0.0630385\pi\)
−0.980454 + 0.196749i \(0.936962\pi\)
\(84\) 0 0
\(85\) 2.32115 + 3.40767i 0.251764 + 0.369614i
\(86\) 6.90384 0.744460
\(87\) 0 0
\(88\) −13.4971 + 13.4971i −1.43880 + 1.43880i
\(89\) 10.5906 1.12260 0.561300 0.827613i \(-0.310302\pi\)
0.561300 + 0.827613i \(0.310302\pi\)
\(90\) 0 0
\(91\) 7.25687 + 7.25687i 0.760726 + 0.760726i
\(92\) 0.436515 + 0.436515i 0.0455098 + 0.0455098i
\(93\) 0 0
\(94\) 29.9739i 3.09157i
\(95\) 0.528327 + 0.528327i 0.0542052 + 0.0542052i
\(96\) 0 0
\(97\) −4.92762 + 4.92762i −0.500324 + 0.500324i −0.911539 0.411215i \(-0.865105\pi\)
0.411215 + 0.911539i \(0.365105\pi\)
\(98\) −11.0347 −1.11467
\(99\) 0 0
\(100\) 4.31167i 0.431167i
\(101\) 0.679421 0.0676049 0.0338025 0.999429i \(-0.489238\pi\)
0.0338025 + 0.999429i \(0.489238\pi\)
\(102\) 0 0
\(103\) −0.156455 −0.0154160 −0.00770798 0.999970i \(-0.502454\pi\)
−0.00770798 + 0.999970i \(0.502454\pi\)
\(104\) 36.9088i 3.61921i
\(105\) 0 0
\(106\) −6.81849 −0.662270
\(107\) −12.7033 + 12.7033i −1.22807 + 1.22807i −0.263382 + 0.964692i \(0.584838\pi\)
−0.964692 + 0.263382i \(0.915162\pi\)
\(108\) 0 0
\(109\) 4.10981 + 4.10981i 0.393649 + 0.393649i 0.875986 0.482337i \(-0.160212\pi\)
−0.482337 + 0.875986i \(0.660212\pi\)
\(110\) 8.25715i 0.787289i
\(111\) 0 0
\(112\) 6.81371 + 6.81371i 0.643835 + 0.643835i
\(113\) 6.57408 + 6.57408i 0.618438 + 0.618438i 0.945131 0.326693i \(-0.105934\pi\)
−0.326693 + 0.945131i \(0.605934\pi\)
\(114\) 0 0
\(115\) 0.143175 0.0133512
\(116\) 26.8392 26.8392i 2.49195 2.49195i
\(117\) 0 0
\(118\) −31.8597 −2.93292
\(119\) 5.50288 3.74831i 0.504448 0.343607i
\(120\) 0 0
\(121\) 0.197689i 0.0179717i
\(122\) 0.824442 0.824442i 0.0746414 0.0746414i
\(123\) 0 0
\(124\) −22.0007 + 22.0007i −1.97572 + 1.97572i
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 15.1796i 1.34698i 0.739198 + 0.673488i \(0.235205\pi\)
−0.739198 + 0.673488i \(0.764795\pi\)
\(128\) 15.4261i 1.36349i
\(129\) 0 0
\(130\) 11.2899 + 11.2899i 0.990188 + 0.990188i
\(131\) −1.40184 + 1.40184i −0.122480 + 0.122480i −0.765690 0.643210i \(-0.777602\pi\)
0.643210 + 0.765690i \(0.277602\pi\)
\(132\) 0 0
\(133\) 0.853168 0.853168i 0.0739790 0.0739790i
\(134\) 4.56450i 0.394313i
\(135\) 0 0
\(136\) 23.5260 + 4.46191i 2.01734 + 0.382606i
\(137\) −19.6088 −1.67530 −0.837648 0.546211i \(-0.816070\pi\)
−0.837648 + 0.546211i \(0.816070\pi\)
\(138\) 0 0
\(139\) −2.55364 + 2.55364i −0.216597 + 0.216597i −0.807063 0.590466i \(-0.798944\pi\)
0.590466 + 0.807063i \(0.298944\pi\)
\(140\) 6.96269 0.588455
\(141\) 0 0
\(142\) −7.56310 7.56310i −0.634681 0.634681i
\(143\) 14.7698 + 14.7698i 1.23512 + 1.23512i
\(144\) 0 0
\(145\) 8.80316i 0.731062i
\(146\) 2.15176 + 2.15176i 0.178081 + 0.178081i
\(147\) 0 0
\(148\) 1.89366 1.89366i 0.155658 0.155658i
\(149\) 1.26402 0.103553 0.0517763 0.998659i \(-0.483512\pi\)
0.0517763 + 0.998659i \(0.483512\pi\)
\(150\) 0 0
\(151\) 16.2206i 1.32002i −0.751258 0.660009i \(-0.770553\pi\)
0.751258 0.660009i \(-0.229447\pi\)
\(152\) 4.33926 0.351960
\(153\) 0 0
\(154\) 13.3341 1.07449
\(155\) 7.21615i 0.579615i
\(156\) 0 0
\(157\) −8.52619 −0.680464 −0.340232 0.940341i \(-0.610506\pi\)
−0.340232 + 0.940341i \(0.610506\pi\)
\(158\) −8.96892 + 8.96892i −0.713529 + 0.713529i
\(159\) 0 0
\(160\) 2.38723 + 2.38723i 0.188727 + 0.188727i
\(161\) 0.231207i 0.0182216i
\(162\) 0 0
\(163\) −10.9321 10.9321i −0.856267 0.856267i 0.134629 0.990896i \(-0.457016\pi\)
−0.990896 + 0.134629i \(0.957016\pi\)
\(164\) −19.3977 19.3977i −1.51471 1.51471i
\(165\) 0 0
\(166\) 9.00646 0.699037
\(167\) 2.59558 2.59558i 0.200852 0.200852i −0.599513 0.800365i \(-0.704639\pi\)
0.800365 + 0.599513i \(0.204639\pi\)
\(168\) 0 0
\(169\) 27.3891 2.10686
\(170\) 8.56111 5.83144i 0.656607 0.447251i
\(171\) 0 0
\(172\) 11.8485i 0.903441i
\(173\) 6.46394 6.46394i 0.491444 0.491444i −0.417317 0.908761i \(-0.637030\pi\)
0.908761 + 0.417317i \(0.137030\pi\)
\(174\) 0 0
\(175\) 1.14187 1.14187i 0.0863173 0.0863173i
\(176\) 13.8679 + 13.8679i 1.04533 + 1.04533i
\(177\) 0 0
\(178\) 26.6067i 1.99426i
\(179\) 8.76138i 0.654857i −0.944876 0.327428i \(-0.893818\pi\)
0.944876 0.327428i \(-0.106182\pi\)
\(180\) 0 0
\(181\) 3.44161 + 3.44161i 0.255813 + 0.255813i 0.823349 0.567536i \(-0.192103\pi\)
−0.567536 + 0.823349i \(0.692103\pi\)
\(182\) 18.2314 18.2314i 1.35140 1.35140i
\(183\) 0 0
\(184\) 0.587964 0.587964i 0.0433453 0.0433453i
\(185\) 0.621115i 0.0456653i
\(186\) 0 0
\(187\) 11.2000 7.62890i 0.819022 0.557881i
\(188\) −51.4418 −3.75178
\(189\) 0 0
\(190\) 1.32732 1.32732i 0.0962937 0.0962937i
\(191\) −11.2751 −0.815838 −0.407919 0.913018i \(-0.633745\pi\)
−0.407919 + 0.913018i \(0.633745\pi\)
\(192\) 0 0
\(193\) 3.23976 + 3.23976i 0.233203 + 0.233203i 0.814028 0.580825i \(-0.197270\pi\)
−0.580825 + 0.814028i \(0.697270\pi\)
\(194\) 12.3797 + 12.3797i 0.888809 + 0.888809i
\(195\) 0 0
\(196\) 18.9380i 1.35271i
\(197\) 9.36781 + 9.36781i 0.667429 + 0.667429i 0.957120 0.289691i \(-0.0935526\pi\)
−0.289691 + 0.957120i \(0.593553\pi\)
\(198\) 0 0
\(199\) −1.86562 + 1.86562i −0.132251 + 0.132251i −0.770133 0.637883i \(-0.779810\pi\)
0.637883 + 0.770133i \(0.279810\pi\)
\(200\) 5.80761 0.410660
\(201\) 0 0
\(202\) 1.70691i 0.120098i
\(203\) −14.2158 −0.997751
\(204\) 0 0
\(205\) −6.36239 −0.444369
\(206\) 0.393062i 0.0273860i
\(207\) 0 0
\(208\) 37.9227 2.62946
\(209\) 1.73644 1.73644i 0.120112 0.120112i
\(210\) 0 0
\(211\) 5.04513 + 5.04513i 0.347321 + 0.347321i 0.859111 0.511790i \(-0.171017\pi\)
−0.511790 + 0.859111i \(0.671017\pi\)
\(212\) 11.7020i 0.803699i
\(213\) 0 0
\(214\) 31.9145 + 31.9145i 2.18163 + 2.18163i
\(215\) −1.94314 1.94314i −0.132521 0.132521i
\(216\) 0 0
\(217\) 11.6530 0.791057
\(218\) 10.3251 10.3251i 0.699304 0.699304i
\(219\) 0 0
\(220\) 14.1711 0.955416
\(221\) 4.88265 25.7444i 0.328443 1.73176i
\(222\) 0 0
\(223\) 12.1709i 0.815025i 0.913200 + 0.407512i \(0.133604\pi\)
−0.913200 + 0.407512i \(0.866396\pi\)
\(224\) 3.85502 3.85502i 0.257575 0.257575i
\(225\) 0 0
\(226\) 16.5161 16.5161i 1.09863 1.09863i
\(227\) 0.590883 + 0.590883i 0.0392183 + 0.0392183i 0.726444 0.687226i \(-0.241172\pi\)
−0.687226 + 0.726444i \(0.741172\pi\)
\(228\) 0 0
\(229\) 6.13420i 0.405360i −0.979245 0.202680i \(-0.935035\pi\)
0.979245 0.202680i \(-0.0649651\pi\)
\(230\) 0.359700i 0.0237179i
\(231\) 0 0
\(232\) −36.1511 36.1511i −2.37343 2.37343i
\(233\) 11.9056 11.9056i 0.779962 0.779962i −0.199862 0.979824i \(-0.564049\pi\)
0.979824 + 0.199862i \(0.0640494\pi\)
\(234\) 0 0
\(235\) −8.43638 + 8.43638i −0.550329 + 0.550329i
\(236\) 54.6783i 3.55925i
\(237\) 0 0
\(238\) −9.41689 13.8249i −0.610407 0.896135i
\(239\) −6.95301 −0.449753 −0.224876 0.974387i \(-0.572198\pi\)
−0.224876 + 0.974387i \(0.572198\pi\)
\(240\) 0 0
\(241\) −21.7234 + 21.7234i −1.39933 + 1.39933i −0.597335 + 0.801992i \(0.703774\pi\)
−0.801992 + 0.597335i \(0.796226\pi\)
\(242\) −0.496655 −0.0319262
\(243\) 0 0
\(244\) −1.41492 1.41492i −0.0905812 0.0905812i
\(245\) 3.10580 + 3.10580i 0.198422 + 0.198422i
\(246\) 0 0
\(247\) 4.74843i 0.302135i
\(248\) 29.6339 + 29.6339i 1.88175 + 1.88175i
\(249\) 0 0
\(250\) 1.77647 1.77647i 0.112354 0.112354i
\(251\) −22.5294 −1.42204 −0.711021 0.703171i \(-0.751767\pi\)
−0.711021 + 0.703171i \(0.751767\pi\)
\(252\) 0 0
\(253\) 0.470573i 0.0295846i
\(254\) 38.1359 2.39286
\(255\) 0 0
\(256\) −31.8499 −1.99062
\(257\) 1.90476i 0.118816i 0.998234 + 0.0594079i \(0.0189212\pi\)
−0.998234 + 0.0594079i \(0.981079\pi\)
\(258\) 0 0
\(259\) −1.00301 −0.0623238
\(260\) 19.3759 19.3759i 1.20164 1.20164i
\(261\) 0 0
\(262\) 3.52186 + 3.52186i 0.217581 + 0.217581i
\(263\) 7.80192i 0.481087i 0.970638 + 0.240543i \(0.0773256\pi\)
−0.970638 + 0.240543i \(0.922674\pi\)
\(264\) 0 0
\(265\) 1.91912 + 1.91912i 0.117890 + 0.117890i
\(266\) −2.14342 2.14342i −0.131421 0.131421i
\(267\) 0 0
\(268\) −7.83369 −0.478519
\(269\) −9.71848 + 9.71848i −0.592546 + 0.592546i −0.938318 0.345772i \(-0.887617\pi\)
0.345772 + 0.938318i \(0.387617\pi\)
\(270\) 0 0
\(271\) −12.4855 −0.758438 −0.379219 0.925307i \(-0.623807\pi\)
−0.379219 + 0.925307i \(0.623807\pi\)
\(272\) 4.58448 24.1723i 0.277975 1.46566i
\(273\) 0 0
\(274\) 49.2633i 2.97611i
\(275\) 2.32404 2.32404i 0.140145 0.140145i
\(276\) 0 0
\(277\) −18.9930 + 18.9930i −1.14118 + 1.14118i −0.152944 + 0.988235i \(0.548875\pi\)
−0.988235 + 0.152944i \(0.951125\pi\)
\(278\) 6.41552 + 6.41552i 0.384777 + 0.384777i
\(279\) 0 0
\(280\) 9.37841i 0.560467i
\(281\) 15.5290i 0.926385i 0.886258 + 0.463193i \(0.153296\pi\)
−0.886258 + 0.463193i \(0.846704\pi\)
\(282\) 0 0
\(283\) −7.38186 7.38186i −0.438806 0.438806i 0.452804 0.891610i \(-0.350424\pi\)
−0.891610 + 0.452804i \(0.850424\pi\)
\(284\) −12.9800 + 12.9800i −0.770219 + 0.770219i
\(285\) 0 0
\(286\) 37.1063 37.1063i 2.19414 2.19414i
\(287\) 10.2743i 0.606473i
\(288\) 0 0
\(289\) −15.8195 6.22450i −0.930557 0.366147i
\(290\) −22.1162 −1.29871
\(291\) 0 0
\(292\) 3.69289 3.69289i 0.216110 0.216110i
\(293\) −7.10645 −0.415163 −0.207581 0.978218i \(-0.566559\pi\)
−0.207581 + 0.978218i \(0.566559\pi\)
\(294\) 0 0
\(295\) 8.96715 + 8.96715i 0.522087 + 0.522087i
\(296\) −2.55067 2.55067i −0.148255 0.148255i
\(297\) 0 0
\(298\) 3.17560i 0.183958i
\(299\) −0.643407 0.643407i −0.0372092 0.0372092i
\(300\) 0 0
\(301\) −3.13787 + 3.13787i −0.180864 + 0.180864i
\(302\) −40.7512 −2.34497
\(303\) 0 0
\(304\) 4.45845i 0.255710i
\(305\) −0.464091 −0.0265738
\(306\) 0 0
\(307\) 4.80512 0.274243 0.137121 0.990554i \(-0.456215\pi\)
0.137121 + 0.990554i \(0.456215\pi\)
\(308\) 22.8842i 1.30395i
\(309\) 0 0
\(310\) 18.1292 1.02967
\(311\) 5.67759 5.67759i 0.321947 0.321947i −0.527567 0.849514i \(-0.676896\pi\)
0.849514 + 0.527567i \(0.176896\pi\)
\(312\) 0 0
\(313\) 15.6285 + 15.6285i 0.883374 + 0.883374i 0.993876 0.110502i \(-0.0352458\pi\)
−0.110502 + 0.993876i \(0.535246\pi\)
\(314\) 21.4204i 1.20882i
\(315\) 0 0
\(316\) 15.3927 + 15.3927i 0.865905 + 0.865905i
\(317\) 11.2888 + 11.2888i 0.634041 + 0.634041i 0.949079 0.315038i \(-0.102017\pi\)
−0.315038 + 0.949079i \(0.602017\pi\)
\(318\) 0 0
\(319\) −28.9332 −1.61995
\(320\) −2.44136 + 2.44136i −0.136476 + 0.136476i
\(321\) 0 0
\(322\) −0.580861 −0.0323701
\(323\) −3.02669 0.574039i −0.168410 0.0319404i
\(324\) 0 0
\(325\) 6.35524i 0.352526i
\(326\) −27.4647 + 27.4647i −1.52113 + 1.52113i
\(327\) 0 0
\(328\) −26.1278 + 26.1278i −1.44267 + 1.44267i
\(329\) 13.6235 + 13.6235i 0.751086 + 0.751086i
\(330\) 0 0
\(331\) 3.87911i 0.213215i −0.994301 0.106608i \(-0.966001\pi\)
0.994301 0.106608i \(-0.0339989\pi\)
\(332\) 15.4571i 0.848317i
\(333\) 0 0
\(334\) −6.52088 6.52088i −0.356807 0.356807i
\(335\) −1.28471 + 1.28471i −0.0701914 + 0.0701914i
\(336\) 0 0
\(337\) −17.2431 + 17.2431i −0.939290 + 0.939290i −0.998260 0.0589698i \(-0.981218\pi\)
0.0589698 + 0.998260i \(0.481218\pi\)
\(338\) 68.8098i 3.74276i
\(339\) 0 0
\(340\) −10.0080 14.6928i −0.542762 0.796827i
\(341\) 23.7172 1.28436
\(342\) 0 0
\(343\) 13.0085 13.0085i 0.702392 0.702392i
\(344\) −15.9594 −0.860473
\(345\) 0 0
\(346\) −16.2394 16.2394i −0.873034 0.873034i
\(347\) −7.51698 7.51698i −0.403532 0.403532i 0.475943 0.879476i \(-0.342107\pi\)
−0.879476 + 0.475943i \(0.842107\pi\)
\(348\) 0 0
\(349\) 11.5579i 0.618682i −0.950951 0.309341i \(-0.899892\pi\)
0.950951 0.309341i \(-0.100108\pi\)
\(350\) −2.86872 2.86872i −0.153340 0.153340i
\(351\) 0 0
\(352\) 7.84609 7.84609i 0.418198 0.418198i
\(353\) 11.3682 0.605070 0.302535 0.953138i \(-0.402167\pi\)
0.302535 + 0.953138i \(0.402167\pi\)
\(354\) 0 0
\(355\) 4.25738i 0.225958i
\(356\) −45.6631 −2.42014
\(357\) 0 0
\(358\) −22.0113 −1.16333
\(359\) 32.1310i 1.69581i −0.530147 0.847906i \(-0.677863\pi\)
0.530147 0.847906i \(-0.322137\pi\)
\(360\) 0 0
\(361\) 18.4417 0.970618
\(362\) 8.64637 8.64637i 0.454443 0.454443i
\(363\) 0 0
\(364\) −31.2892 31.2892i −1.64000 1.64000i
\(365\) 1.21126i 0.0634001i
\(366\) 0 0
\(367\) −13.6155 13.6155i −0.710723 0.710723i 0.255964 0.966686i \(-0.417607\pi\)
−0.966686 + 0.255964i \(0.917607\pi\)
\(368\) −0.604116 0.604116i −0.0314917 0.0314917i
\(369\) 0 0
\(370\) −1.56043 −0.0811229
\(371\) 3.09908 3.09908i 0.160896 0.160896i
\(372\) 0 0
\(373\) −20.3136 −1.05180 −0.525900 0.850547i \(-0.676271\pi\)
−0.525900 + 0.850547i \(0.676271\pi\)
\(374\) −19.1661 28.1377i −0.991056 1.45497i
\(375\) 0 0
\(376\) 69.2897i 3.57334i
\(377\) −39.5599 + 39.5599i −2.03744 + 2.03744i
\(378\) 0 0
\(379\) 24.2540 24.2540i 1.24585 1.24585i 0.288308 0.957538i \(-0.406907\pi\)
0.957538 0.288308i \(-0.0930928\pi\)
\(380\) −2.27797 2.27797i −0.116857 0.116857i
\(381\) 0 0
\(382\) 28.3265i 1.44931i
\(383\) 21.3225i 1.08953i −0.838589 0.544764i \(-0.816619\pi\)
0.838589 0.544764i \(-0.183381\pi\)
\(384\) 0 0
\(385\) −3.75297 3.75297i −0.191269 0.191269i
\(386\) 8.13925 8.13925i 0.414277 0.414277i
\(387\) 0 0
\(388\) 21.2463 21.2463i 1.07862 1.07862i
\(389\) 11.7682i 0.596672i 0.954461 + 0.298336i \(0.0964316\pi\)
−0.954461 + 0.298336i \(0.903568\pi\)
\(390\) 0 0
\(391\) −0.487895 + 0.332332i −0.0246739 + 0.0168067i
\(392\) 25.5086 1.28838
\(393\) 0 0
\(394\) 23.5348 23.5348i 1.18567 1.18567i
\(395\) 5.04874 0.254030
\(396\) 0 0
\(397\) 2.37514 + 2.37514i 0.119205 + 0.119205i 0.764193 0.644988i \(-0.223138\pi\)
−0.644988 + 0.764193i \(0.723138\pi\)
\(398\) 4.68701 + 4.68701i 0.234939 + 0.234939i
\(399\) 0 0
\(400\) 5.96715i 0.298357i
\(401\) 1.83450 + 1.83450i 0.0916105 + 0.0916105i 0.751427 0.659816i \(-0.229366\pi\)
−0.659816 + 0.751427i \(0.729366\pi\)
\(402\) 0 0
\(403\) 32.4282 32.4282i 1.61536 1.61536i
\(404\) −2.92944 −0.145745
\(405\) 0 0
\(406\) 35.7143i 1.77247i
\(407\) −2.04141 −0.101189
\(408\) 0 0
\(409\) −30.8364 −1.52476 −0.762381 0.647129i \(-0.775970\pi\)
−0.762381 + 0.647129i \(0.775970\pi\)
\(410\) 15.9843i 0.789406i
\(411\) 0 0
\(412\) 0.674582 0.0332343
\(413\) 14.4806 14.4806i 0.712543 0.712543i
\(414\) 0 0
\(415\) −2.53494 2.53494i −0.124435 0.124435i
\(416\) 21.4557i 1.05195i
\(417\) 0 0
\(418\) −4.36248 4.36248i −0.213376 0.213376i
\(419\) −13.1997 13.1997i −0.644849 0.644849i 0.306894 0.951744i \(-0.400710\pi\)
−0.951744 + 0.306894i \(0.900710\pi\)
\(420\) 0 0
\(421\) −29.5695 −1.44113 −0.720565 0.693388i \(-0.756117\pi\)
−0.720565 + 0.693388i \(0.756117\pi\)
\(422\) 12.6749 12.6749i 0.617004 0.617004i
\(423\) 0 0
\(424\) 15.7621 0.765475
\(425\) −4.05089 0.768287i −0.196497 0.0372674i
\(426\) 0 0
\(427\) 0.749436i 0.0362678i
\(428\) 54.7724 54.7724i 2.64752 2.64752i
\(429\) 0 0
\(430\) −4.88175 + 4.88175i −0.235419 + 0.235419i
\(431\) −11.5583 11.5583i −0.556744 0.556744i 0.371635 0.928379i \(-0.378797\pi\)
−0.928379 + 0.371635i \(0.878797\pi\)
\(432\) 0 0
\(433\) 14.3256i 0.688446i 0.938888 + 0.344223i \(0.111858\pi\)
−0.938888 + 0.344223i \(0.888142\pi\)
\(434\) 29.2758i 1.40529i
\(435\) 0 0
\(436\) −17.7202 17.7202i −0.848641 0.848641i
\(437\) −0.0756434 + 0.0756434i −0.00361851 + 0.00361851i
\(438\) 0 0
\(439\) −21.5167 + 21.5167i −1.02694 + 1.02694i −0.0273099 + 0.999627i \(0.508694\pi\)
−0.999627 + 0.0273099i \(0.991306\pi\)
\(440\) 19.0878i 0.909975i
\(441\) 0 0
\(442\) −64.6778 12.2667i −3.07641 0.583468i
\(443\) −26.5036 −1.25922 −0.629612 0.776909i \(-0.716786\pi\)
−0.629612 + 0.776909i \(0.716786\pi\)
\(444\) 0 0
\(445\) −7.48867 + 7.48867i −0.354997 + 0.354997i
\(446\) 30.5770 1.44786
\(447\) 0 0
\(448\) 3.94243 + 3.94243i 0.186262 + 0.186262i
\(449\) −11.1999 11.1999i −0.528556 0.528556i 0.391585 0.920142i \(-0.371927\pi\)
−0.920142 + 0.391585i \(0.871927\pi\)
\(450\) 0 0
\(451\) 20.9112i 0.984669i
\(452\) −28.3453 28.3453i −1.33325 1.33325i
\(453\) 0 0
\(454\) 1.48448 1.48448i 0.0696700 0.0696700i
\(455\) −10.2628 −0.481126
\(456\) 0 0
\(457\) 4.25348i 0.198969i −0.995039 0.0994847i \(-0.968281\pi\)
0.995039 0.0994847i \(-0.0317194\pi\)
\(458\) −15.4110 −0.720108
\(459\) 0 0
\(460\) −0.617325 −0.0287829
\(461\) 23.9740i 1.11658i 0.829646 + 0.558290i \(0.188542\pi\)
−0.829646 + 0.558290i \(0.811458\pi\)
\(462\) 0 0
\(463\) 23.0127 1.06949 0.534746 0.845013i \(-0.320407\pi\)
0.534746 + 0.845013i \(0.320407\pi\)
\(464\) −37.1441 + 37.1441i −1.72437 + 1.72437i
\(465\) 0 0
\(466\) −29.9105 29.9105i −1.38558 1.38558i
\(467\) 21.7845i 1.00807i 0.863684 + 0.504033i \(0.168151\pi\)
−0.863684 + 0.504033i \(0.831849\pi\)
\(468\) 0 0
\(469\) 2.07462 + 2.07462i 0.0957969 + 0.0957969i
\(470\) 21.1947 + 21.1947i 0.977640 + 0.977640i
\(471\) 0 0
\(472\) 73.6490 3.38997
\(473\) −6.38649 + 6.38649i −0.293651 + 0.293651i
\(474\) 0 0
\(475\) −0.747167 −0.0342824
\(476\) −23.7266 + 16.1615i −1.08751 + 0.740760i
\(477\) 0 0
\(478\) 17.4681i 0.798971i
\(479\) 23.2853 23.2853i 1.06393 1.06393i 0.0661200 0.997812i \(-0.478938\pi\)
0.997812 0.0661200i \(-0.0210620\pi\)
\(480\) 0 0
\(481\) −2.79119 + 2.79119i −0.127267 + 0.127267i
\(482\) 54.5758 + 54.5758i 2.48586 + 2.48586i
\(483\) 0 0
\(484\) 0.852369i 0.0387441i
\(485\) 6.96870i 0.316433i
\(486\) 0 0
\(487\) −13.1864 13.1864i −0.597535 0.597535i 0.342121 0.939656i \(-0.388855\pi\)
−0.939656 + 0.342121i \(0.888855\pi\)
\(488\) −1.90584 + 1.90584i −0.0862731 + 0.0862731i
\(489\) 0 0
\(490\) 7.80271 7.80271i 0.352491 0.352491i
\(491\) 3.97306i 0.179302i 0.995973 + 0.0896508i \(0.0285751\pi\)
−0.995973 + 0.0896508i \(0.971425\pi\)
\(492\) 0 0
\(493\) 20.4335 + 29.9983i 0.920277 + 1.35106i
\(494\) −11.9295 −0.536733
\(495\) 0 0
\(496\) 30.4479 30.4479i 1.36715 1.36715i
\(497\) 6.87503 0.308387
\(498\) 0 0
\(499\) −24.1326 24.1326i −1.08032 1.08032i −0.996479 0.0838426i \(-0.973281\pi\)
−0.0838426 0.996479i \(-0.526719\pi\)
\(500\) −3.04881 3.04881i −0.136347 0.136347i
\(501\) 0 0
\(502\) 56.6007i 2.52621i
\(503\) −27.8677 27.8677i −1.24256 1.24256i −0.958935 0.283626i \(-0.908463\pi\)
−0.283626 0.958935i \(-0.591537\pi\)
\(504\) 0 0
\(505\) −0.480423 + 0.480423i −0.0213785 + 0.0213785i
\(506\) −1.18222 −0.0525561
\(507\) 0 0
\(508\) 65.4496i 2.90386i
\(509\) −8.87274 −0.393277 −0.196639 0.980476i \(-0.563003\pi\)
−0.196639 + 0.980476i \(0.563003\pi\)
\(510\) 0 0
\(511\) −1.95600 −0.0865282
\(512\) 49.1643i 2.17278i
\(513\) 0 0
\(514\) 4.78534 0.211072
\(515\) 0.110630 0.110630i 0.00487496 0.00487496i
\(516\) 0 0
\(517\) 27.7277 + 27.7277i 1.21946 + 1.21946i
\(518\) 2.51986i 0.110716i
\(519\) 0 0
\(520\) −26.0985 26.0985i −1.14449 1.14449i
\(521\) −12.4387 12.4387i −0.544948 0.544948i 0.380027 0.924975i \(-0.375915\pi\)
−0.924975 + 0.380027i \(0.875915\pi\)
\(522\) 0 0
\(523\) −20.1681 −0.881892 −0.440946 0.897534i \(-0.645357\pi\)
−0.440946 + 0.897534i \(0.645357\pi\)
\(524\) 6.04428 6.04428i 0.264046 0.264046i
\(525\) 0 0
\(526\) 19.6008 0.854635
\(527\) −16.7498 24.5903i −0.729632 1.07117i
\(528\) 0 0
\(529\) 22.9795i 0.999109i
\(530\) 4.82140 4.82140i 0.209428 0.209428i
\(531\) 0 0
\(532\) −3.67858 + 3.67858i −0.159487 + 0.159487i
\(533\) 28.5915 + 28.5915i 1.23844 + 1.23844i
\(534\) 0 0
\(535\) 17.9652i 0.776702i
\(536\) 10.5516i 0.455760i
\(537\) 0 0
\(538\) 24.4158 + 24.4158i 1.05264 + 1.05264i
\(539\) 10.2078 10.2078i 0.439681 0.439681i
\(540\) 0 0
\(541\) 30.2202 30.2202i 1.29927 1.29927i 0.370391 0.928876i \(-0.379224\pi\)
0.928876 0.370391i \(-0.120776\pi\)
\(542\) 31.3673i 1.34734i
\(543\) 0 0
\(544\) −13.6761 2.59378i −0.586356 0.111208i
\(545\) −5.81215 −0.248965
\(546\) 0 0
\(547\) 10.0510 10.0510i 0.429751 0.429751i −0.458792 0.888544i \(-0.651718\pi\)
0.888544 + 0.458792i \(0.151718\pi\)
\(548\) 84.5468 3.61166
\(549\) 0 0
\(550\) −5.83869 5.83869i −0.248963 0.248963i
\(551\) 4.65094 + 4.65094i 0.198137 + 0.198137i
\(552\) 0 0
\(553\) 8.15295i 0.346699i
\(554\) 47.7162 + 47.7162i 2.02727 + 2.02727i
\(555\) 0 0
\(556\) 11.0105 11.0105i 0.466947 0.466947i
\(557\) 4.00971 0.169897 0.0849484 0.996385i \(-0.472927\pi\)
0.0849484 + 0.996385i \(0.472927\pi\)
\(558\) 0 0
\(559\) 17.4643i 0.738661i
\(560\) −9.63604 −0.407197
\(561\) 0 0
\(562\) 39.0137 1.64569
\(563\) 5.66772i 0.238866i −0.992842 0.119433i \(-0.961892\pi\)
0.992842 0.119433i \(-0.0381077\pi\)
\(564\) 0 0
\(565\) −9.29716 −0.391134
\(566\) −18.5455 + 18.5455i −0.779524 + 0.779524i
\(567\) 0 0
\(568\) 17.4834 + 17.4834i 0.733586 + 0.733586i
\(569\) 0.249161i 0.0104454i −0.999986 0.00522269i \(-0.998338\pi\)
0.999986 0.00522269i \(-0.00166244\pi\)
\(570\) 0 0
\(571\) 24.1579 + 24.1579i 1.01098 + 1.01098i 0.999939 + 0.0110385i \(0.00351375\pi\)
0.0110385 + 0.999939i \(0.496486\pi\)
\(572\) −63.6826 63.6826i −2.66270 2.66270i
\(573\) 0 0
\(574\) 25.8122 1.07738
\(575\) −0.101240 + 0.101240i −0.00422201 + 0.00422201i
\(576\) 0 0
\(577\) 28.3587 1.18059 0.590295 0.807188i \(-0.299011\pi\)
0.590295 + 0.807188i \(0.299011\pi\)
\(578\) −15.6378 + 39.7433i −0.650448 + 1.65310i
\(579\) 0 0
\(580\) 37.9563i 1.57605i
\(581\) −4.09354 + 4.09354i −0.169829 + 0.169829i
\(582\) 0 0
\(583\) 6.30753 6.30753i 0.261231 0.261231i
\(584\) −4.97415 4.97415i −0.205832 0.205832i
\(585\) 0 0
\(586\) 17.8535i 0.737523i
\(587\) 22.8461i 0.942960i 0.881877 + 0.471480i \(0.156280\pi\)
−0.881877 + 0.471480i \(0.843720\pi\)
\(588\) 0 0
\(589\) −3.81249 3.81249i −0.157091 0.157091i
\(590\) 22.5282 22.5282i 0.927471 0.927471i
\(591\) 0 0
\(592\) −2.62074 + 2.62074i −0.107712 + 0.107712i
\(593\) 10.3077i 0.423285i 0.977347 + 0.211642i \(0.0678812\pi\)
−0.977347 + 0.211642i \(0.932119\pi\)
\(594\) 0 0
\(595\) −1.24067 + 6.54158i −0.0508624 + 0.268179i
\(596\) −5.45004 −0.223242
\(597\) 0 0
\(598\) −1.61643 + 1.61643i −0.0661009 + 0.0661009i
\(599\) −25.2157 −1.03028 −0.515142 0.857105i \(-0.672261\pi\)
−0.515142 + 0.857105i \(0.672261\pi\)
\(600\) 0 0
\(601\) −6.05550 6.05550i −0.247009 0.247009i 0.572733 0.819742i \(-0.305883\pi\)
−0.819742 + 0.572733i \(0.805883\pi\)
\(602\) 7.88329 + 7.88329i 0.321299 + 0.321299i
\(603\) 0 0
\(604\) 69.9380i 2.84574i
\(605\) 0.139787 + 0.139787i 0.00568316 + 0.00568316i
\(606\) 0 0
\(607\) 6.94394 6.94394i 0.281846 0.281846i −0.551999 0.833845i \(-0.686135\pi\)
0.833845 + 0.551999i \(0.186135\pi\)
\(608\) −2.52248 −0.102300
\(609\) 0 0
\(610\) 1.16594i 0.0472074i
\(611\) 75.8234 3.06749
\(612\) 0 0
\(613\) 22.3926 0.904427 0.452214 0.891910i \(-0.350635\pi\)
0.452214 + 0.891910i \(0.350635\pi\)
\(614\) 12.0719i 0.487183i
\(615\) 0 0
\(616\) −30.8239 −1.24193
\(617\) 15.0930 15.0930i 0.607620 0.607620i −0.334704 0.942323i \(-0.608636\pi\)
0.942323 + 0.334704i \(0.108636\pi\)
\(618\) 0 0
\(619\) −10.6460 10.6460i −0.427900 0.427900i 0.460013 0.887912i \(-0.347845\pi\)
−0.887912 + 0.460013i \(0.847845\pi\)
\(620\) 31.1136i 1.24955i
\(621\) 0 0
\(622\) −14.2638 14.2638i −0.571928 0.571928i
\(623\) 12.0931 + 12.0931i 0.484499 + 0.484499i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 39.2635 39.2635i 1.56928 1.56928i
\(627\) 0 0
\(628\) 36.7621 1.46697
\(629\) 1.44170 + 2.11656i 0.0574845 + 0.0843928i
\(630\) 0 0
\(631\) 41.6046i 1.65625i −0.560540 0.828127i \(-0.689406\pi\)
0.560540 0.828127i \(-0.310594\pi\)
\(632\) 20.7332 20.7332i 0.824721 0.824721i
\(633\) 0 0
\(634\) 28.3608 28.3608i 1.12635 1.12635i
\(635\) −10.7336 10.7336i −0.425951 0.425951i
\(636\) 0 0
\(637\) 27.9139i 1.10599i
\(638\) 72.6890i 2.87779i
\(639\) 0 0
\(640\) 10.9079 + 10.9079i 0.431173 + 0.431173i
\(641\) −6.26768 + 6.26768i −0.247559 + 0.247559i −0.819968 0.572409i \(-0.806009\pi\)
0.572409 + 0.819968i \(0.306009\pi\)
\(642\) 0 0
\(643\) −21.2314 + 21.2314i −0.837285 + 0.837285i −0.988501 0.151216i \(-0.951681\pi\)
0.151216 + 0.988501i \(0.451681\pi\)
\(644\) 0.996886i 0.0392828i
\(645\) 0 0
\(646\) −1.44216 + 7.60397i −0.0567410 + 0.299174i
\(647\) −0.383859 −0.0150911 −0.00754553 0.999972i \(-0.502402\pi\)
−0.00754553 + 0.999972i \(0.502402\pi\)
\(648\) 0 0
\(649\) 29.4722 29.4722i 1.15689 1.15689i
\(650\) −15.9663 −0.626250
\(651\) 0 0
\(652\) 47.1355 + 47.1355i 1.84597 + 1.84597i
\(653\) −1.02342 1.02342i −0.0400497 0.0400497i 0.686798 0.726848i \(-0.259016\pi\)
−0.726848 + 0.686798i \(0.759016\pi\)
\(654\) 0 0
\(655\) 1.98251i 0.0774629i
\(656\) 26.8455 + 26.8455i 1.04814 + 1.04814i
\(657\) 0 0
\(658\) 34.2263 34.2263i 1.33428 1.33428i
\(659\) 21.8603 0.851555 0.425777 0.904828i \(-0.360001\pi\)
0.425777 + 0.904828i \(0.360001\pi\)
\(660\) 0 0
\(661\) 40.5201i 1.57605i 0.615644 + 0.788024i \(0.288896\pi\)
−0.615644 + 0.788024i \(0.711104\pi\)
\(662\) −9.74551 −0.378770
\(663\) 0 0
\(664\) −20.8200 −0.807971
\(665\) 1.20656i 0.0467884i
\(666\) 0 0
\(667\) 1.26040 0.0488027
\(668\) −11.1913 + 11.1913i −0.433004 + 0.433004i
\(669\) 0 0
\(670\) 3.22759 + 3.22759i 0.124693 + 0.124693i
\(671\) 1.52532i 0.0588844i
\(672\) 0 0
\(673\) −5.61265 5.61265i −0.216352 0.216352i 0.590607 0.806959i \(-0.298888\pi\)
−0.806959 + 0.590607i \(0.798888\pi\)
\(674\) 43.3198 + 43.3198i 1.66862 + 1.66862i
\(675\) 0 0
\(676\) −118.093 −4.54203
\(677\) 1.81406 1.81406i 0.0697200 0.0697200i −0.671387 0.741107i \(-0.734301\pi\)
0.741107 + 0.671387i \(0.234301\pi\)
\(678\) 0 0
\(679\) −11.2534 −0.431866
\(680\) −19.7905 + 13.4804i −0.758929 + 0.516948i
\(681\) 0 0
\(682\) 59.5849i 2.28162i
\(683\) 10.2987 10.2987i 0.394070 0.394070i −0.482065 0.876135i \(-0.660113\pi\)
0.876135 + 0.482065i \(0.160113\pi\)
\(684\) 0 0
\(685\) 13.8655 13.8655i 0.529775 0.529775i
\(686\) −32.6813 32.6813i −1.24778 1.24778i
\(687\) 0 0
\(688\) 16.3978i 0.625160i
\(689\) 17.2484i 0.657111i
\(690\) 0 0
\(691\) 30.3791 + 30.3791i 1.15567 + 1.15567i 0.985396 + 0.170278i \(0.0544665\pi\)
0.170278 + 0.985396i \(0.445533\pi\)
\(692\) −27.8703 + 27.8703i −1.05947 + 1.05947i
\(693\) 0 0
\(694\) −18.8849 + 18.8849i −0.716862 + 0.716862i
\(695\) 3.61139i 0.136988i
\(696\) 0 0
\(697\) 21.6810 14.7681i 0.821225 0.559381i
\(698\) −29.0370 −1.09907
\(699\) 0 0
\(700\) −4.92337 + 4.92337i −0.186086 + 0.186086i
\(701\) −46.4002 −1.75251 −0.876256 0.481846i \(-0.839967\pi\)
−0.876256 + 0.481846i \(0.839967\pi\)
\(702\) 0 0
\(703\) 0.328152 + 0.328152i 0.0123765 + 0.0123765i
\(704\) 8.02400 + 8.02400i 0.302416 + 0.302416i
\(705\) 0 0
\(706\) 28.5605i 1.07489i
\(707\) 0.775811 + 0.775811i 0.0291774 + 0.0291774i
\(708\) 0 0
\(709\) −29.3677 + 29.3677i −1.10293 + 1.10293i −0.108871 + 0.994056i \(0.534724\pi\)
−0.994056 + 0.108871i \(0.965276\pi\)
\(710\) 10.6958 0.401408
\(711\) 0 0
\(712\) 61.5060i 2.30503i
\(713\) −1.03317 −0.0386927
\(714\) 0 0
\(715\) −20.8877 −0.781156
\(716\) 37.7762i 1.41176i
\(717\) 0 0
\(718\) −80.7229 −3.01255
\(719\) 0.455602 0.455602i 0.0169911 0.0169911i −0.698560 0.715551i \(-0.746176\pi\)
0.715551 + 0.698560i \(0.246176\pi\)
\(720\) 0 0
\(721\) −0.178651 0.178651i −0.00665332 0.00665332i
\(722\) 46.3313i 1.72427i
\(723\) 0 0
\(724\) −14.8391 14.8391i −0.551490 0.551490i
\(725\) 6.22477 + 6.22477i 0.231182 + 0.231182i
\(726\) 0 0
\(727\) −42.4141 −1.57305 −0.786525 0.617558i \(-0.788122\pi\)
−0.786525 + 0.617558i \(0.788122\pi\)
\(728\) −42.1451 + 42.1451i −1.56200 + 1.56200i
\(729\) 0 0
\(730\) −3.04305 −0.112628
\(731\) 11.1319 + 2.11126i 0.411728 + 0.0780879i
\(732\) 0 0
\(733\) 43.4227i 1.60386i −0.597421 0.801928i \(-0.703808\pi\)
0.597421 0.801928i \(-0.296192\pi\)
\(734\) −34.2062 + 34.2062i −1.26258 + 1.26258i
\(735\) 0 0
\(736\) −0.341793 + 0.341793i −0.0125987 + 0.0125987i
\(737\) 4.22245 + 4.22245i 0.155536 + 0.155536i
\(738\) 0 0
\(739\) 28.0864i 1.03318i 0.856234 + 0.516588i \(0.172798\pi\)
−0.856234 + 0.516588i \(0.827202\pi\)
\(740\) 2.67804i 0.0984468i
\(741\) 0 0
\(742\) −7.78583 7.78583i −0.285827 0.285827i
\(743\) 31.9613 31.9613i 1.17254 1.17254i 0.190944 0.981601i \(-0.438845\pi\)
0.981601 0.190944i \(-0.0611547\pi\)
\(744\) 0 0
\(745\) −0.893798 + 0.893798i −0.0327462 + 0.0327462i
\(746\) 51.0340i 1.86849i
\(747\) 0 0
\(748\) −48.2905 + 32.8933i −1.76568 + 1.20270i
\(749\) −29.0110 −1.06004
\(750\) 0 0
\(751\) 17.0168 17.0168i 0.620952 0.620952i −0.324823 0.945775i \(-0.605305\pi\)
0.945775 + 0.324823i \(0.105305\pi\)
\(752\) 71.1931 2.59614
\(753\) 0 0
\(754\) 99.3866 + 99.3866i 3.61945 + 3.61945i
\(755\) 11.4697 + 11.4697i 0.417426 + 0.417426i
\(756\) 0 0
\(757\) 18.0018i 0.654285i 0.944975 + 0.327143i \(0.106086\pi\)
−0.944975 + 0.327143i \(0.893914\pi\)
\(758\) −60.9335 60.9335i −2.21320 2.21320i
\(759\) 0 0
\(760\) −3.06832 + 3.06832i −0.111300 + 0.111300i
\(761\) −23.4172 −0.848874 −0.424437 0.905458i \(-0.639528\pi\)
−0.424437 + 0.905458i \(0.639528\pi\)
\(762\) 0 0
\(763\) 9.38575i 0.339787i
\(764\) 48.6145 1.75881
\(765\) 0 0
\(766\) −53.5685 −1.93551
\(767\) 80.5938i 2.91007i
\(768\) 0 0
\(769\) 9.52627 0.343526 0.171763 0.985138i \(-0.445054\pi\)
0.171763 + 0.985138i \(0.445054\pi\)
\(770\) −9.42860 + 9.42860i −0.339783 + 0.339783i
\(771\) 0 0
\(772\) −13.9688 13.9688i −0.502746 0.502746i
\(773\) 20.0047i 0.719519i 0.933045 + 0.359759i \(0.117141\pi\)
−0.933045 + 0.359759i \(0.882859\pi\)
\(774\) 0 0
\(775\) −5.10259 5.10259i −0.183290 0.183290i
\(776\) −28.6177 28.6177i −1.02732 1.02732i
\(777\) 0 0
\(778\) 29.5653 1.05997
\(779\) 3.36142 3.36142i 0.120435 0.120435i
\(780\) 0 0
\(781\) 13.9927 0.500698
\(782\) 0.834919 + 1.22574i 0.0298566 + 0.0438324i
\(783\) 0 0
\(784\) 26.2093i 0.936046i
\(785\) 6.02893 6.02893i 0.215182 0.215182i
\(786\) 0 0
\(787\) −12.8060 + 12.8060i −0.456484 + 0.456484i −0.897500 0.441015i \(-0.854618\pi\)
0.441015 + 0.897500i \(0.354618\pi\)
\(788\) −40.3909 40.3909i −1.43887 1.43887i
\(789\) 0 0
\(790\) 12.6840i 0.451275i
\(791\) 15.0135i 0.533819i
\(792\) 0 0
\(793\) 2.08555 + 2.08555i 0.0740600 + 0.0740600i
\(794\) 5.96708 5.96708i 0.211764 0.211764i
\(795\) 0 0
\(796\) 8.04395 8.04395i 0.285110 0.285110i
\(797\) 44.1981i 1.56558i −0.622289 0.782788i \(-0.713797\pi\)
0.622289 0.782788i \(-0.286203\pi\)
\(798\) 0 0
\(799\) 9.16631 48.3306i 0.324281 1.70981i
\(800\) −3.37606 −0.119362
\(801\) 0 0
\(802\) 4.60882 4.60882i 0.162743 0.162743i
\(803\) −3.98102 −0.140487
\(804\) 0 0
\(805\) 0.163488 + 0.163488i 0.00576219 + 0.00576219i
\(806\) −81.4695 81.4695i −2.86964 2.86964i
\(807\) 0 0
\(808\) 3.94581i 0.138813i
\(809\) 14.4229 + 14.4229i 0.507083 + 0.507083i 0.913630 0.406547i \(-0.133267\pi\)
−0.406547 + 0.913630i \(0.633267\pi\)
\(810\) 0 0
\(811\) −1.48389 + 1.48389i −0.0521064 + 0.0521064i −0.732680 0.680573i \(-0.761731\pi\)
0.680573 + 0.732680i \(0.261731\pi\)
\(812\) 61.2937 2.15099
\(813\) 0 0
\(814\) 5.12865i 0.179759i
\(815\) 15.4603 0.541551
\(816\) 0 0
\(817\) 2.05322 0.0718332
\(818\) 77.4704i 2.70869i
\(819\) 0 0
\(820\) 27.4325 0.957985
\(821\) 3.49477 3.49477i 0.121968 0.121968i −0.643488 0.765456i \(-0.722513\pi\)
0.765456 + 0.643488i \(0.222513\pi\)
\(822\) 0 0
\(823\) 8.09920 + 8.09920i 0.282320 + 0.282320i 0.834034 0.551713i \(-0.186026\pi\)
−0.551713 + 0.834034i \(0.686026\pi\)
\(824\) 0.908630i 0.0316536i
\(825\) 0 0
\(826\) −36.3796 36.3796i −1.26581 1.26581i
\(827\) 13.6785 + 13.6785i 0.475647 + 0.475647i 0.903736 0.428090i \(-0.140813\pi\)
−0.428090 + 0.903736i \(0.640813\pi\)
\(828\) 0 0
\(829\) 26.7634 0.929530 0.464765 0.885434i \(-0.346139\pi\)
0.464765 + 0.885434i \(0.346139\pi\)
\(830\) −6.36853 + 6.36853i −0.221055 + 0.221055i
\(831\) 0 0
\(832\) 21.9422 0.760708
\(833\) −17.7926 3.37452i −0.616477 0.116920i
\(834\) 0 0
\(835\) 3.67070i 0.127030i
\(836\) −7.48697 + 7.48697i −0.258942 + 0.258942i
\(837\) 0 0
\(838\) −33.1617 + 33.1617i −1.14555 + 1.14555i
\(839\) −37.0327 37.0327i −1.27851 1.27851i −0.941502 0.337008i \(-0.890585\pi\)
−0.337008 0.941502i \(-0.609415\pi\)
\(840\) 0 0
\(841\) 48.4956i 1.67226i
\(842\) 74.2876i 2.56012i
\(843\) 0 0
\(844\) −21.7529 21.7529i −0.748766 0.748766i
\(845\) −19.3670 + 19.3670i −0.666247 + 0.666247i
\(846\) 0 0
\(847\) 0.225735 0.225735i 0.00775635 0.00775635i
\(848\) 16.1951i 0.556141i
\(849\) 0 0
\(850\) −1.93017 + 10.1771i −0.0662043 + 0.349071i
\(851\) 0.0889284 0.00304843
\(852\) 0 0
\(853\) 0.0880569 0.0880569i 0.00301501 0.00301501i −0.705598 0.708613i \(-0.749321\pi\)
0.708613 + 0.705598i \(0.249321\pi\)
\(854\) 1.88281 0.0644285
\(855\) 0 0
\(856\) −73.7758 73.7758i −2.52160 2.52160i
\(857\) 15.9912 + 15.9912i 0.546249 + 0.546249i 0.925354 0.379104i \(-0.123768\pi\)
−0.379104 + 0.925354i \(0.623768\pi\)
\(858\) 0 0
\(859\) 38.2254i 1.30423i 0.758118 + 0.652117i \(0.226119\pi\)
−0.758118 + 0.652117i \(0.773881\pi\)
\(860\) 8.37817 + 8.37817i 0.285693 + 0.285693i
\(861\) 0 0
\(862\) −29.0380 + 29.0380i −0.989037 + 0.989037i
\(863\) 22.1777 0.754939 0.377469 0.926022i \(-0.376794\pi\)
0.377469 + 0.926022i \(0.376794\pi\)
\(864\) 0 0
\(865\) 9.14139i 0.310816i
\(866\) 35.9904 1.22300
\(867\) 0 0
\(868\) −50.2438 −1.70539
\(869\) 16.5936i 0.562901i
\(870\) 0 0
\(871\) 11.5466 0.391241
\(872\) −23.8682 + 23.8682i −0.808279 + 0.808279i
\(873\) 0 0
\(874\) 0.190039 + 0.190039i 0.00642817 + 0.00642817i
\(875\) 1.61485i 0.0545918i
\(876\) 0 0
\(877\) 19.1327 + 19.1327i 0.646067 + 0.646067i 0.952040 0.305973i \(-0.0989819\pi\)
−0.305973 + 0.952040i \(0.598982\pi\)
\(878\) 54.0565 + 54.0565i 1.82432 + 1.82432i
\(879\) 0 0
\(880\) −19.6121 −0.661125
\(881\) 26.0576 26.0576i 0.877903 0.877903i −0.115414 0.993317i \(-0.536820\pi\)
0.993317 + 0.115414i \(0.0368195\pi\)
\(882\) 0 0
\(883\) 20.6901 0.696277 0.348138 0.937443i \(-0.386814\pi\)
0.348138 + 0.937443i \(0.386814\pi\)
\(884\) −21.0524 + 111.001i −0.708068 + 3.73338i
\(885\) 0 0
\(886\) 66.5851i 2.23697i
\(887\) 10.5540 10.5540i 0.354368 0.354368i −0.507364 0.861732i \(-0.669380\pi\)
0.861732 + 0.507364i \(0.169380\pi\)
\(888\) 0 0
\(889\) −17.3332 + 17.3332i −0.581336 + 0.581336i
\(890\) 18.8138 + 18.8138i 0.630640 + 0.630640i
\(891\) 0 0
\(892\) 52.4770i 1.75706i
\(893\) 8.91433i 0.298307i
\(894\) 0 0
\(895\) 6.19523 + 6.19523i 0.207084 + 0.207084i
\(896\) 17.6146 17.6146i 0.588463 0.588463i
\(897\) 0 0
\(898\) −28.1376 + 28.1376i −0.938963 + 0.938963i
\(899\) 63.5249i 2.11867i
\(900\) 0 0
\(901\) −10.9943 2.08516i −0.366273 0.0694668i
\(902\) 52.5352 1.74923
\(903\) 0 0
\(904\) −38.1797 + 38.1797i −1.26984 + 1.26984i
\(905\) −4.86717 −0.161790
\(906\) 0 0
\(907\) −19.3243 19.3243i −0.641653 0.641653i 0.309309 0.950962i \(-0.399902\pi\)
−0.950962 + 0.309309i \(0.899902\pi\)
\(908\) −2.54769 2.54769i −0.0845481 0.0845481i
\(909\) 0 0
\(910\) 25.7832i 0.854703i
\(911\) −33.4927 33.4927i −1.10966 1.10966i −0.993194 0.116469i \(-0.962843\pi\)
−0.116469 0.993194i \(-0.537157\pi\)
\(912\) 0 0
\(913\) −8.33154 + 8.33154i −0.275734 + 0.275734i
\(914\) −10.6860 −0.353463
\(915\) 0 0
\(916\) 26.4486i 0.873888i
\(917\) −3.20145 −0.105721
\(918\) 0 0
\(919\) 25.7946 0.850884 0.425442 0.904986i \(-0.360119\pi\)
0.425442 + 0.904986i \(0.360119\pi\)
\(920\) 0.831507i 0.0274140i
\(921\) 0 0
\(922\) 60.2300 1.98357
\(923\) 19.1320 19.1320i 0.629737 0.629737i
\(924\) 0 0
\(925\) 0.439195 + 0.439195i 0.0144406 + 0.0144406i
\(926\) 57.8150i 1.89992i
\(927\) 0 0
\(928\) 21.0152 + 21.0152i 0.689858 + 0.689858i
\(929\) 17.4671 + 17.4671i 0.573076 + 0.573076i 0.932987 0.359911i \(-0.117193\pi\)
−0.359911 + 0.932987i \(0.617193\pi\)
\(930\) 0 0
\(931\) −3.28175 −0.107555
\(932\) −51.3330 + 51.3330i −1.68147 + 1.68147i
\(933\) 0 0
\(934\) 54.7292 1.79080
\(935\) −2.52512 + 13.3140i −0.0825802 + 0.435415i
\(936\) 0 0
\(937\) 37.0383i 1.20999i 0.796230 + 0.604994i \(0.206825\pi\)
−0.796230 + 0.604994i \(0.793175\pi\)
\(938\) 5.21207 5.21207i 0.170180 0.170180i
\(939\) 0 0
\(940\) 36.3749 36.3749i 1.18642 1.18642i
\(941\) −24.2477 24.2477i −0.790452 0.790452i 0.191115 0.981568i \(-0.438790\pi\)
−0.981568 + 0.191115i \(0.938790\pi\)
\(942\) 0 0
\(943\) 0.910938i 0.0296642i
\(944\) 75.6721i 2.46292i
\(945\) 0 0
\(946\) 16.0448 + 16.0448i 0.521661 + 0.521661i
\(947\) −26.2345 + 26.2345i −0.852507 + 0.852507i −0.990441 0.137934i \(-0.955954\pi\)
0.137934 + 0.990441i \(0.455954\pi\)
\(948\) 0 0
\(949\) −5.44319 + 5.44319i −0.176694 + 0.176694i
\(950\) 1.87711i 0.0609015i
\(951\) 0 0
\(952\) 21.7687 + 31.9586i 0.705529 + 1.03578i
\(953\) −26.9203 −0.872033 −0.436016 0.899939i \(-0.643611\pi\)
−0.436016 + 0.899939i \(0.643611\pi\)
\(954\) 0 0
\(955\) 7.97270 7.97270i 0.257991 0.257991i
\(956\) 29.9791 0.969592
\(957\) 0 0
\(958\) −58.4997 58.4997i −1.89004 1.89004i
\(959\) −22.3907 22.3907i −0.723035 0.723035i
\(960\) 0 0
\(961\) 21.0728i 0.679768i
\(962\) 7.01232 + 7.01232i 0.226086 + 0.226086i
\(963\) 0 0
\(964\) 93.6641 93.6641i 3.01672 3.01672i
\(965\) −4.58171 −0.147490
\(966\) 0 0
\(967\) 26.4462i 0.850452i 0.905087 + 0.425226i \(0.139805\pi\)
−0.905087 + 0.425226i \(0.860195\pi\)
\(968\) 1.14810 0.0369014
\(969\) 0 0
\(970\) −17.5075 −0.562132
\(971\) 9.69327i 0.311072i −0.987830 0.155536i \(-0.950290\pi\)
0.987830 0.155536i \(-0.0497104\pi\)
\(972\) 0 0
\(973\) −5.83185 −0.186961
\(974\) −33.1283 + 33.1283i −1.06150 + 1.06150i
\(975\) 0 0
\(976\) 1.95819 + 1.95819i 0.0626801 + 0.0626801i
\(977\) 5.81399i 0.186006i 0.995666 + 0.0930029i \(0.0296466\pi\)
−0.995666 + 0.0930029i \(0.970353\pi\)
\(978\) 0 0
\(979\) 24.6129 + 24.6129i 0.786632 + 0.786632i
\(980\) −13.3912 13.3912i −0.427765 0.427765i
\(981\) 0 0
\(982\) 9.98153 0.318523
\(983\) −22.4102 + 22.4102i −0.714776 + 0.714776i −0.967530 0.252755i \(-0.918663\pi\)
0.252755 + 0.967530i \(0.418663\pi\)
\(984\) 0 0
\(985\) −13.2481 −0.422119
\(986\) 75.3648 51.3351i 2.40010 1.63484i
\(987\) 0 0
\(988\) 20.4736i 0.651353i
\(989\) 0.278210 0.278210i 0.00884655 0.00884655i
\(990\) 0 0
\(991\) 34.2715 34.2715i 1.08867 1.08867i 0.0930058 0.995666i \(-0.470352\pi\)
0.995666 0.0930058i \(-0.0296475\pi\)
\(992\) −17.2266 17.2266i −0.546946 0.546946i
\(993\) 0 0
\(994\) 17.2722i 0.547840i
\(995\) 2.63839i 0.0836426i
\(996\) 0 0
\(997\) 4.30543 + 4.30543i 0.136354 + 0.136354i 0.771990 0.635635i \(-0.219262\pi\)
−0.635635 + 0.771990i \(0.719262\pi\)
\(998\) −60.6283 + 60.6283i −1.91916 + 1.91916i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.k.b.361.1 12
3.2 odd 2 85.2.e.a.21.6 12
12.11 even 2 1360.2.bt.d.1041.4 12
15.2 even 4 425.2.j.b.174.1 12
15.8 even 4 425.2.j.c.174.6 12
15.14 odd 2 425.2.e.f.276.1 12
17.13 even 4 inner 765.2.k.b.676.6 12
51.2 odd 8 1445.2.d.g.866.2 12
51.8 odd 8 1445.2.a.o.1.6 6
51.26 odd 8 1445.2.a.n.1.6 6
51.32 odd 8 1445.2.d.g.866.1 12
51.47 odd 4 85.2.e.a.81.1 yes 12
204.47 even 4 1360.2.bt.d.81.4 12
255.47 even 4 425.2.j.c.149.6 12
255.59 odd 8 7225.2.a.z.1.1 6
255.98 even 4 425.2.j.b.149.1 12
255.149 odd 4 425.2.e.f.251.6 12
255.179 odd 8 7225.2.a.bb.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.6 12 3.2 odd 2
85.2.e.a.81.1 yes 12 51.47 odd 4
425.2.e.f.251.6 12 255.149 odd 4
425.2.e.f.276.1 12 15.14 odd 2
425.2.j.b.149.1 12 255.98 even 4
425.2.j.b.174.1 12 15.2 even 4
425.2.j.c.149.6 12 255.47 even 4
425.2.j.c.174.6 12 15.8 even 4
765.2.k.b.361.1 12 1.1 even 1 trivial
765.2.k.b.676.6 12 17.13 even 4 inner
1360.2.bt.d.81.4 12 204.47 even 4
1360.2.bt.d.1041.4 12 12.11 even 2
1445.2.a.n.1.6 6 51.26 odd 8
1445.2.a.o.1.6 6 51.8 odd 8
1445.2.d.g.866.1 12 51.32 odd 8
1445.2.d.g.866.2 12 51.2 odd 8
7225.2.a.z.1.1 6 255.59 odd 8
7225.2.a.bb.1.1 6 255.179 odd 8