Properties

Label 1445.2.a.o
Level $1445$
Weight $2$
Character orbit 1445.a
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7718912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 4x^{3} + 9x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} + ( - \beta_1 + 1) q^{3} + ( - \beta_{5} - \beta_{3} - \beta_{2} + 1) q^{4} + q^{5} + ( - \beta_{5} - \beta_{3} - \beta_1 + 1) q^{6} + (\beta_{3} + 1) q^{7} + ( - \beta_{5} + \beta_{4} - \beta_{2} + \cdots + 1) q^{8}+ \cdots + (3 \beta_{5} + \beta_{3} + 3 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{3} + 6 q^{4} + 6 q^{5} + 4 q^{6} + 8 q^{7} + 6 q^{8} + 2 q^{9} + 2 q^{10} + 8 q^{12} + 8 q^{14} + 4 q^{15} + 2 q^{16} + 14 q^{18} - 12 q^{19} + 6 q^{20} + 8 q^{21} + 16 q^{22} + 24 q^{24}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 7x^{4} + 4x^{3} + 9x^{2} - 2x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 3\nu^{3} - 3\nu^{2} + 5\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 3\nu^{4} - 3\nu^{3} + 5\nu^{2} - \nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 2\nu^{4} - 6\nu^{3} + \nu^{2} + 6\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 3\nu^{4} - 4\nu^{3} + 7\nu^{2} + 4\nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta_{3} + \beta_{2} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} - 2\beta_{4} + 3\beta_{3} + 2\beta_{2} + 9\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -3\beta_{5} - 9\beta_{4} + 12\beta_{3} + 10\beta_{2} + 28\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -12\beta_{5} - 28\beta_{4} + 41\beta_{3} + 31\beta_{2} + 102\beta _1 + 32 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.19804
0.455023
−1.35757
3.48265
−1.52346
−0.254679
−2.24891 −0.198035 3.05761 1.00000 0.445364 −1.89231 −2.37848 −2.96078 −2.24891
1.2 −0.783476 0.544977 −1.38617 1.00000 −0.426976 1.18848 2.65298 −2.70300 −0.783476
1.3 −0.677603 2.35757 −1.54085 1.00000 −1.59750 4.27746 2.39929 2.55814 −0.677603
1.4 1.12708 −2.48265 −0.729699 1.00000 −2.79814 2.44256 −3.07658 3.16356 1.12708
1.5 2.07061 2.52346 2.28744 1.00000 5.22511 0.368961 0.595174 3.36786 2.07061
1.6 2.51230 1.25468 4.31167 1.00000 3.15213 1.61485 5.80761 −1.42578 2.51230
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1445.2.a.o 6
5.b even 2 1 7225.2.a.z 6
17.b even 2 1 1445.2.a.n 6
17.c even 4 2 1445.2.d.g 12
17.d even 8 2 85.2.e.a 12
51.g odd 8 2 765.2.k.b 12
68.g odd 8 2 1360.2.bt.d 12
85.c even 2 1 7225.2.a.bb 6
85.k odd 8 2 425.2.j.b 12
85.m even 8 2 425.2.e.f 12
85.n odd 8 2 425.2.j.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.2.e.a 12 17.d even 8 2
425.2.e.f 12 85.m even 8 2
425.2.j.b 12 85.k odd 8 2
425.2.j.c 12 85.n odd 8 2
765.2.k.b 12 51.g odd 8 2
1360.2.bt.d 12 68.g odd 8 2
1445.2.a.n 6 17.b even 2 1
1445.2.a.o 6 1.a even 1 1 trivial
1445.2.d.g 12 17.c even 4 2
7225.2.a.z 6 5.b even 2 1
7225.2.a.bb 6 85.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1445))\):

\( T_{2}^{6} - 2T_{2}^{5} - 7T_{2}^{4} + 12T_{2}^{3} + 11T_{2}^{2} - 10T_{2} - 7 \) Copy content Toggle raw display
\( T_{3}^{6} - 4T_{3}^{5} - 2T_{3}^{4} + 24T_{3}^{3} - 26T_{3}^{2} + 4T_{3} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 2 T^{5} + \cdots - 7 \) Copy content Toggle raw display
$3$ \( T^{6} - 4 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( (T - 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 8 T^{5} + \cdots - 14 \) Copy content Toggle raw display
$11$ \( T^{6} - 26 T^{4} + \cdots - 446 \) Copy content Toggle raw display
$13$ \( T^{6} - 58 T^{4} + \cdots - 316 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + 12 T^{5} + \cdots - 1472 \) Copy content Toggle raw display
$23$ \( T^{6} - 42 T^{4} + \cdots - 14 \) Copy content Toggle raw display
$29$ \( T^{6} - 8 T^{5} + \cdots - 2312 \) Copy content Toggle raw display
$31$ \( T^{6} - 4 T^{5} + \cdots + 40562 \) Copy content Toggle raw display
$37$ \( T^{6} - 16 T^{5} + \cdots + 1912 \) Copy content Toggle raw display
$41$ \( T^{6} - 12 T^{5} + \cdots - 13888 \) Copy content Toggle raw display
$43$ \( T^{6} - 8 T^{5} + \cdots - 15004 \) Copy content Toggle raw display
$47$ \( T^{6} - 24 T^{5} + \cdots - 18076 \) Copy content Toggle raw display
$53$ \( T^{6} - 216 T^{4} + \cdots - 132112 \) Copy content Toggle raw display
$59$ \( T^{6} + 16 T^{5} + \cdots + 896 \) Copy content Toggle raw display
$61$ \( T^{6} + 4 T^{5} + \cdots - 992 \) Copy content Toggle raw display
$67$ \( T^{6} + 4 T^{5} + \cdots - 92 \) Copy content Toggle raw display
$71$ \( T^{6} - 32 T^{5} + \cdots - 170686 \) Copy content Toggle raw display
$73$ \( T^{6} + 8 T^{5} + \cdots - 736 \) Copy content Toggle raw display
$79$ \( T^{6} - 36 T^{5} + \cdots - 3902 \) Copy content Toggle raw display
$83$ \( T^{6} - 20 T^{5} + \cdots + 11204 \) Copy content Toggle raw display
$89$ \( T^{6} + 12 T^{5} + \cdots - 31292 \) Copy content Toggle raw display
$97$ \( T^{6} - 16 T^{5} + \cdots + 476536 \) Copy content Toggle raw display
show more
show less