Properties

Label 85.2.e.a.21.6
Level $85$
Weight $2$
Character 85.21
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,2,Mod(21,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.21");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 21.6
Root \(0.254679i\) of defining polynomial
Character \(\chi\) \(=\) 85.21
Dual form 85.2.e.a.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51230i q^{2} +(-0.887192 + 0.887192i) q^{3} -4.31167 q^{4} +(0.707107 - 0.707107i) q^{5} +(-2.22889 - 2.22889i) q^{6} +(1.14187 + 1.14187i) q^{7} -5.80761i q^{8} +1.42578i q^{9} +(1.77647 + 1.77647i) q^{10} +(-2.32404 - 2.32404i) q^{11} +(3.82528 - 3.82528i) q^{12} +6.35524 q^{13} +(-2.86872 + 2.86872i) q^{14} +1.25468i q^{15} +5.96715 q^{16} +(-0.768287 + 4.05089i) q^{17} -3.58200 q^{18} -0.747167i q^{19} +(-3.04881 + 3.04881i) q^{20} -2.02612 q^{21} +(5.83869 - 5.83869i) q^{22} +(0.101240 + 0.101240i) q^{23} +(5.15247 + 5.15247i) q^{24} -1.00000i q^{25} +15.9663i q^{26} +(-3.92652 - 3.92652i) q^{27} +(-4.92337 - 4.92337i) q^{28} +(6.22477 - 6.22477i) q^{29} -3.15213 q^{30} +(5.10259 - 5.10259i) q^{31} +3.37606i q^{32} +4.12374 q^{33} +(-10.1771 - 1.93017i) q^{34} +1.61485 q^{35} -6.14750i q^{36} +(-0.439195 + 0.439195i) q^{37} +1.87711 q^{38} +(-5.63832 + 5.63832i) q^{39} +(-4.10660 - 4.10660i) q^{40} +(-4.49889 - 4.49889i) q^{41} -5.09022i q^{42} +2.74801i q^{43} +(10.0205 + 10.0205i) q^{44} +(1.00818 + 1.00818i) q^{45} +(-0.254346 + 0.254346i) q^{46} -11.9308 q^{47} +(-5.29400 + 5.29400i) q^{48} -4.39226i q^{49} +2.51230 q^{50} +(-2.91230 - 4.27554i) q^{51} -27.4017 q^{52} +2.71404i q^{53} +(9.86460 - 9.86460i) q^{54} -3.28669 q^{55} +(6.63154 - 6.63154i) q^{56} +(0.662880 + 0.662880i) q^{57} +(15.6385 + 15.6385i) q^{58} +12.6815i q^{59} -5.40976i q^{60} +(0.328162 + 0.328162i) q^{61} +(12.8193 + 12.8193i) q^{62} +(-1.62806 + 1.62806i) q^{63} +3.45261 q^{64} +(4.49384 - 4.49384i) q^{65} +10.3601i q^{66} +1.81686 q^{67} +(3.31260 - 17.4661i) q^{68} -0.179639 q^{69} +4.05699i q^{70} +(-3.01043 + 3.01043i) q^{71} +8.28039 q^{72} +(-0.856488 + 0.856488i) q^{73} +(-1.10339 - 1.10339i) q^{74} +(0.887192 + 0.887192i) q^{75} +3.22154i q^{76} -5.30750i q^{77} +(-14.1652 - 14.1652i) q^{78} +(-3.57000 - 3.57000i) q^{79} +(4.21941 - 4.21941i) q^{80} +2.68980 q^{81} +(11.3026 - 11.3026i) q^{82} -3.58494i q^{83} +8.73594 q^{84} +(2.32115 + 3.40767i) q^{85} -6.90384 q^{86} +11.0451i q^{87} +(-13.4971 + 13.4971i) q^{88} -10.5906 q^{89} +(-2.53285 + 2.53285i) q^{90} +(7.25687 + 7.25687i) q^{91} +(-0.436515 - 0.436515i) q^{92} +9.05395i q^{93} -29.9739i q^{94} +(-0.528327 - 0.528327i) q^{95} +(-2.99521 - 2.99521i) q^{96} +(-4.92762 + 4.92762i) q^{97} +11.0347 q^{98} +(3.31357 - 3.31357i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 12 q^{4} - 4 q^{10} - 4 q^{11} - 8 q^{12} - 4 q^{14} + 4 q^{16} + 12 q^{17} + 28 q^{18} - 8 q^{20} - 16 q^{21} + 20 q^{22} + 12 q^{23} + 4 q^{24} - 4 q^{27} + 4 q^{28} - 12 q^{29} - 8 q^{30}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51230i 1.77647i 0.459392 + 0.888233i \(0.348067\pi\)
−0.459392 + 0.888233i \(0.651933\pi\)
\(3\) −0.887192 + 0.887192i −0.512220 + 0.512220i −0.915206 0.402986i \(-0.867972\pi\)
0.402986 + 0.915206i \(0.367972\pi\)
\(4\) −4.31167 −2.15583
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) −2.22889 2.22889i −0.909943 0.909943i
\(7\) 1.14187 + 1.14187i 0.431586 + 0.431586i 0.889168 0.457581i \(-0.151284\pi\)
−0.457581 + 0.889168i \(0.651284\pi\)
\(8\) 5.80761i 2.05330i
\(9\) 1.42578i 0.475261i
\(10\) 1.77647 + 1.77647i 0.561768 + 0.561768i
\(11\) −2.32404 2.32404i −0.700724 0.700724i 0.263842 0.964566i \(-0.415010\pi\)
−0.964566 + 0.263842i \(0.915010\pi\)
\(12\) 3.82528 3.82528i 1.10426 1.10426i
\(13\) 6.35524 1.76263 0.881314 0.472531i \(-0.156660\pi\)
0.881314 + 0.472531i \(0.156660\pi\)
\(14\) −2.86872 + 2.86872i −0.766699 + 0.766699i
\(15\) 1.25468i 0.323957i
\(16\) 5.96715 1.49179
\(17\) −0.768287 + 4.05089i −0.186337 + 0.982486i
\(18\) −3.58200 −0.844284
\(19\) 0.747167i 0.171412i −0.996320 0.0857059i \(-0.972685\pi\)
0.996320 0.0857059i \(-0.0273145\pi\)
\(20\) −3.04881 + 3.04881i −0.681735 + 0.681735i
\(21\) −2.02612 −0.442135
\(22\) 5.83869 5.83869i 1.24481 1.24481i
\(23\) 0.101240 + 0.101240i 0.0211101 + 0.0211101i 0.717583 0.696473i \(-0.245248\pi\)
−0.696473 + 0.717583i \(0.745248\pi\)
\(24\) 5.15247 + 5.15247i 1.05174 + 1.05174i
\(25\) 1.00000i 0.200000i
\(26\) 15.9663i 3.13125i
\(27\) −3.92652 3.92652i −0.755659 0.755659i
\(28\) −4.92337 4.92337i −0.930429 0.930429i
\(29\) 6.22477 6.22477i 1.15591 1.15591i 0.170565 0.985346i \(-0.445441\pi\)
0.985346 0.170565i \(-0.0545592\pi\)
\(30\) −3.15213 −0.575498
\(31\) 5.10259 5.10259i 0.916452 0.916452i −0.0803174 0.996769i \(-0.525593\pi\)
0.996769 + 0.0803174i \(0.0255934\pi\)
\(32\) 3.37606i 0.596809i
\(33\) 4.12374 0.717850
\(34\) −10.1771 1.93017i −1.74535 0.331021i
\(35\) 1.61485 0.272959
\(36\) 6.14750i 1.02458i
\(37\) −0.439195 + 0.439195i −0.0722032 + 0.0722032i −0.742286 0.670083i \(-0.766258\pi\)
0.670083 + 0.742286i \(0.266258\pi\)
\(38\) 1.87711 0.304507
\(39\) −5.63832 + 5.63832i −0.902854 + 0.902854i
\(40\) −4.10660 4.10660i −0.649311 0.649311i
\(41\) −4.49889 4.49889i −0.702609 0.702609i 0.262361 0.964970i \(-0.415499\pi\)
−0.964970 + 0.262361i \(0.915499\pi\)
\(42\) 5.09022i 0.785438i
\(43\) 2.74801i 0.419068i 0.977801 + 0.209534i \(0.0671947\pi\)
−0.977801 + 0.209534i \(0.932805\pi\)
\(44\) 10.0205 + 10.0205i 1.51064 + 1.51064i
\(45\) 1.00818 + 1.00818i 0.150291 + 0.150291i
\(46\) −0.254346 + 0.254346i −0.0375013 + 0.0375013i
\(47\) −11.9308 −1.74029 −0.870146 0.492794i \(-0.835976\pi\)
−0.870146 + 0.492794i \(0.835976\pi\)
\(48\) −5.29400 + 5.29400i −0.764124 + 0.764124i
\(49\) 4.39226i 0.627466i
\(50\) 2.51230 0.355293
\(51\) −2.91230 4.27554i −0.407804 0.598695i
\(52\) −27.4017 −3.79993
\(53\) 2.71404i 0.372802i 0.982474 + 0.186401i \(0.0596823\pi\)
−0.982474 + 0.186401i \(0.940318\pi\)
\(54\) 9.86460 9.86460i 1.34240 1.34240i
\(55\) −3.28669 −0.443177
\(56\) 6.63154 6.63154i 0.886177 0.886177i
\(57\) 0.662880 + 0.662880i 0.0878006 + 0.0878006i
\(58\) 15.6385 + 15.6385i 2.05344 + 2.05344i
\(59\) 12.6815i 1.65099i 0.564413 + 0.825493i \(0.309103\pi\)
−0.564413 + 0.825493i \(0.690897\pi\)
\(60\) 5.40976i 0.698397i
\(61\) 0.328162 + 0.328162i 0.0420168 + 0.0420168i 0.727803 0.685786i \(-0.240542\pi\)
−0.685786 + 0.727803i \(0.740542\pi\)
\(62\) 12.8193 + 12.8193i 1.62805 + 1.62805i
\(63\) −1.62806 + 1.62806i −0.205116 + 0.205116i
\(64\) 3.45261 0.431576
\(65\) 4.49384 4.49384i 0.557392 0.557392i
\(66\) 10.3601i 1.27524i
\(67\) 1.81686 0.221965 0.110982 0.993822i \(-0.464600\pi\)
0.110982 + 0.993822i \(0.464600\pi\)
\(68\) 3.31260 17.4661i 0.401712 2.11808i
\(69\) −0.179639 −0.0216260
\(70\) 4.05699i 0.484903i
\(71\) −3.01043 + 3.01043i −0.357272 + 0.357272i −0.862806 0.505535i \(-0.831295\pi\)
0.505535 + 0.862806i \(0.331295\pi\)
\(72\) 8.28039 0.975853
\(73\) −0.856488 + 0.856488i −0.100244 + 0.100244i −0.755450 0.655206i \(-0.772582\pi\)
0.655206 + 0.755450i \(0.272582\pi\)
\(74\) −1.10339 1.10339i −0.128267 0.128267i
\(75\) 0.887192 + 0.887192i 0.102444 + 0.102444i
\(76\) 3.22154i 0.369535i
\(77\) 5.30750i 0.604846i
\(78\) −14.1652 14.1652i −1.60389 1.60389i
\(79\) −3.57000 3.57000i −0.401656 0.401656i 0.477160 0.878816i \(-0.341666\pi\)
−0.878816 + 0.477160i \(0.841666\pi\)
\(80\) 4.21941 4.21941i 0.471744 0.471744i
\(81\) 2.68980 0.298867
\(82\) 11.3026 11.3026i 1.24816 1.24816i
\(83\) 3.58494i 0.393498i −0.980454 0.196749i \(-0.936962\pi\)
0.980454 0.196749i \(-0.0630385\pi\)
\(84\) 8.73594 0.953169
\(85\) 2.32115 + 3.40767i 0.251764 + 0.369614i
\(86\) −6.90384 −0.744460
\(87\) 11.0451i 1.18416i
\(88\) −13.4971 + 13.4971i −1.43880 + 1.43880i
\(89\) −10.5906 −1.12260 −0.561300 0.827613i \(-0.689698\pi\)
−0.561300 + 0.827613i \(0.689698\pi\)
\(90\) −2.53285 + 2.53285i −0.266986 + 0.266986i
\(91\) 7.25687 + 7.25687i 0.760726 + 0.760726i
\(92\) −0.436515 0.436515i −0.0455098 0.0455098i
\(93\) 9.05395i 0.938851i
\(94\) 29.9739i 3.09157i
\(95\) −0.528327 0.528327i −0.0542052 0.0542052i
\(96\) −2.99521 2.99521i −0.305698 0.305698i
\(97\) −4.92762 + 4.92762i −0.500324 + 0.500324i −0.911539 0.411215i \(-0.865105\pi\)
0.411215 + 0.911539i \(0.365105\pi\)
\(98\) 11.0347 1.11467
\(99\) 3.31357 3.31357i 0.333026 0.333026i
\(100\) 4.31167i 0.431167i
\(101\) −0.679421 −0.0676049 −0.0338025 0.999429i \(-0.510762\pi\)
−0.0338025 + 0.999429i \(0.510762\pi\)
\(102\) 10.7414 7.31658i 1.06356 0.724450i
\(103\) −0.156455 −0.0154160 −0.00770798 0.999970i \(-0.502454\pi\)
−0.00770798 + 0.999970i \(0.502454\pi\)
\(104\) 36.9088i 3.61921i
\(105\) −1.43268 + 1.43268i −0.139815 + 0.139815i
\(106\) −6.81849 −0.662270
\(107\) 12.7033 12.7033i 1.22807 1.22807i 0.263382 0.964692i \(-0.415162\pi\)
0.964692 0.263382i \(-0.0848379\pi\)
\(108\) 16.9298 + 16.9298i 1.62907 + 1.62907i
\(109\) 4.10981 + 4.10981i 0.393649 + 0.393649i 0.875986 0.482337i \(-0.160212\pi\)
−0.482337 + 0.875986i \(0.660212\pi\)
\(110\) 8.25715i 0.787289i
\(111\) 0.779300i 0.0739679i
\(112\) 6.81371 + 6.81371i 0.643835 + 0.643835i
\(113\) −6.57408 6.57408i −0.618438 0.618438i 0.326693 0.945131i \(-0.394066\pi\)
−0.945131 + 0.326693i \(0.894066\pi\)
\(114\) −1.66536 + 1.66536i −0.155975 + 0.155975i
\(115\) 0.143175 0.0133512
\(116\) −26.8392 + 26.8392i −2.49195 + 2.49195i
\(117\) 9.06119i 0.837707i
\(118\) −31.8597 −2.93292
\(119\) −5.50288 + 3.74831i −0.504448 + 0.343607i
\(120\) 7.28669 0.665180
\(121\) 0.197689i 0.0179717i
\(122\) −0.824442 + 0.824442i −0.0746414 + 0.0746414i
\(123\) 7.98276 0.719781
\(124\) −22.0007 + 22.0007i −1.97572 + 1.97572i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) −4.09017 4.09017i −0.364382 0.364382i
\(127\) 15.1796i 1.34698i 0.739198 + 0.673488i \(0.235205\pi\)
−0.739198 + 0.673488i \(0.764795\pi\)
\(128\) 15.4261i 1.36349i
\(129\) −2.43801 2.43801i −0.214655 0.214655i
\(130\) 11.2899 + 11.2899i 0.990188 + 0.990188i
\(131\) 1.40184 1.40184i 0.122480 0.122480i −0.643210 0.765690i \(-0.722398\pi\)
0.765690 + 0.643210i \(0.222398\pi\)
\(132\) −17.7802 −1.54757
\(133\) 0.853168 0.853168i 0.0739790 0.0739790i
\(134\) 4.56450i 0.394313i
\(135\) −5.55293 −0.477920
\(136\) 23.5260 + 4.46191i 2.01734 + 0.382606i
\(137\) 19.6088 1.67530 0.837648 0.546211i \(-0.183930\pi\)
0.837648 + 0.546211i \(0.183930\pi\)
\(138\) 0.451308i 0.0384179i
\(139\) −2.55364 + 2.55364i −0.216597 + 0.216597i −0.807063 0.590466i \(-0.798944\pi\)
0.590466 + 0.807063i \(0.298944\pi\)
\(140\) −6.96269 −0.588455
\(141\) 10.5849 10.5849i 0.891413 0.891413i
\(142\) −7.56310 7.56310i −0.634681 0.634681i
\(143\) −14.7698 14.7698i −1.23512 1.23512i
\(144\) 8.50785i 0.708987i
\(145\) 8.80316i 0.731062i
\(146\) −2.15176 2.15176i −0.178081 0.178081i
\(147\) 3.89678 + 3.89678i 0.321401 + 0.321401i
\(148\) 1.89366 1.89366i 0.155658 0.155658i
\(149\) −1.26402 −0.103553 −0.0517763 0.998659i \(-0.516488\pi\)
−0.0517763 + 0.998659i \(0.516488\pi\)
\(150\) −2.22889 + 2.22889i −0.181989 + 0.181989i
\(151\) 16.2206i 1.32002i −0.751258 0.660009i \(-0.770553\pi\)
0.751258 0.660009i \(-0.229447\pi\)
\(152\) −4.33926 −0.351960
\(153\) −5.77569 1.09541i −0.466937 0.0885586i
\(154\) 13.3341 1.07449
\(155\) 7.21615i 0.579615i
\(156\) 24.3106 24.3106i 1.94640 1.94640i
\(157\) −8.52619 −0.680464 −0.340232 0.940341i \(-0.610506\pi\)
−0.340232 + 0.940341i \(0.610506\pi\)
\(158\) 8.96892 8.96892i 0.713529 0.713529i
\(159\) −2.40787 2.40787i −0.190957 0.190957i
\(160\) 2.38723 + 2.38723i 0.188727 + 0.188727i
\(161\) 0.231207i 0.0182216i
\(162\) 6.75760i 0.530927i
\(163\) −10.9321 10.9321i −0.856267 0.856267i 0.134629 0.990896i \(-0.457016\pi\)
−0.990896 + 0.134629i \(0.957016\pi\)
\(164\) 19.3977 + 19.3977i 1.51471 + 1.51471i
\(165\) 2.91592 2.91592i 0.227004 0.227004i
\(166\) 9.00646 0.699037
\(167\) −2.59558 + 2.59558i −0.200852 + 0.200852i −0.800365 0.599513i \(-0.795361\pi\)
0.599513 + 0.800365i \(0.295361\pi\)
\(168\) 11.7669i 0.907836i
\(169\) 27.3891 2.10686
\(170\) −8.56111 + 5.83144i −0.656607 + 0.447251i
\(171\) 1.06530 0.0814653
\(172\) 11.8485i 0.903441i
\(173\) −6.46394 + 6.46394i −0.491444 + 0.491444i −0.908761 0.417317i \(-0.862970\pi\)
0.417317 + 0.908761i \(0.362970\pi\)
\(174\) −27.7487 −2.10363
\(175\) 1.14187 1.14187i 0.0863173 0.0863173i
\(176\) −13.8679 13.8679i −1.04533 1.04533i
\(177\) −11.2509 11.2509i −0.845669 0.845669i
\(178\) 26.6067i 1.99426i
\(179\) 8.76138i 0.654857i 0.944876 + 0.327428i \(0.106182\pi\)
−0.944876 + 0.327428i \(0.893818\pi\)
\(180\) −4.34694 4.34694i −0.324002 0.324002i
\(181\) 3.44161 + 3.44161i 0.255813 + 0.255813i 0.823349 0.567536i \(-0.192103\pi\)
−0.567536 + 0.823349i \(0.692103\pi\)
\(182\) −18.2314 + 18.2314i −1.35140 + 1.35140i
\(183\) −0.582285 −0.0430437
\(184\) 0.587964 0.587964i 0.0433453 0.0433453i
\(185\) 0.621115i 0.0456653i
\(186\) −22.7463 −1.66784
\(187\) 11.2000 7.62890i 0.819022 0.557881i
\(188\) 51.4418 3.75178
\(189\) 8.96715i 0.652264i
\(190\) 1.32732 1.32732i 0.0962937 0.0962937i
\(191\) 11.2751 0.815838 0.407919 0.913018i \(-0.366255\pi\)
0.407919 + 0.913018i \(0.366255\pi\)
\(192\) −3.06313 + 3.06313i −0.221062 + 0.221062i
\(193\) 3.23976 + 3.23976i 0.233203 + 0.233203i 0.814028 0.580825i \(-0.197270\pi\)
−0.580825 + 0.814028i \(0.697270\pi\)
\(194\) −12.3797 12.3797i −0.888809 0.888809i
\(195\) 7.97379i 0.571015i
\(196\) 18.9380i 1.35271i
\(197\) −9.36781 9.36781i −0.667429 0.667429i 0.289691 0.957120i \(-0.406447\pi\)
−0.957120 + 0.289691i \(0.906447\pi\)
\(198\) 8.32470 + 8.32470i 0.591610 + 0.591610i
\(199\) −1.86562 + 1.86562i −0.132251 + 0.132251i −0.770133 0.637883i \(-0.779810\pi\)
0.637883 + 0.770133i \(0.279810\pi\)
\(200\) −5.80761 −0.410660
\(201\) −1.61190 + 1.61190i −0.113695 + 0.113695i
\(202\) 1.70691i 0.120098i
\(203\) 14.2158 0.997751
\(204\) 12.5569 + 18.4347i 0.879157 + 1.29069i
\(205\) −6.36239 −0.444369
\(206\) 0.393062i 0.0273860i
\(207\) −0.144347 + 0.144347i −0.0100328 + 0.0100328i
\(208\) 37.9227 2.62946
\(209\) −1.73644 + 1.73644i −0.120112 + 0.120112i
\(210\) −3.59933 3.59933i −0.248377 0.248377i
\(211\) 5.04513 + 5.04513i 0.347321 + 0.347321i 0.859111 0.511790i \(-0.171017\pi\)
−0.511790 + 0.859111i \(0.671017\pi\)
\(212\) 11.7020i 0.803699i
\(213\) 5.34165i 0.366004i
\(214\) 31.9145 + 31.9145i 2.18163 + 2.18163i
\(215\) 1.94314 + 1.94314i 0.132521 + 0.132521i
\(216\) −22.8037 + 22.8037i −1.55159 + 1.55159i
\(217\) 11.6530 0.791057
\(218\) −10.3251 + 10.3251i −0.699304 + 0.699304i
\(219\) 1.51974i 0.102694i
\(220\) 14.1711 0.955416
\(221\) −4.88265 + 25.7444i −0.328443 + 1.73176i
\(222\) 1.95784 0.131402
\(223\) 12.1709i 0.815025i 0.913200 + 0.407512i \(0.133604\pi\)
−0.913200 + 0.407512i \(0.866396\pi\)
\(224\) −3.85502 + 3.85502i −0.257575 + 0.257575i
\(225\) 1.42578 0.0950521
\(226\) 16.5161 16.5161i 1.09863 1.09863i
\(227\) −0.590883 0.590883i −0.0392183 0.0392183i 0.687226 0.726444i \(-0.258828\pi\)
−0.726444 + 0.687226i \(0.758828\pi\)
\(228\) −2.85812 2.85812i −0.189284 0.189284i
\(229\) 6.13420i 0.405360i −0.979245 0.202680i \(-0.935035\pi\)
0.979245 0.202680i \(-0.0649651\pi\)
\(230\) 0.359700i 0.0237179i
\(231\) 4.70877 + 4.70877i 0.309814 + 0.309814i
\(232\) −36.1511 36.1511i −2.37343 2.37343i
\(233\) −11.9056 + 11.9056i −0.779962 + 0.779962i −0.979824 0.199862i \(-0.935951\pi\)
0.199862 + 0.979824i \(0.435951\pi\)
\(234\) −22.7645 −1.48816
\(235\) −8.43638 + 8.43638i −0.550329 + 0.550329i
\(236\) 54.6783i 3.55925i
\(237\) 6.33455 0.411473
\(238\) −9.41689 13.8249i −0.610407 0.896135i
\(239\) 6.95301 0.449753 0.224876 0.974387i \(-0.427802\pi\)
0.224876 + 0.974387i \(0.427802\pi\)
\(240\) 7.48685i 0.483274i
\(241\) −21.7234 + 21.7234i −1.39933 + 1.39933i −0.597335 + 0.801992i \(0.703774\pi\)
−0.801992 + 0.597335i \(0.796226\pi\)
\(242\) 0.496655 0.0319262
\(243\) 9.39318 9.39318i 0.602573 0.602573i
\(244\) −1.41492 1.41492i −0.0905812 0.0905812i
\(245\) −3.10580 3.10580i −0.198422 0.198422i
\(246\) 20.0551i 1.27867i
\(247\) 4.74843i 0.302135i
\(248\) −29.6339 29.6339i −1.88175 1.88175i
\(249\) 3.18053 + 3.18053i 0.201558 + 0.201558i
\(250\) 1.77647 1.77647i 0.112354 0.112354i
\(251\) 22.5294 1.42204 0.711021 0.703171i \(-0.248233\pi\)
0.711021 + 0.703171i \(0.248233\pi\)
\(252\) 7.01964 7.01964i 0.442196 0.442196i
\(253\) 0.470573i 0.0295846i
\(254\) −38.1359 −2.39286
\(255\) −5.08257 0.963953i −0.318283 0.0603651i
\(256\) −31.8499 −1.99062
\(257\) 1.90476i 0.118816i −0.998234 0.0594079i \(-0.981079\pi\)
0.998234 0.0594079i \(-0.0189212\pi\)
\(258\) 6.12503 6.12503i 0.381328 0.381328i
\(259\) −1.00301 −0.0623238
\(260\) −19.3759 + 19.3759i −1.20164 + 1.20164i
\(261\) 8.87516 + 8.87516i 0.549359 + 0.549359i
\(262\) 3.52186 + 3.52186i 0.217581 + 0.217581i
\(263\) 7.80192i 0.481087i −0.970638 0.240543i \(-0.922674\pi\)
0.970638 0.240543i \(-0.0773256\pi\)
\(264\) 23.9491i 1.47396i
\(265\) 1.91912 + 1.91912i 0.117890 + 0.117890i
\(266\) 2.14342 + 2.14342i 0.131421 + 0.131421i
\(267\) 9.39587 9.39587i 0.575018 0.575018i
\(268\) −7.83369 −0.478519
\(269\) 9.71848 9.71848i 0.592546 0.592546i −0.345772 0.938318i \(-0.612383\pi\)
0.938318 + 0.345772i \(0.112383\pi\)
\(270\) 13.9507i 0.849010i
\(271\) −12.4855 −0.758438 −0.379219 0.925307i \(-0.623807\pi\)
−0.379219 + 0.925307i \(0.623807\pi\)
\(272\) −4.58448 + 24.1723i −0.277975 + 1.46566i
\(273\) −12.8765 −0.779319
\(274\) 49.2633i 2.97611i
\(275\) −2.32404 + 2.32404i −0.140145 + 0.140145i
\(276\) 0.774544 0.0466221
\(277\) −18.9930 + 18.9930i −1.14118 + 1.14118i −0.152944 + 0.988235i \(0.548875\pi\)
−0.988235 + 0.152944i \(0.951125\pi\)
\(278\) −6.41552 6.41552i −0.384777 0.384777i
\(279\) 7.27518 + 7.27518i 0.435553 + 0.435553i
\(280\) 9.37841i 0.560467i
\(281\) 15.5290i 0.926385i −0.886258 0.463193i \(-0.846704\pi\)
0.886258 0.463193i \(-0.153296\pi\)
\(282\) 26.5926 + 26.5926i 1.58357 + 1.58357i
\(283\) −7.38186 7.38186i −0.438806 0.438806i 0.452804 0.891610i \(-0.350424\pi\)
−0.891610 + 0.452804i \(0.850424\pi\)
\(284\) 12.9800 12.9800i 0.770219 0.770219i
\(285\) 0.937454 0.0555300
\(286\) 37.1063 37.1063i 2.19414 2.19414i
\(287\) 10.2743i 0.606473i
\(288\) −4.81352 −0.283640
\(289\) −15.8195 6.22450i −0.930557 0.366147i
\(290\) 22.1162 1.29871
\(291\) 8.74348i 0.512552i
\(292\) 3.69289 3.69289i 0.216110 0.216110i
\(293\) 7.10645 0.415163 0.207581 0.978218i \(-0.433441\pi\)
0.207581 + 0.978218i \(0.433441\pi\)
\(294\) −9.78989 + 9.78989i −0.570958 + 0.570958i
\(295\) 8.96715 + 8.96715i 0.522087 + 0.522087i
\(296\) 2.55067 + 2.55067i 0.148255 + 0.148255i
\(297\) 18.2508i 1.05902i
\(298\) 3.17560i 0.183958i
\(299\) 0.643407 + 0.643407i 0.0372092 + 0.0372092i
\(300\) −3.82528 3.82528i −0.220852 0.220852i
\(301\) −3.13787 + 3.13787i −0.180864 + 0.180864i
\(302\) 40.7512 2.34497
\(303\) 0.602777 0.602777i 0.0346286 0.0346286i
\(304\) 4.45845i 0.255710i
\(305\) 0.464091 0.0265738
\(306\) 2.75200 14.5103i 0.157321 0.829498i
\(307\) 4.80512 0.274243 0.137121 0.990554i \(-0.456215\pi\)
0.137121 + 0.990554i \(0.456215\pi\)
\(308\) 22.8842i 1.30395i
\(309\) 0.138806 0.138806i 0.00789637 0.00789637i
\(310\) 18.1292 1.02967
\(311\) −5.67759 + 5.67759i −0.321947 + 0.321947i −0.849514 0.527567i \(-0.823104\pi\)
0.527567 + 0.849514i \(0.323104\pi\)
\(312\) 32.7452 + 32.7452i 1.85383 + 1.85383i
\(313\) 15.6285 + 15.6285i 0.883374 + 0.883374i 0.993876 0.110502i \(-0.0352458\pi\)
−0.110502 + 0.993876i \(0.535246\pi\)
\(314\) 21.4204i 1.20882i
\(315\) 2.30242i 0.129727i
\(316\) 15.3927 + 15.3927i 0.865905 + 0.865905i
\(317\) −11.2888 11.2888i −0.634041 0.634041i 0.315038 0.949079i \(-0.397983\pi\)
−0.949079 + 0.315038i \(0.897983\pi\)
\(318\) 6.04931 6.04931i 0.339228 0.339228i
\(319\) −28.9332 −1.61995
\(320\) 2.44136 2.44136i 0.136476 0.136476i
\(321\) 22.5405i 1.25809i
\(322\) −0.580861 −0.0323701
\(323\) 3.02669 + 0.574039i 0.168410 + 0.0319404i
\(324\) −11.5975 −0.644308
\(325\) 6.35524i 0.352526i
\(326\) 27.4647 27.4647i 1.52113 1.52113i
\(327\) −7.29238 −0.403270
\(328\) −26.1278 + 26.1278i −1.44267 + 1.44267i
\(329\) −13.6235 13.6235i −0.751086 0.751086i
\(330\) 7.32568 + 7.32568i 0.403265 + 0.403265i
\(331\) 3.87911i 0.213215i −0.994301 0.106608i \(-0.966001\pi\)
0.994301 0.106608i \(-0.0339989\pi\)
\(332\) 15.4571i 0.848317i
\(333\) −0.626196 0.626196i −0.0343153 0.0343153i
\(334\) −6.52088 6.52088i −0.356807 0.356807i
\(335\) 1.28471 1.28471i 0.0701914 0.0701914i
\(336\) −12.0901 −0.659571
\(337\) −17.2431 + 17.2431i −0.939290 + 0.939290i −0.998260 0.0589698i \(-0.981218\pi\)
0.0589698 + 0.998260i \(0.481218\pi\)
\(338\) 68.8098i 3.74276i
\(339\) 11.6649 0.633553
\(340\) −10.0080 14.6928i −0.542762 0.796827i
\(341\) −23.7172 −1.28436
\(342\) 2.67635i 0.144720i
\(343\) 13.0085 13.0085i 0.702392 0.702392i
\(344\) 15.9594 0.860473
\(345\) −0.127024 + 0.127024i −0.00683874 + 0.00683874i
\(346\) −16.2394 16.2394i −0.873034 0.873034i
\(347\) 7.51698 + 7.51698i 0.403532 + 0.403532i 0.879476 0.475943i \(-0.157893\pi\)
−0.475943 + 0.879476i \(0.657893\pi\)
\(348\) 47.6229i 2.55286i
\(349\) 11.5579i 0.618682i −0.950951 0.309341i \(-0.899892\pi\)
0.950951 0.309341i \(-0.100108\pi\)
\(350\) 2.86872 + 2.86872i 0.153340 + 0.153340i
\(351\) −24.9540 24.9540i −1.33194 1.33194i
\(352\) 7.84609 7.84609i 0.418198 0.418198i
\(353\) −11.3682 −0.605070 −0.302535 0.953138i \(-0.597833\pi\)
−0.302535 + 0.953138i \(0.597833\pi\)
\(354\) 28.2656 28.2656i 1.50230 1.50230i
\(355\) 4.25738i 0.225958i
\(356\) 45.6631 2.42014
\(357\) 1.55664 8.20758i 0.0823861 0.434391i
\(358\) −22.0113 −1.16333
\(359\) 32.1310i 1.69581i 0.530147 + 0.847906i \(0.322137\pi\)
−0.530147 + 0.847906i \(0.677863\pi\)
\(360\) 5.85512 5.85512i 0.308592 0.308592i
\(361\) 18.4417 0.970618
\(362\) −8.64637 + 8.64637i −0.454443 + 0.454443i
\(363\) 0.175388 + 0.175388i 0.00920548 + 0.00920548i
\(364\) −31.2892 31.2892i −1.64000 1.64000i
\(365\) 1.21126i 0.0634001i
\(366\) 1.46288i 0.0764657i
\(367\) −13.6155 13.6155i −0.710723 0.710723i 0.255964 0.966686i \(-0.417607\pi\)
−0.966686 + 0.255964i \(0.917607\pi\)
\(368\) 0.604116 + 0.604116i 0.0314917 + 0.0314917i
\(369\) 6.41443 6.41443i 0.333922 0.333922i
\(370\) −1.56043 −0.0811229
\(371\) −3.09908 + 3.09908i −0.160896 + 0.160896i
\(372\) 39.0376i 2.02401i
\(373\) −20.3136 −1.05180 −0.525900 0.850547i \(-0.676271\pi\)
−0.525900 + 0.850547i \(0.676271\pi\)
\(374\) 19.1661 + 28.1377i 0.991056 + 1.45497i
\(375\) 1.25468 0.0647913
\(376\) 69.2897i 3.57334i
\(377\) 39.5599 39.5599i 2.03744 2.03744i
\(378\) 22.5282 1.15873
\(379\) 24.2540 24.2540i 1.24585 1.24585i 0.288308 0.957538i \(-0.406907\pi\)
0.957538 0.288308i \(-0.0930928\pi\)
\(380\) 2.27797 + 2.27797i 0.116857 + 0.116857i
\(381\) −13.4673 13.4673i −0.689948 0.689948i
\(382\) 28.3265i 1.44931i
\(383\) 21.3225i 1.08953i 0.838589 + 0.544764i \(0.183381\pi\)
−0.838589 + 0.544764i \(0.816619\pi\)
\(384\) −13.6859 13.6859i −0.698407 0.698407i
\(385\) −3.75297 3.75297i −0.191269 0.191269i
\(386\) −8.13925 + 8.13925i −0.414277 + 0.414277i
\(387\) −3.91807 −0.199166
\(388\) 21.2463 21.2463i 1.07862 1.07862i
\(389\) 11.7682i 0.596672i −0.954461 0.298336i \(-0.903568\pi\)
0.954461 0.298336i \(-0.0964316\pi\)
\(390\) −20.0326 −1.01439
\(391\) −0.487895 + 0.332332i −0.0246739 + 0.0168067i
\(392\) −25.5086 −1.28838
\(393\) 2.48741i 0.125473i
\(394\) 23.5348 23.5348i 1.18567 1.18567i
\(395\) −5.04874 −0.254030
\(396\) −14.2870 + 14.2870i −0.717950 + 0.717950i
\(397\) 2.37514 + 2.37514i 0.119205 + 0.119205i 0.764193 0.644988i \(-0.223138\pi\)
−0.644988 + 0.764193i \(0.723138\pi\)
\(398\) −4.68701 4.68701i −0.234939 0.234939i
\(399\) 1.51385i 0.0757871i
\(400\) 5.96715i 0.298357i
\(401\) −1.83450 1.83450i −0.0916105 0.0916105i 0.659816 0.751427i \(-0.270634\pi\)
−0.751427 + 0.659816i \(0.770634\pi\)
\(402\) −4.04959 4.04959i −0.201975 0.201975i
\(403\) 32.4282 32.4282i 1.61536 1.61536i
\(404\) 2.92944 0.145745
\(405\) 1.90198 1.90198i 0.0945100 0.0945100i
\(406\) 35.7143i 1.77247i
\(407\) 2.04141 0.101189
\(408\) −24.8307 + 16.9135i −1.22930 + 0.837344i
\(409\) −30.8364 −1.52476 −0.762381 0.647129i \(-0.775970\pi\)
−0.762381 + 0.647129i \(0.775970\pi\)
\(410\) 15.9843i 0.789406i
\(411\) −17.3968 + 17.3968i −0.858120 + 0.858120i
\(412\) 0.674582 0.0332343
\(413\) −14.4806 + 14.4806i −0.712543 + 0.712543i
\(414\) −0.362642 0.362642i −0.0178229 0.0178229i
\(415\) −2.53494 2.53494i −0.124435 0.124435i
\(416\) 21.4557i 1.05195i
\(417\) 4.53114i 0.221891i
\(418\) −4.36248 4.36248i −0.213376 0.213376i
\(419\) 13.1997 + 13.1997i 0.644849 + 0.644849i 0.951744 0.306894i \(-0.0992898\pi\)
−0.306894 + 0.951744i \(0.599290\pi\)
\(420\) 6.17724 6.17724i 0.301419 0.301419i
\(421\) −29.5695 −1.44113 −0.720565 0.693388i \(-0.756117\pi\)
−0.720565 + 0.693388i \(0.756117\pi\)
\(422\) −12.6749 + 12.6749i −0.617004 + 0.617004i
\(423\) 17.0108i 0.827092i
\(424\) 15.7621 0.765475
\(425\) 4.05089 + 0.768287i 0.196497 + 0.0372674i
\(426\) 13.4198 0.650193
\(427\) 0.749436i 0.0362678i
\(428\) −54.7724 + 54.7724i −2.64752 + 2.64752i
\(429\) 26.2074 1.26530
\(430\) −4.88175 + 4.88175i −0.235419 + 0.235419i
\(431\) 11.5583 + 11.5583i 0.556744 + 0.556744i 0.928379 0.371635i \(-0.121203\pi\)
−0.371635 + 0.928379i \(0.621203\pi\)
\(432\) −23.4301 23.4301i −1.12728 1.12728i
\(433\) 14.3256i 0.688446i 0.938888 + 0.344223i \(0.111858\pi\)
−0.938888 + 0.344223i \(0.888142\pi\)
\(434\) 29.2758i 1.40529i
\(435\) 7.81009 + 7.81009i 0.374465 + 0.374465i
\(436\) −17.7202 17.7202i −0.848641 0.848641i
\(437\) 0.0756434 0.0756434i 0.00361851 0.00361851i
\(438\) 3.81805 0.182433
\(439\) −21.5167 + 21.5167i −1.02694 + 1.02694i −0.0273099 + 0.999627i \(0.508694\pi\)
−0.999627 + 0.0273099i \(0.991306\pi\)
\(440\) 19.0878i 0.909975i
\(441\) 6.26241 0.298210
\(442\) −64.6778 12.2667i −3.07641 0.583468i
\(443\) 26.5036 1.25922 0.629612 0.776909i \(-0.283214\pi\)
0.629612 + 0.776909i \(0.283214\pi\)
\(444\) 3.36008i 0.159463i
\(445\) −7.48867 + 7.48867i −0.354997 + 0.354997i
\(446\) −30.5770 −1.44786
\(447\) 1.12143 1.12143i 0.0530418 0.0530418i
\(448\) 3.94243 + 3.94243i 0.186262 + 0.186262i
\(449\) 11.1999 + 11.1999i 0.528556 + 0.528556i 0.920142 0.391585i \(-0.128073\pi\)
−0.391585 + 0.920142i \(0.628073\pi\)
\(450\) 3.58200i 0.168857i
\(451\) 20.9112i 0.984669i
\(452\) 28.3453 + 28.3453i 1.33325 + 1.33325i
\(453\) 14.3908 + 14.3908i 0.676140 + 0.676140i
\(454\) 1.48448 1.48448i 0.0696700 0.0696700i
\(455\) 10.2628 0.481126
\(456\) 3.84975 3.84975i 0.180281 0.180281i
\(457\) 4.25348i 0.198969i −0.995039 0.0994847i \(-0.968281\pi\)
0.995039 0.0994847i \(-0.0317194\pi\)
\(458\) 15.4110 0.720108
\(459\) 18.9226 12.8892i 0.883231 0.601617i
\(460\) −0.617325 −0.0287829
\(461\) 23.9740i 1.11658i −0.829646 0.558290i \(-0.811458\pi\)
0.829646 0.558290i \(-0.188542\pi\)
\(462\) −11.8299 + 11.8299i −0.550375 + 0.550375i
\(463\) 23.0127 1.06949 0.534746 0.845013i \(-0.320407\pi\)
0.534746 + 0.845013i \(0.320407\pi\)
\(464\) 37.1441 37.1441i 1.72437 1.72437i
\(465\) 6.40211 + 6.40211i 0.296891 + 0.296891i
\(466\) −29.9105 29.9105i −1.38558 1.38558i
\(467\) 21.7845i 1.00807i −0.863684 0.504033i \(-0.831849\pi\)
0.863684 0.504033i \(-0.168151\pi\)
\(468\) 39.0688i 1.80596i
\(469\) 2.07462 + 2.07462i 0.0957969 + 0.0957969i
\(470\) −21.1947 21.1947i −0.977640 0.977640i
\(471\) 7.56437 7.56437i 0.348548 0.348548i
\(472\) 73.6490 3.38997
\(473\) 6.38649 6.38649i 0.293651 0.293651i
\(474\) 15.9143i 0.730968i
\(475\) −0.747167 −0.0342824
\(476\) 23.7266 16.1615i 1.08751 0.740760i
\(477\) −3.86963 −0.177178
\(478\) 17.4681i 0.798971i
\(479\) −23.2853 + 23.2853i −1.06393 + 1.06393i −0.0661200 + 0.997812i \(0.521062\pi\)
−0.997812 + 0.0661200i \(0.978938\pi\)
\(480\) −4.23587 −0.193340
\(481\) −2.79119 + 2.79119i −0.127267 + 0.127267i
\(482\) −54.5758 54.5758i −2.48586 2.48586i
\(483\) −0.205125 0.205125i −0.00933349 0.00933349i
\(484\) 0.852369i 0.0387441i
\(485\) 6.96870i 0.316433i
\(486\) 23.5985 + 23.5985i 1.07045 + 1.07045i
\(487\) −13.1864 13.1864i −0.597535 0.597535i 0.342121 0.939656i \(-0.388855\pi\)
−0.939656 + 0.342121i \(0.888855\pi\)
\(488\) 1.90584 1.90584i 0.0862731 0.0862731i
\(489\) 19.3977 0.877195
\(490\) 7.80271 7.80271i 0.352491 0.352491i
\(491\) 3.97306i 0.179302i −0.995973 0.0896508i \(-0.971425\pi\)
0.995973 0.0896508i \(-0.0285751\pi\)
\(492\) −34.4190 −1.55173
\(493\) 20.4335 + 29.9983i 0.920277 + 1.35106i
\(494\) 11.9295 0.536733
\(495\) 4.68610i 0.210624i
\(496\) 30.4479 30.4479i 1.36715 1.36715i
\(497\) −6.87503 −0.308387
\(498\) −7.99046 + 7.99046i −0.358061 + 0.358061i
\(499\) −24.1326 24.1326i −1.08032 1.08032i −0.996479 0.0838426i \(-0.973281\pi\)
−0.0838426 0.996479i \(-0.526719\pi\)
\(500\) 3.04881 + 3.04881i 0.136347 + 0.136347i
\(501\) 4.60555i 0.205761i
\(502\) 56.6007i 2.52621i
\(503\) 27.8677 + 27.8677i 1.24256 + 1.24256i 0.958935 + 0.283626i \(0.0915375\pi\)
0.283626 + 0.958935i \(0.408463\pi\)
\(504\) 9.45513 + 9.45513i 0.421165 + 0.421165i
\(505\) −0.480423 + 0.480423i −0.0213785 + 0.0213785i
\(506\) 1.18222 0.0525561
\(507\) −24.2994 + 24.2994i −1.07917 + 1.07917i
\(508\) 65.4496i 2.90386i
\(509\) 8.87274 0.393277 0.196639 0.980476i \(-0.436997\pi\)
0.196639 + 0.980476i \(0.436997\pi\)
\(510\) 2.42174 12.7690i 0.107237 0.565419i
\(511\) −1.95600 −0.0865282
\(512\) 49.1643i 2.17278i
\(513\) −2.93376 + 2.93376i −0.129529 + 0.129529i
\(514\) 4.78534 0.211072
\(515\) −0.110630 + 0.110630i −0.00487496 + 0.00487496i
\(516\) 10.5119 + 10.5119i 0.462761 + 0.462761i
\(517\) 27.7277 + 27.7277i 1.21946 + 1.21946i
\(518\) 2.51986i 0.110716i
\(519\) 11.4695i 0.503455i
\(520\) −26.0985 26.0985i −1.14449 1.14449i
\(521\) 12.4387 + 12.4387i 0.544948 + 0.544948i 0.924975 0.380027i \(-0.124085\pi\)
−0.380027 + 0.924975i \(0.624085\pi\)
\(522\) −22.2971 + 22.2971i −0.975918 + 0.975918i
\(523\) −20.1681 −0.881892 −0.440946 0.897534i \(-0.645357\pi\)
−0.440946 + 0.897534i \(0.645357\pi\)
\(524\) −6.04428 + 6.04428i −0.264046 + 0.264046i
\(525\) 2.02612i 0.0884270i
\(526\) 19.6008 0.854635
\(527\) 16.7498 + 24.5903i 0.729632 + 1.07117i
\(528\) 24.6069 1.07088
\(529\) 22.9795i 0.999109i
\(530\) −4.82140 + 4.82140i −0.209428 + 0.209428i
\(531\) −18.0810 −0.784648
\(532\) −3.67858 + 3.67858i −0.159487 + 0.159487i
\(533\) −28.5915 28.5915i −1.23844 1.23844i
\(534\) 23.6053 + 23.6053i 1.02150 + 1.02150i
\(535\) 17.9652i 0.776702i
\(536\) 10.5516i 0.455760i
\(537\) −7.77303 7.77303i −0.335431 0.335431i
\(538\) 24.4158 + 24.4158i 1.05264 + 1.05264i
\(539\) −10.2078 + 10.2078i −0.439681 + 0.439681i
\(540\) 23.9424 1.03032
\(541\) 30.2202 30.2202i 1.29927 1.29927i 0.370391 0.928876i \(-0.379224\pi\)
0.928876 0.370391i \(-0.120776\pi\)
\(542\) 31.3673i 1.34734i
\(543\) −6.10674 −0.262065
\(544\) −13.6761 2.59378i −0.586356 0.111208i
\(545\) 5.81215 0.248965
\(546\) 32.3496i 1.38443i
\(547\) 10.0510 10.0510i 0.429751 0.429751i −0.458792 0.888544i \(-0.651718\pi\)
0.888544 + 0.458792i \(0.151718\pi\)
\(548\) −84.5468 −3.61166
\(549\) −0.467887 + 0.467887i −0.0199689 + 0.0199689i
\(550\) −5.83869 5.83869i −0.248963 0.248963i
\(551\) −4.65094 4.65094i −0.198137 0.198137i
\(552\) 1.04327i 0.0444047i
\(553\) 8.15295i 0.346699i
\(554\) −47.7162 47.7162i −2.02727 2.02727i
\(555\) −0.551049 0.551049i −0.0233907 0.0233907i
\(556\) 11.0105 11.0105i 0.466947 0.466947i
\(557\) −4.00971 −0.169897 −0.0849484 0.996385i \(-0.527073\pi\)
−0.0849484 + 0.996385i \(0.527073\pi\)
\(558\) −18.2775 + 18.2775i −0.773746 + 0.773746i
\(559\) 17.4643i 0.738661i
\(560\) 9.63604 0.407197
\(561\) −3.16821 + 16.7048i −0.133762 + 0.705278i
\(562\) 39.0137 1.64569
\(563\) 5.66772i 0.238866i 0.992842 + 0.119433i \(0.0381077\pi\)
−0.992842 + 0.119433i \(0.961892\pi\)
\(564\) −45.6388 + 45.6388i −1.92174 + 1.92174i
\(565\) −9.29716 −0.391134
\(566\) 18.5455 18.5455i 0.779524 0.779524i
\(567\) 3.07141 + 3.07141i 0.128987 + 0.128987i
\(568\) 17.4834 + 17.4834i 0.733586 + 0.733586i
\(569\) 0.249161i 0.0104454i 0.999986 + 0.00522269i \(0.00166244\pi\)
−0.999986 + 0.00522269i \(0.998338\pi\)
\(570\) 2.35517i 0.0986472i
\(571\) 24.1579 + 24.1579i 1.01098 + 1.01098i 0.999939 + 0.0110385i \(0.00351375\pi\)
0.0110385 + 0.999939i \(0.496486\pi\)
\(572\) 63.6826 + 63.6826i 2.66270 + 2.66270i
\(573\) −10.0032 + 10.0032i −0.417889 + 0.417889i
\(574\) 25.8122 1.07738
\(575\) 0.101240 0.101240i 0.00422201 0.00422201i
\(576\) 4.92267i 0.205111i
\(577\) 28.3587 1.18059 0.590295 0.807188i \(-0.299011\pi\)
0.590295 + 0.807188i \(0.299011\pi\)
\(578\) 15.6378 39.7433i 0.650448 1.65310i
\(579\) −5.74857 −0.238902
\(580\) 37.9563i 1.57605i
\(581\) 4.09354 4.09354i 0.169829 0.169829i
\(582\) 21.9663 0.910532
\(583\) 6.30753 6.30753i 0.261231 0.261231i
\(584\) 4.97415 + 4.97415i 0.205832 + 0.205832i
\(585\) 6.40723 + 6.40723i 0.264906 + 0.264906i
\(586\) 17.8535i 0.737523i
\(587\) 22.8461i 0.942960i −0.881877 0.471480i \(-0.843720\pi\)
0.881877 0.471480i \(-0.156280\pi\)
\(588\) −16.8016 16.8016i −0.692887 0.692887i
\(589\) −3.81249 3.81249i −0.157091 0.157091i
\(590\) −22.5282 + 22.5282i −0.927471 + 0.927471i
\(591\) 16.6221 0.683742
\(592\) −2.62074 + 2.62074i −0.107712 + 0.107712i
\(593\) 10.3077i 0.423285i −0.977347 0.211642i \(-0.932119\pi\)
0.977347 0.211642i \(-0.0678812\pi\)
\(594\) −45.8514 −1.88131
\(595\) −1.24067 + 6.54158i −0.0508624 + 0.268179i
\(596\) 5.45004 0.223242
\(597\) 3.31033i 0.135483i
\(598\) −1.61643 + 1.61643i −0.0661009 + 0.0661009i
\(599\) 25.2157 1.03028 0.515142 0.857105i \(-0.327739\pi\)
0.515142 + 0.857105i \(0.327739\pi\)
\(600\) 5.15247 5.15247i 0.210349 0.210349i
\(601\) −6.05550 6.05550i −0.247009 0.247009i 0.572733 0.819742i \(-0.305883\pi\)
−0.819742 + 0.572733i \(0.805883\pi\)
\(602\) −7.88329 7.88329i −0.321299 0.321299i
\(603\) 2.59044i 0.105491i
\(604\) 69.9380i 2.84574i
\(605\) −0.139787 0.139787i −0.00568316 0.00568316i
\(606\) 1.51436 + 1.51436i 0.0615166 + 0.0615166i
\(607\) 6.94394 6.94394i 0.281846 0.281846i −0.551999 0.833845i \(-0.686135\pi\)
0.833845 + 0.551999i \(0.186135\pi\)
\(608\) 2.52248 0.102300
\(609\) −12.6121 + 12.6121i −0.511069 + 0.511069i
\(610\) 1.16594i 0.0472074i
\(611\) −75.8234 −3.06749
\(612\) 24.9029 + 4.72304i 1.00664 + 0.190918i
\(613\) 22.3926 0.904427 0.452214 0.891910i \(-0.350635\pi\)
0.452214 + 0.891910i \(0.350635\pi\)
\(614\) 12.0719i 0.487183i
\(615\) 5.64466 5.64466i 0.227615 0.227615i
\(616\) −30.8239 −1.24193
\(617\) −15.0930 + 15.0930i −0.607620 + 0.607620i −0.942323 0.334704i \(-0.891364\pi\)
0.334704 + 0.942323i \(0.391364\pi\)
\(618\) 0.348722 + 0.348722i 0.0140276 + 0.0140276i
\(619\) −10.6460 10.6460i −0.427900 0.427900i 0.460013 0.887912i \(-0.347845\pi\)
−0.887912 + 0.460013i \(0.847845\pi\)
\(620\) 31.1136i 1.24955i
\(621\) 0.795043i 0.0319040i
\(622\) −14.2638 14.2638i −0.571928 0.571928i
\(623\) −12.0931 12.0931i −0.484499 0.484499i
\(624\) −33.6447 + 33.6447i −1.34687 + 1.34687i
\(625\) −1.00000 −0.0400000
\(626\) −39.2635 + 39.2635i −1.56928 + 1.56928i
\(627\) 3.08112i 0.123048i
\(628\) 36.7621 1.46697
\(629\) −1.44170 2.11656i −0.0574845 0.0843928i
\(630\) −5.78438 −0.230455
\(631\) 41.6046i 1.65625i −0.560540 0.828127i \(-0.689406\pi\)
0.560540 0.828127i \(-0.310594\pi\)
\(632\) −20.7332 + 20.7332i −0.824721 + 0.824721i
\(633\) −8.95199 −0.355810
\(634\) 28.3608 28.3608i 1.12635 1.12635i
\(635\) 10.7336 + 10.7336i 0.425951 + 0.425951i
\(636\) 10.3820 + 10.3820i 0.411671 + 0.411671i
\(637\) 27.9139i 1.10599i
\(638\) 72.6890i 2.87779i
\(639\) −4.29221 4.29221i −0.169797 0.169797i
\(640\) 10.9079 + 10.9079i 0.431173 + 0.431173i
\(641\) 6.26768 6.26768i 0.247559 0.247559i −0.572409 0.819968i \(-0.693991\pi\)
0.819968 + 0.572409i \(0.193991\pi\)
\(642\) −56.6286 −2.23495
\(643\) −21.2314 + 21.2314i −0.837285 + 0.837285i −0.988501 0.151216i \(-0.951681\pi\)
0.151216 + 0.988501i \(0.451681\pi\)
\(644\) 0.996886i 0.0392828i
\(645\) −3.44787 −0.135760
\(646\) −1.44216 + 7.60397i −0.0567410 + 0.299174i
\(647\) 0.383859 0.0150911 0.00754553 0.999972i \(-0.497598\pi\)
0.00754553 + 0.999972i \(0.497598\pi\)
\(648\) 15.6213i 0.613664i
\(649\) 29.4722 29.4722i 1.15689 1.15689i
\(650\) 15.9663 0.626250
\(651\) −10.3384 + 10.3384i −0.405195 + 0.405195i
\(652\) 47.1355 + 47.1355i 1.84597 + 1.84597i
\(653\) 1.02342 + 1.02342i 0.0400497 + 0.0400497i 0.726848 0.686798i \(-0.240984\pi\)
−0.686798 + 0.726848i \(0.740984\pi\)
\(654\) 18.3207i 0.716395i
\(655\) 1.98251i 0.0774629i
\(656\) −26.8455 26.8455i −1.04814 1.04814i
\(657\) −1.22117 1.22117i −0.0476422 0.0476422i
\(658\) 34.2263 34.2263i 1.33428 1.33428i
\(659\) −21.8603 −0.851555 −0.425777 0.904828i \(-0.639999\pi\)
−0.425777 + 0.904828i \(0.639999\pi\)
\(660\) −12.5725 + 12.5725i −0.489383 + 0.489383i
\(661\) 40.5201i 1.57605i 0.615644 + 0.788024i \(0.288896\pi\)
−0.615644 + 0.788024i \(0.711104\pi\)
\(662\) 9.74551 0.378770
\(663\) −18.5084 27.1721i −0.718806 1.05528i
\(664\) −20.8200 −0.807971
\(665\) 1.20656i 0.0467884i
\(666\) 1.57319 1.57319i 0.0609600 0.0609600i
\(667\) 1.26040 0.0488027
\(668\) 11.1913 11.1913i 0.433004 0.433004i
\(669\) −10.7979 10.7979i −0.417472 0.417472i
\(670\) 3.22759 + 3.22759i 0.124693 + 0.124693i
\(671\) 1.52532i 0.0588844i
\(672\) 6.84029i 0.263870i
\(673\) −5.61265 5.61265i −0.216352 0.216352i 0.590607 0.806959i \(-0.298888\pi\)
−0.806959 + 0.590607i \(0.798888\pi\)
\(674\) −43.3198 43.3198i −1.66862 1.66862i
\(675\) −3.92652 + 3.92652i −0.151132 + 0.151132i
\(676\) −118.093 −4.54203
\(677\) −1.81406 + 1.81406i −0.0697200 + 0.0697200i −0.741107 0.671387i \(-0.765699\pi\)
0.671387 + 0.741107i \(0.265699\pi\)
\(678\) 29.3059i 1.12549i
\(679\) −11.2534 −0.431866
\(680\) 19.7905 13.4804i 0.758929 0.516948i
\(681\) 1.04845 0.0401768
\(682\) 59.5849i 2.28162i
\(683\) −10.2987 + 10.2987i −0.394070 + 0.394070i −0.876135 0.482065i \(-0.839887\pi\)
0.482065 + 0.876135i \(0.339887\pi\)
\(684\) −4.59321 −0.175626
\(685\) 13.8655 13.8655i 0.529775 0.529775i
\(686\) 32.6813 + 32.6813i 1.24778 + 1.24778i
\(687\) 5.44221 + 5.44221i 0.207633 + 0.207633i
\(688\) 16.3978i 0.625160i
\(689\) 17.2484i 0.657111i
\(690\) −0.319123 0.319123i −0.0121488 0.0121488i
\(691\) 30.3791 + 30.3791i 1.15567 + 1.15567i 0.985396 + 0.170278i \(0.0544665\pi\)
0.170278 + 0.985396i \(0.445533\pi\)
\(692\) 27.8703 27.8703i 1.05947 1.05947i
\(693\) 7.56734 0.287459
\(694\) −18.8849 + 18.8849i −0.716862 + 0.716862i
\(695\) 3.61139i 0.136988i
\(696\) 64.1458 2.43144
\(697\) 21.6810 14.7681i 0.821225 0.559381i
\(698\) 29.0370 1.09907
\(699\) 21.1251i 0.799025i
\(700\) −4.92337 + 4.92337i −0.186086 + 0.186086i
\(701\) 46.4002 1.75251 0.876256 0.481846i \(-0.160033\pi\)
0.876256 + 0.481846i \(0.160033\pi\)
\(702\) 62.6920 62.6920i 2.36616 2.36616i
\(703\) 0.328152 + 0.328152i 0.0123765 + 0.0123765i
\(704\) −8.02400 8.02400i −0.302416 0.302416i
\(705\) 14.9694i 0.563779i
\(706\) 28.5605i 1.07489i
\(707\) −0.775811 0.775811i −0.0291774 0.0291774i
\(708\) 48.5101 + 48.5101i 1.82312 + 1.82312i
\(709\) −29.3677 + 29.3677i −1.10293 + 1.10293i −0.108871 + 0.994056i \(0.534724\pi\)
−0.994056 + 0.108871i \(0.965276\pi\)
\(710\) −10.6958 −0.401408
\(711\) 5.09004 5.09004i 0.190891 0.190891i
\(712\) 61.5060i 2.30503i
\(713\) 1.03317 0.0386927
\(714\) 20.6199 + 3.91075i 0.771681 + 0.146356i
\(715\) −20.8877 −0.781156
\(716\) 37.7762i 1.41176i
\(717\) −6.16865 + 6.16865i −0.230373 + 0.230373i
\(718\) −80.7229 −3.01255
\(719\) −0.455602 + 0.455602i −0.0169911 + 0.0169911i −0.715551 0.698560i \(-0.753824\pi\)
0.698560 + 0.715551i \(0.253824\pi\)
\(720\) 6.01596 + 6.01596i 0.224201 + 0.224201i
\(721\) −0.178651 0.178651i −0.00665332 0.00665332i
\(722\) 46.3313i 1.72427i
\(723\) 38.5456i 1.43353i
\(724\) −14.8391 14.8391i −0.551490 0.551490i
\(725\) −6.22477 6.22477i −0.231182 0.231182i
\(726\) −0.440628 + 0.440628i −0.0163532 + 0.0163532i
\(727\) −42.4141 −1.57305 −0.786525 0.617558i \(-0.788122\pi\)
−0.786525 + 0.617558i \(0.788122\pi\)
\(728\) 42.1451 42.1451i 1.56200 1.56200i
\(729\) 24.7365i 0.916167i
\(730\) −3.04305 −0.112628
\(731\) −11.1319 2.11126i −0.411728 0.0780879i
\(732\) 2.51062 0.0927951
\(733\) 43.4227i 1.60386i −0.597421 0.801928i \(-0.703808\pi\)
0.597421 0.801928i \(-0.296192\pi\)
\(734\) 34.2062 34.2062i 1.26258 1.26258i
\(735\) 5.51088 0.203272
\(736\) −0.341793 + 0.341793i −0.0125987 + 0.0125987i
\(737\) −4.22245 4.22245i −0.155536 0.155536i
\(738\) 16.1150 + 16.1150i 0.593202 + 0.593202i
\(739\) 28.0864i 1.03318i 0.856234 + 0.516588i \(0.172798\pi\)
−0.856234 + 0.516588i \(0.827202\pi\)
\(740\) 2.67804i 0.0984468i
\(741\) 4.21277 + 4.21277i 0.154760 + 0.154760i
\(742\) −7.78583 7.78583i −0.285827 0.285827i
\(743\) −31.9613 + 31.9613i −1.17254 + 1.17254i −0.190944 + 0.981601i \(0.561155\pi\)
−0.981601 + 0.190944i \(0.938845\pi\)
\(744\) 52.5818 1.92774
\(745\) −0.893798 + 0.893798i −0.0327462 + 0.0327462i
\(746\) 51.0340i 1.86849i
\(747\) 5.11134 0.187014
\(748\) −48.2905 + 32.8933i −1.76568 + 1.20270i
\(749\) 29.0110 1.06004
\(750\) 3.15213i 0.115100i
\(751\) 17.0168 17.0168i 0.620952 0.620952i −0.324823 0.945775i \(-0.605305\pi\)
0.945775 + 0.324823i \(0.105305\pi\)
\(752\) −71.1931 −2.59614
\(753\) −19.9879 + 19.9879i −0.728399 + 0.728399i
\(754\) 99.3866 + 99.3866i 3.61945 + 3.61945i
\(755\) −11.4697 11.4697i −0.417426 0.417426i
\(756\) 38.6634i 1.40617i
\(757\) 18.0018i 0.654285i 0.944975 + 0.327143i \(0.106086\pi\)
−0.944975 + 0.327143i \(0.893914\pi\)
\(758\) 60.9335 + 60.9335i 2.21320 + 2.21320i
\(759\) 0.417488 + 0.417488i 0.0151539 + 0.0151539i
\(760\) −3.06832 + 3.06832i −0.111300 + 0.111300i
\(761\) 23.4172 0.848874 0.424437 0.905458i \(-0.360472\pi\)
0.424437 + 0.905458i \(0.360472\pi\)
\(762\) 33.8338 33.8338i 1.22567 1.22567i
\(763\) 9.38575i 0.339787i
\(764\) −48.6145 −1.75881
\(765\) −4.85860 + 3.30946i −0.175663 + 0.119654i
\(766\) −53.5685 −1.93551
\(767\) 80.5938i 2.91007i
\(768\) 28.2569 28.2569i 1.01963 1.01963i
\(769\) 9.52627 0.343526 0.171763 0.985138i \(-0.445054\pi\)
0.171763 + 0.985138i \(0.445054\pi\)
\(770\) 9.42860 9.42860i 0.339783 0.339783i
\(771\) 1.68989 + 1.68989i 0.0608598 + 0.0608598i
\(772\) −13.9688 13.9688i −0.502746 0.502746i
\(773\) 20.0047i 0.719519i −0.933045 0.359759i \(-0.882859\pi\)
0.933045 0.359759i \(-0.117141\pi\)
\(774\) 9.84337i 0.353813i
\(775\) −5.10259 5.10259i −0.183290 0.183290i
\(776\) 28.6177 + 28.6177i 1.02732 + 1.02732i
\(777\) 0.889860 0.889860i 0.0319235 0.0319235i
\(778\) 29.5653 1.05997
\(779\) −3.36142 + 3.36142i −0.120435 + 0.120435i
\(780\) 34.3803i 1.23101i
\(781\) 13.9927 0.500698
\(782\) −0.834919 1.22574i −0.0298566 0.0438324i
\(783\) −48.8833 −1.74695
\(784\) 26.2093i 0.936046i
\(785\) −6.02893 + 6.02893i −0.215182 + 0.215182i
\(786\) −6.24912 −0.222899
\(787\) −12.8060 + 12.8060i −0.456484 + 0.456484i −0.897500 0.441015i \(-0.854618\pi\)
0.441015 + 0.897500i \(0.354618\pi\)
\(788\) 40.3909 + 40.3909i 1.43887 + 1.43887i
\(789\) 6.92179 + 6.92179i 0.246422 + 0.246422i
\(790\) 12.6840i 0.451275i
\(791\) 15.0135i 0.533819i
\(792\) −19.2439 19.2439i −0.683804 0.683804i
\(793\) 2.08555 + 2.08555i 0.0740600 + 0.0740600i
\(794\) −5.96708 + 5.96708i −0.211764 + 0.211764i
\(795\) −3.40525 −0.120772
\(796\) 8.04395 8.04395i 0.285110 0.285110i
\(797\) 44.1981i 1.56558i 0.622289 + 0.782788i \(0.286203\pi\)
−0.622289 + 0.782788i \(0.713797\pi\)
\(798\) −3.80324 −0.134633
\(799\) 9.16631 48.3306i 0.324281 1.70981i
\(800\) 3.37606 0.119362
\(801\) 15.0999i 0.533527i
\(802\) 4.60882 4.60882i 0.162743 0.162743i
\(803\) 3.98102 0.140487
\(804\) 6.94999 6.94999i 0.245107 0.245107i
\(805\) 0.163488 + 0.163488i 0.00576219 + 0.00576219i
\(806\) 81.4695 + 81.4695i 2.86964 + 2.86964i
\(807\) 17.2443i 0.607029i
\(808\) 3.94581i 0.138813i
\(809\) −14.4229 14.4229i −0.507083 0.507083i 0.406547 0.913630i \(-0.366733\pi\)
−0.913630 + 0.406547i \(0.866733\pi\)
\(810\) 4.77834 + 4.77834i 0.167894 + 0.167894i
\(811\) −1.48389 + 1.48389i −0.0521064 + 0.0521064i −0.732680 0.680573i \(-0.761731\pi\)
0.680573 + 0.732680i \(0.261731\pi\)
\(812\) −61.2937 −2.15099
\(813\) 11.0770 11.0770i 0.388488 0.388488i
\(814\) 5.12865i 0.179759i
\(815\) −15.4603 −0.541551
\(816\) −17.3781 25.5128i −0.608356 0.893125i
\(817\) 2.05322 0.0718332
\(818\) 77.4704i 2.70869i
\(819\) −10.3467 + 10.3467i −0.361543 + 0.361543i
\(820\) 27.4325 0.957985
\(821\) −3.49477 + 3.49477i −0.121968 + 0.121968i −0.765456 0.643488i \(-0.777487\pi\)
0.643488 + 0.765456i \(0.277487\pi\)
\(822\) −43.7060 43.7060i −1.52442 1.52442i
\(823\) 8.09920 + 8.09920i 0.282320 + 0.282320i 0.834034 0.551713i \(-0.186026\pi\)
−0.551713 + 0.834034i \(0.686026\pi\)
\(824\) 0.908630i 0.0316536i
\(825\) 4.12374i 0.143570i
\(826\) −36.3796 36.3796i −1.26581 1.26581i
\(827\) −13.6785 13.6785i −0.475647 0.475647i 0.428090 0.903736i \(-0.359187\pi\)
−0.903736 + 0.428090i \(0.859187\pi\)
\(828\) 0.622374 0.622374i 0.0216290 0.0216290i
\(829\) 26.7634 0.929530 0.464765 0.885434i \(-0.346139\pi\)
0.464765 + 0.885434i \(0.346139\pi\)
\(830\) 6.36853 6.36853i 0.221055 0.221055i
\(831\) 33.7009i 1.16907i
\(832\) 21.9422 0.760708
\(833\) 17.7926 + 3.37452i 0.616477 + 0.116920i
\(834\) 11.3836 0.394182
\(835\) 3.67070i 0.127030i
\(836\) 7.48697 7.48697i 0.258942 0.258942i
\(837\) −40.0708 −1.38505
\(838\) −33.1617 + 33.1617i −1.14555 + 1.14555i
\(839\) 37.0327 + 37.0327i 1.27851 + 1.27851i 0.941502 + 0.337008i \(0.109415\pi\)
0.337008 + 0.941502i \(0.390585\pi\)
\(840\) 8.32045 + 8.32045i 0.287083 + 0.287083i
\(841\) 48.4956i 1.67226i
\(842\) 74.2876i 2.56012i
\(843\) 13.7772 + 13.7772i 0.474513 + 0.474513i
\(844\) −21.7529 21.7529i −0.748766 0.748766i
\(845\) 19.3670 19.3670i 0.666247 0.666247i
\(846\) 42.7362 1.46930
\(847\) 0.225735 0.225735i 0.00775635 0.00775635i
\(848\) 16.1951i 0.556141i
\(849\) 13.0982 0.449531
\(850\) −1.93017 + 10.1771i −0.0662043 + 0.349071i
\(851\) −0.0889284 −0.00304843
\(852\) 23.0314i 0.789043i
\(853\) 0.0880569 0.0880569i 0.00301501 0.00301501i −0.705598 0.708613i \(-0.749321\pi\)
0.708613 + 0.705598i \(0.249321\pi\)
\(854\) −1.88281 −0.0644285
\(855\) 0.753279 0.753279i 0.0257616 0.0257616i
\(856\) −73.7758 73.7758i −2.52160 2.52160i
\(857\) −15.9912 15.9912i −0.546249 0.546249i 0.379104 0.925354i \(-0.376232\pi\)
−0.925354 + 0.379104i \(0.876232\pi\)
\(858\) 65.8408i 2.24777i
\(859\) 38.2254i 1.30423i 0.758118 + 0.652117i \(0.226119\pi\)
−0.758118 + 0.652117i \(0.773881\pi\)
\(860\) −8.37817 8.37817i −0.285693 0.285693i
\(861\) 9.11527 + 9.11527i 0.310648 + 0.310648i
\(862\) −29.0380 + 29.0380i −0.989037 + 0.989037i
\(863\) −22.1777 −0.754939 −0.377469 0.926022i \(-0.623206\pi\)
−0.377469 + 0.926022i \(0.623206\pi\)
\(864\) 13.2562 13.2562i 0.450984 0.450984i
\(865\) 9.14139i 0.310816i
\(866\) −35.9904 −1.22300
\(867\) 19.5572 8.51258i 0.664198 0.289102i
\(868\) −50.2438 −1.70539
\(869\) 16.5936i 0.562901i
\(870\) −19.6213 + 19.6213i −0.665225 + 0.665225i
\(871\) 11.5466 0.391241
\(872\) 23.8682 23.8682i 0.808279 0.808279i
\(873\) −7.02571 7.02571i −0.237784 0.237784i
\(874\) 0.190039 + 0.190039i 0.00642817 + 0.00642817i
\(875\) 1.61485i 0.0545918i
\(876\) 6.55261i 0.221392i
\(877\) 19.1327 + 19.1327i 0.646067 + 0.646067i 0.952040 0.305973i \(-0.0989819\pi\)
−0.305973 + 0.952040i \(0.598982\pi\)
\(878\) −54.0565 54.0565i −1.82432 1.82432i
\(879\) −6.30478 + 6.30478i −0.212655 + 0.212655i
\(880\) −19.6121 −0.661125
\(881\) −26.0576 + 26.0576i −0.877903 + 0.877903i −0.993317 0.115414i \(-0.963180\pi\)
0.115414 + 0.993317i \(0.463180\pi\)
\(882\) 15.7331i 0.529760i
\(883\) 20.6901 0.696277 0.348138 0.937443i \(-0.386814\pi\)
0.348138 + 0.937443i \(0.386814\pi\)
\(884\) 21.0524 111.001i 0.708068 3.73338i
\(885\) −15.9112 −0.534848
\(886\) 66.5851i 2.23697i
\(887\) −10.5540 + 10.5540i −0.354368 + 0.354368i −0.861732 0.507364i \(-0.830620\pi\)
0.507364 + 0.861732i \(0.330620\pi\)
\(888\) −4.52587 −0.151878
\(889\) −17.3332 + 17.3332i −0.581336 + 0.581336i
\(890\) −18.8138 18.8138i −0.630640 0.630640i
\(891\) −6.25121 6.25121i −0.209423 0.209423i
\(892\) 52.4770i 1.75706i
\(893\) 8.91433i 0.298307i
\(894\) 2.81737 + 2.81737i 0.0942270 + 0.0942270i
\(895\) 6.19523 + 6.19523i 0.207084 + 0.207084i
\(896\) −17.6146 + 17.6146i −0.588463 + 0.588463i
\(897\) −1.14165 −0.0381186
\(898\) −28.1376 + 28.1376i −0.938963 + 0.938963i
\(899\) 63.5249i 2.11867i
\(900\) −6.14750 −0.204917
\(901\) −10.9943 2.08516i −0.366273 0.0694668i
\(902\) −52.5352 −1.74923
\(903\) 5.56779i 0.185285i
\(904\) −38.1797 + 38.1797i −1.26984 + 1.26984i
\(905\) 4.86717 0.161790
\(906\) −36.1541 + 36.1541i −1.20114 + 1.20114i
\(907\) −19.3243 19.3243i −0.641653 0.641653i 0.309309 0.950962i \(-0.399902\pi\)
−0.950962 + 0.309309i \(0.899902\pi\)
\(908\) 2.54769 + 2.54769i 0.0845481 + 0.0845481i
\(909\) 0.968706i 0.0321299i
\(910\) 25.7832i 0.854703i
\(911\) 33.4927 + 33.4927i 1.10966 + 1.10966i 0.993194 + 0.116469i \(0.0371575\pi\)
0.116469 + 0.993194i \(0.462843\pi\)
\(912\) 3.95550 + 3.95550i 0.130980 + 0.130980i
\(913\) −8.33154 + 8.33154i −0.275734 + 0.275734i
\(914\) 10.6860 0.353463
\(915\) −0.411737 + 0.411737i −0.0136116 + 0.0136116i
\(916\) 26.4486i 0.873888i
\(917\) 3.20145 0.105721
\(918\) 32.3816 + 47.5393i 1.06875 + 1.56903i
\(919\) 25.7946 0.850884 0.425442 0.904986i \(-0.360119\pi\)
0.425442 + 0.904986i \(0.360119\pi\)
\(920\) 0.831507i 0.0274140i
\(921\) −4.26306 + 4.26306i −0.140473 + 0.140473i
\(922\) 60.2300 1.98357
\(923\) −19.1320 + 19.1320i −0.629737 + 0.629737i
\(924\) −20.3027 20.3027i −0.667909 0.667909i
\(925\) 0.439195 + 0.439195i 0.0144406 + 0.0144406i
\(926\) 57.8150i 1.89992i
\(927\) 0.223071i 0.00732660i
\(928\) 21.0152 + 21.0152i 0.689858 + 0.689858i
\(929\) −17.4671 17.4671i −0.573076 0.573076i 0.359911 0.932987i \(-0.382807\pi\)
−0.932987 + 0.359911i \(0.882807\pi\)
\(930\) −16.0840 + 16.0840i −0.527416 + 0.527416i
\(931\) −3.28175 −0.107555
\(932\) 51.3330 51.3330i 1.68147 1.68147i
\(933\) 10.0742i 0.329815i
\(934\) 54.7292 1.79080
\(935\) 2.52512 13.3140i 0.0825802 0.435415i
\(936\) 52.6239 1.72007
\(937\) 37.0383i 1.20999i 0.796230 + 0.604994i \(0.206825\pi\)
−0.796230 + 0.604994i \(0.793175\pi\)
\(938\) −5.21207 + 5.21207i −0.170180 + 0.170180i
\(939\) −27.7309 −0.904964
\(940\) 36.3749 36.3749i 1.18642 1.18642i
\(941\) 24.2477 + 24.2477i 0.790452 + 0.790452i 0.981568 0.191115i \(-0.0612104\pi\)
−0.191115 + 0.981568i \(0.561210\pi\)
\(942\) 19.0040 + 19.0040i 0.619183 + 0.619183i
\(943\) 0.910938i 0.0296642i
\(944\) 75.6721i 2.46292i
\(945\) −6.34073 6.34073i −0.206264 0.206264i
\(946\) 16.0448 + 16.0448i 0.521661 + 0.521661i
\(947\) 26.2345 26.2345i 0.852507 0.852507i −0.137934 0.990441i \(-0.544046\pi\)
0.990441 + 0.137934i \(0.0440462\pi\)
\(948\) −27.3125 −0.887068
\(949\) −5.44319 + 5.44319i −0.176694 + 0.176694i
\(950\) 1.87711i 0.0609015i
\(951\) 20.0306 0.649537
\(952\) 21.7687 + 31.9586i 0.705529 + 1.03578i
\(953\) 26.9203 0.872033 0.436016 0.899939i \(-0.356389\pi\)
0.436016 + 0.899939i \(0.356389\pi\)
\(954\) 9.72168i 0.314751i
\(955\) 7.97270 7.97270i 0.257991 0.257991i
\(956\) −29.9791 −0.969592
\(957\) 25.6693 25.6693i 0.829771 0.829771i
\(958\) −58.4997 58.4997i −1.89004 1.89004i
\(959\) 22.3907 + 22.3907i 0.723035 + 0.723035i
\(960\) 4.33191i 0.139812i
\(961\) 21.0728i 0.679768i
\(962\) −7.01232 7.01232i −0.226086 0.226086i
\(963\) 18.1121 + 18.1121i 0.583655 + 0.583655i
\(964\) 93.6641 93.6641i 3.01672 3.01672i
\(965\) 4.58171 0.147490
\(966\) 0.515335 0.515335i 0.0165806 0.0165806i
\(967\) 26.4462i 0.850452i 0.905087 + 0.425226i \(0.139805\pi\)
−0.905087 + 0.425226i \(0.860195\pi\)
\(968\) −1.14810 −0.0369014
\(969\) −3.19454 + 2.17597i −0.102623 + 0.0699024i
\(970\) −17.5075 −0.562132
\(971\) 9.69327i 0.311072i 0.987830 + 0.155536i \(0.0497104\pi\)
−0.987830 + 0.155536i \(0.950290\pi\)
\(972\) −40.5003 + 40.5003i −1.29905 + 1.29905i
\(973\) −5.83185 −0.186961
\(974\) 33.1283 33.1283i 1.06150 1.06150i
\(975\) 5.63832 + 5.63832i 0.180571 + 0.180571i
\(976\) 1.95819 + 1.95819i 0.0626801 + 0.0626801i
\(977\) 5.81399i 0.186006i −0.995666 0.0930029i \(-0.970353\pi\)
0.995666 0.0930029i \(-0.0296466\pi\)
\(978\) 48.7329i 1.55831i
\(979\) 24.6129 + 24.6129i 0.786632 + 0.786632i
\(980\) 13.3912 + 13.3912i 0.427765 + 0.427765i
\(981\) −5.85970 + 5.85970i −0.187086 + 0.187086i
\(982\) 9.98153 0.318523
\(983\) 22.4102 22.4102i 0.714776 0.714776i −0.252755 0.967530i \(-0.581337\pi\)
0.967530 + 0.252755i \(0.0813366\pi\)
\(984\) 46.3608i 1.47793i
\(985\) −13.2481 −0.422119
\(986\) −75.3648 + 51.3351i −2.40010 + 1.63484i
\(987\) 24.1733 0.769443
\(988\) 20.4736i 0.651353i
\(989\) −0.278210 + 0.278210i −0.00884655 + 0.00884655i
\(990\) 11.7729 0.374167
\(991\) 34.2715 34.2715i 1.08867 1.08867i 0.0930058 0.995666i \(-0.470352\pi\)
0.995666 0.0930058i \(-0.0296475\pi\)
\(992\) 17.2266 + 17.2266i 0.546946 + 0.546946i
\(993\) 3.44152 + 3.44152i 0.109213 + 0.109213i
\(994\) 17.2722i 0.547840i
\(995\) 2.63839i 0.0836426i
\(996\) −13.7134 13.7134i −0.434526 0.434526i
\(997\) 4.30543 + 4.30543i 0.136354 + 0.136354i 0.771990 0.635635i \(-0.219262\pi\)
−0.635635 + 0.771990i \(0.719262\pi\)
\(998\) 60.6283 60.6283i 1.91916 1.91916i
\(999\) 3.44901 0.109122
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.e.a.21.6 12
3.2 odd 2 765.2.k.b.361.1 12
4.3 odd 2 1360.2.bt.d.1041.4 12
5.2 odd 4 425.2.j.b.174.1 12
5.3 odd 4 425.2.j.c.174.6 12
5.4 even 2 425.2.e.f.276.1 12
17.2 even 8 1445.2.d.g.866.2 12
17.8 even 8 1445.2.a.o.1.6 6
17.9 even 8 1445.2.a.n.1.6 6
17.13 even 4 inner 85.2.e.a.81.1 yes 12
17.15 even 8 1445.2.d.g.866.1 12
51.47 odd 4 765.2.k.b.676.6 12
68.47 odd 4 1360.2.bt.d.81.4 12
85.9 even 8 7225.2.a.bb.1.1 6
85.13 odd 4 425.2.j.b.149.1 12
85.47 odd 4 425.2.j.c.149.6 12
85.59 even 8 7225.2.a.z.1.1 6
85.64 even 4 425.2.e.f.251.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.6 12 1.1 even 1 trivial
85.2.e.a.81.1 yes 12 17.13 even 4 inner
425.2.e.f.251.6 12 85.64 even 4
425.2.e.f.276.1 12 5.4 even 2
425.2.j.b.149.1 12 85.13 odd 4
425.2.j.b.174.1 12 5.2 odd 4
425.2.j.c.149.6 12 85.47 odd 4
425.2.j.c.174.6 12 5.3 odd 4
765.2.k.b.361.1 12 3.2 odd 2
765.2.k.b.676.6 12 51.47 odd 4
1360.2.bt.d.81.4 12 68.47 odd 4
1360.2.bt.d.1041.4 12 4.3 odd 2
1445.2.a.n.1.6 6 17.9 even 8
1445.2.a.o.1.6 6 17.8 even 8
1445.2.d.g.866.1 12 17.15 even 8
1445.2.d.g.866.2 12 17.2 even 8
7225.2.a.z.1.1 6 85.59 even 8
7225.2.a.bb.1.1 6 85.9 even 8