Defining parameters
Level: | \( N \) | \(=\) | \( 1445 = 5 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1445.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 19 \) | ||
Sturm bound: | \(306\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1445))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 170 | 91 | 79 |
Cusp forms | 135 | 91 | 44 |
Eisenstein series | 35 | 0 | 35 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(36\) | \(18\) | \(18\) | \(28\) | \(18\) | \(10\) | \(8\) | \(0\) | \(8\) | |||
\(+\) | \(-\) | \(-\) | \(49\) | \(27\) | \(22\) | \(40\) | \(27\) | \(13\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(+\) | \(-\) | \(45\) | \(27\) | \(18\) | \(36\) | \(27\) | \(9\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(40\) | \(19\) | \(21\) | \(31\) | \(19\) | \(12\) | \(9\) | \(0\) | \(9\) | |||
Plus space | \(+\) | \(76\) | \(37\) | \(39\) | \(59\) | \(37\) | \(22\) | \(17\) | \(0\) | \(17\) | ||||
Minus space | \(-\) | \(94\) | \(54\) | \(40\) | \(76\) | \(54\) | \(22\) | \(18\) | \(0\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1445))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1445))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1445)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 2}\)