Properties

Label 144.4.l.a.35.7
Level $144$
Weight $4$
Character 144.35
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 35.7
Character \(\chi\) \(=\) 144.35
Dual form 144.4.l.a.107.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.80581 + 2.17694i) q^{2} +(-1.47812 - 7.86226i) q^{4} +(-6.31601 - 6.31601i) q^{5} +16.2772 q^{7} +(19.7849 + 10.9799i) q^{8} +(25.1551 - 2.34407i) q^{10} +(-48.1287 + 48.1287i) q^{11} +(-8.61642 - 8.61642i) q^{13} +(-29.3935 + 35.4345i) q^{14} +(-59.6303 + 23.2428i) q^{16} +53.2206i q^{17} +(-55.5604 + 55.5604i) q^{19} +(-40.3223 + 58.9940i) q^{20} +(-17.8621 - 191.684i) q^{22} -66.9842i q^{23} -45.2160i q^{25} +(34.3170 - 3.19782i) q^{26} +(-24.0597 - 127.976i) q^{28} +(-126.481 + 126.481i) q^{29} +121.117i q^{31} +(57.0828 - 171.783i) q^{32} +(-115.858 - 96.1061i) q^{34} +(-102.807 - 102.807i) q^{35} +(-250.289 + 250.289i) q^{37} +(-20.6202 - 221.283i) q^{38} +(-55.6119 - 194.311i) q^{40} -402.012 q^{41} +(187.233 + 187.233i) q^{43} +(449.541 + 307.261i) q^{44} +(145.821 + 120.961i) q^{46} +96.1703 q^{47} -78.0518 q^{49} +(98.4325 + 81.6514i) q^{50} +(-55.0084 + 80.4807i) q^{52} +(90.3337 + 90.3337i) q^{53} +607.963 q^{55} +(322.043 + 178.723i) q^{56} +(-46.9409 - 503.740i) q^{58} +(488.025 - 488.025i) q^{59} +(378.467 + 378.467i) q^{61} +(-263.664 - 218.714i) q^{62} +(270.882 + 434.473i) q^{64} +108.843i q^{65} +(-223.231 + 223.231i) q^{67} +(418.434 - 78.6665i) q^{68} +(409.455 - 38.1550i) q^{70} -231.902i q^{71} -265.600i q^{73} +(-92.8902 - 996.839i) q^{74} +(518.955 + 354.705i) q^{76} +(-783.402 + 783.402i) q^{77} +604.662i q^{79} +(523.427 + 229.824i) q^{80} +(725.956 - 875.155i) q^{82} +(-351.298 - 351.298i) q^{83} +(336.142 - 336.142i) q^{85} +(-745.702 + 69.4881i) q^{86} +(-1480.67 + 423.769i) q^{88} +1365.36 q^{89} +(-140.251 - 140.251i) q^{91} +(-526.648 + 99.0109i) q^{92} +(-173.665 + 209.357i) q^{94} +701.839 q^{95} -1854.47 q^{97} +(140.947 - 169.914i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80581 + 2.17694i −0.638449 + 0.769664i
\(3\) 0 0
\(4\) −1.47812 7.86226i −0.184765 0.982783i
\(5\) −6.31601 6.31601i −0.564921 0.564921i 0.365780 0.930701i \(-0.380802\pi\)
−0.930701 + 0.365780i \(0.880802\pi\)
\(6\) 0 0
\(7\) 16.2772 0.878888 0.439444 0.898270i \(-0.355176\pi\)
0.439444 + 0.898270i \(0.355176\pi\)
\(8\) 19.7849 + 10.9799i 0.874376 + 0.485250i
\(9\) 0 0
\(10\) 25.1551 2.34407i 0.795473 0.0741260i
\(11\) −48.1287 + 48.1287i −1.31921 + 1.31921i −0.404816 + 0.914398i \(0.632665\pi\)
−0.914398 + 0.404816i \(0.867335\pi\)
\(12\) 0 0
\(13\) −8.61642 8.61642i −0.183828 0.183828i 0.609194 0.793022i \(-0.291493\pi\)
−0.793022 + 0.609194i \(0.791493\pi\)
\(14\) −29.3935 + 35.4345i −0.561125 + 0.676448i
\(15\) 0 0
\(16\) −59.6303 + 23.2428i −0.931724 + 0.363168i
\(17\) 53.2206i 0.759287i 0.925133 + 0.379644i \(0.123953\pi\)
−0.925133 + 0.379644i \(0.876047\pi\)
\(18\) 0 0
\(19\) −55.5604 + 55.5604i −0.670864 + 0.670864i −0.957915 0.287051i \(-0.907325\pi\)
0.287051 + 0.957915i \(0.407325\pi\)
\(20\) −40.3223 + 58.9940i −0.450817 + 0.659572i
\(21\) 0 0
\(22\) −17.8621 191.684i −0.173100 1.85760i
\(23\) 66.9842i 0.607269i −0.952789 0.303634i \(-0.901800\pi\)
0.952789 0.303634i \(-0.0982001\pi\)
\(24\) 0 0
\(25\) 45.2160i 0.361728i
\(26\) 34.3170 3.19782i 0.258851 0.0241210i
\(27\) 0 0
\(28\) −24.0597 127.976i −0.162388 0.863756i
\(29\) −126.481 + 126.481i −0.809892 + 0.809892i −0.984617 0.174726i \(-0.944096\pi\)
0.174726 + 0.984617i \(0.444096\pi\)
\(30\) 0 0
\(31\) 121.117i 0.701717i 0.936429 + 0.350858i \(0.114110\pi\)
−0.936429 + 0.350858i \(0.885890\pi\)
\(32\) 57.0828 171.783i 0.315341 0.948979i
\(33\) 0 0
\(34\) −115.858 96.1061i −0.584396 0.484766i
\(35\) −102.807 102.807i −0.496502 0.496502i
\(36\) 0 0
\(37\) −250.289 + 250.289i −1.11209 + 1.11209i −0.119222 + 0.992868i \(0.538040\pi\)
−0.992868 + 0.119222i \(0.961960\pi\)
\(38\) −20.6202 221.283i −0.0880273 0.944653i
\(39\) 0 0
\(40\) −55.6119 194.311i −0.219825 0.768081i
\(41\) −402.012 −1.53131 −0.765655 0.643252i \(-0.777585\pi\)
−0.765655 + 0.643252i \(0.777585\pi\)
\(42\) 0 0
\(43\) 187.233 + 187.233i 0.664018 + 0.664018i 0.956325 0.292307i \(-0.0944228\pi\)
−0.292307 + 0.956325i \(0.594423\pi\)
\(44\) 449.541 + 307.261i 1.54025 + 1.05276i
\(45\) 0 0
\(46\) 145.821 + 120.961i 0.467393 + 0.387710i
\(47\) 96.1703 0.298465 0.149233 0.988802i \(-0.452320\pi\)
0.149233 + 0.988802i \(0.452320\pi\)
\(48\) 0 0
\(49\) −78.0518 −0.227556
\(50\) 98.4325 + 81.6514i 0.278409 + 0.230945i
\(51\) 0 0
\(52\) −55.0084 + 80.4807i −0.146698 + 0.214628i
\(53\) 90.3337 + 90.3337i 0.234119 + 0.234119i 0.814409 0.580291i \(-0.197061\pi\)
−0.580291 + 0.814409i \(0.697061\pi\)
\(54\) 0 0
\(55\) 607.963 1.49050
\(56\) 322.043 + 178.723i 0.768478 + 0.426480i
\(57\) 0 0
\(58\) −46.9409 503.740i −0.106270 1.14042i
\(59\) 488.025 488.025i 1.07687 1.07687i 0.0800840 0.996788i \(-0.474481\pi\)
0.996788 0.0800840i \(-0.0255188\pi\)
\(60\) 0 0
\(61\) 378.467 + 378.467i 0.794389 + 0.794389i 0.982204 0.187815i \(-0.0601405\pi\)
−0.187815 + 0.982204i \(0.560141\pi\)
\(62\) −263.664 218.714i −0.540086 0.448010i
\(63\) 0 0
\(64\) 270.882 + 434.473i 0.529066 + 0.848581i
\(65\) 108.843i 0.207697i
\(66\) 0 0
\(67\) −223.231 + 223.231i −0.407045 + 0.407045i −0.880707 0.473662i \(-0.842932\pi\)
0.473662 + 0.880707i \(0.342932\pi\)
\(68\) 418.434 78.6665i 0.746214 0.140290i
\(69\) 0 0
\(70\) 409.455 38.1550i 0.699131 0.0651484i
\(71\) 231.902i 0.387630i −0.981038 0.193815i \(-0.937914\pi\)
0.981038 0.193815i \(-0.0620862\pi\)
\(72\) 0 0
\(73\) 265.600i 0.425838i −0.977070 0.212919i \(-0.931703\pi\)
0.977070 0.212919i \(-0.0682970\pi\)
\(74\) −92.8902 996.839i −0.145923 1.56595i
\(75\) 0 0
\(76\) 518.955 + 354.705i 0.783266 + 0.535361i
\(77\) −783.402 + 783.402i −1.15944 + 1.15944i
\(78\) 0 0
\(79\) 604.662i 0.861137i 0.902558 + 0.430569i \(0.141687\pi\)
−0.902558 + 0.430569i \(0.858313\pi\)
\(80\) 523.427 + 229.824i 0.731512 + 0.321189i
\(81\) 0 0
\(82\) 725.956 875.155i 0.977663 1.17859i
\(83\) −351.298 351.298i −0.464577 0.464577i 0.435575 0.900152i \(-0.356545\pi\)
−0.900152 + 0.435575i \(0.856545\pi\)
\(84\) 0 0
\(85\) 336.142 336.142i 0.428937 0.428937i
\(86\) −745.702 + 69.4881i −0.935013 + 0.0871290i
\(87\) 0 0
\(88\) −1480.67 + 423.769i −1.79364 + 0.513341i
\(89\) 1365.36 1.62615 0.813077 0.582156i \(-0.197791\pi\)
0.813077 + 0.582156i \(0.197791\pi\)
\(90\) 0 0
\(91\) −140.251 140.251i −0.161564 0.161564i
\(92\) −526.648 + 99.0109i −0.596813 + 0.112202i
\(93\) 0 0
\(94\) −173.665 + 209.357i −0.190555 + 0.229718i
\(95\) 701.839 0.757971
\(96\) 0 0
\(97\) −1854.47 −1.94117 −0.970584 0.240762i \(-0.922603\pi\)
−0.970584 + 0.240762i \(0.922603\pi\)
\(98\) 140.947 169.914i 0.145283 0.175142i
\(99\) 0 0
\(100\) −355.500 + 66.8348i −0.355500 + 0.0668348i
\(101\) −755.210 755.210i −0.744022 0.744022i 0.229328 0.973349i \(-0.426347\pi\)
−0.973349 + 0.229328i \(0.926347\pi\)
\(102\) 0 0
\(103\) 1428.89 1.36692 0.683461 0.729987i \(-0.260474\pi\)
0.683461 + 0.729987i \(0.260474\pi\)
\(104\) −75.8668 265.082i −0.0715323 0.249937i
\(105\) 0 0
\(106\) −359.776 + 33.5257i −0.329665 + 0.0307198i
\(107\) 1013.69 1013.69i 0.915859 0.915859i −0.0808660 0.996725i \(-0.525769\pi\)
0.996725 + 0.0808660i \(0.0257686\pi\)
\(108\) 0 0
\(109\) −1069.24 1069.24i −0.939579 0.939579i 0.0586964 0.998276i \(-0.481306\pi\)
−0.998276 + 0.0586964i \(0.981306\pi\)
\(110\) −1097.86 + 1323.50i −0.951611 + 1.14719i
\(111\) 0 0
\(112\) −970.616 + 378.328i −0.818880 + 0.319184i
\(113\) 1280.42i 1.06595i 0.846132 + 0.532974i \(0.178926\pi\)
−0.846132 + 0.532974i \(0.821074\pi\)
\(114\) 0 0
\(115\) −423.073 + 423.073i −0.343059 + 0.343059i
\(116\) 1181.38 + 807.470i 0.945587 + 0.646308i
\(117\) 0 0
\(118\) 181.121 + 1943.68i 0.141302 + 1.51636i
\(119\) 866.283i 0.667328i
\(120\) 0 0
\(121\) 3301.75i 2.48065i
\(122\) −1507.34 + 140.461i −1.11859 + 0.104236i
\(123\) 0 0
\(124\) 952.252 179.025i 0.689635 0.129653i
\(125\) −1075.09 + 1075.09i −0.769269 + 0.769269i
\(126\) 0 0
\(127\) 2778.90i 1.94163i −0.239828 0.970815i \(-0.577091\pi\)
0.239828 0.970815i \(-0.422909\pi\)
\(128\) −1434.98 194.883i −0.990904 0.134573i
\(129\) 0 0
\(130\) −236.944 196.549i −0.159857 0.132604i
\(131\) −938.133 938.133i −0.625687 0.625687i 0.321293 0.946980i \(-0.395883\pi\)
−0.946980 + 0.321293i \(0.895883\pi\)
\(132\) 0 0
\(133\) −904.369 + 904.369i −0.589614 + 0.589614i
\(134\) −82.8481 889.073i −0.0534103 0.573165i
\(135\) 0 0
\(136\) −584.359 + 1052.96i −0.368444 + 0.663902i
\(137\) −96.6385 −0.0602656 −0.0301328 0.999546i \(-0.509593\pi\)
−0.0301328 + 0.999546i \(0.509593\pi\)
\(138\) 0 0
\(139\) −211.002 211.002i −0.128755 0.128755i 0.639793 0.768548i \(-0.279020\pi\)
−0.768548 + 0.639793i \(0.779020\pi\)
\(140\) −656.335 + 960.258i −0.396217 + 0.579690i
\(141\) 0 0
\(142\) 504.837 + 418.771i 0.298345 + 0.247482i
\(143\) 829.395 0.485017
\(144\) 0 0
\(145\) 1597.71 0.915050
\(146\) 578.196 + 479.623i 0.327752 + 0.271876i
\(147\) 0 0
\(148\) 2337.80 + 1597.88i 1.29842 + 0.887467i
\(149\) 1113.17 + 1113.17i 0.612042 + 0.612042i 0.943478 0.331435i \(-0.107533\pi\)
−0.331435 + 0.943478i \(0.607533\pi\)
\(150\) 0 0
\(151\) 285.222 0.153716 0.0768578 0.997042i \(-0.475511\pi\)
0.0768578 + 0.997042i \(0.475511\pi\)
\(152\) −1709.30 + 489.204i −0.912124 + 0.261051i
\(153\) 0 0
\(154\) −290.745 3120.09i −0.152136 1.63262i
\(155\) 764.975 764.975i 0.396414 0.396414i
\(156\) 0 0
\(157\) 2536.76 + 2536.76i 1.28953 + 1.28953i 0.935073 + 0.354454i \(0.115333\pi\)
0.354454 + 0.935073i \(0.384667\pi\)
\(158\) −1316.31 1091.90i −0.662786 0.549792i
\(159\) 0 0
\(160\) −1445.52 + 724.451i −0.714241 + 0.357955i
\(161\) 1090.32i 0.533721i
\(162\) 0 0
\(163\) −1268.22 + 1268.22i −0.609414 + 0.609414i −0.942793 0.333379i \(-0.891811\pi\)
0.333379 + 0.942793i \(0.391811\pi\)
\(164\) 594.222 + 3160.72i 0.282933 + 1.50494i
\(165\) 0 0
\(166\) 1399.13 130.378i 0.654178 0.0609594i
\(167\) 2766.46i 1.28189i 0.767588 + 0.640943i \(0.221457\pi\)
−0.767588 + 0.640943i \(0.778543\pi\)
\(168\) 0 0
\(169\) 2048.51i 0.932415i
\(170\) 124.753 + 1338.77i 0.0562829 + 0.603992i
\(171\) 0 0
\(172\) 1195.32 1748.83i 0.529898 0.775273i
\(173\) 346.606 346.606i 0.152324 0.152324i −0.626831 0.779155i \(-0.715649\pi\)
0.779155 + 0.626831i \(0.215649\pi\)
\(174\) 0 0
\(175\) 735.992i 0.317919i
\(176\) 1751.29 3988.58i 0.750046 1.70824i
\(177\) 0 0
\(178\) −2465.57 + 2972.30i −1.03822 + 1.25159i
\(179\) 106.140 + 106.140i 0.0443198 + 0.0443198i 0.728919 0.684600i \(-0.240023\pi\)
−0.684600 + 0.728919i \(0.740023\pi\)
\(180\) 0 0
\(181\) −1553.97 + 1553.97i −0.638154 + 0.638154i −0.950100 0.311946i \(-0.899019\pi\)
0.311946 + 0.950100i \(0.399019\pi\)
\(182\) 558.586 52.0517i 0.227501 0.0211996i
\(183\) 0 0
\(184\) 735.483 1325.27i 0.294677 0.530981i
\(185\) 3161.66 1.25649
\(186\) 0 0
\(187\) −2561.44 2561.44i −1.00166 1.00166i
\(188\) −142.151 756.116i −0.0551460 0.293327i
\(189\) 0 0
\(190\) −1267.39 + 1527.86i −0.483926 + 0.583383i
\(191\) 1311.80 0.496955 0.248478 0.968638i \(-0.420070\pi\)
0.248478 + 0.968638i \(0.420070\pi\)
\(192\) 0 0
\(193\) −1692.72 −0.631319 −0.315659 0.948873i \(-0.602226\pi\)
−0.315659 + 0.948873i \(0.602226\pi\)
\(194\) 3348.82 4037.08i 1.23934 1.49405i
\(195\) 0 0
\(196\) 115.370 + 613.664i 0.0420445 + 0.223638i
\(197\) −2419.50 2419.50i −0.875037 0.875037i 0.117979 0.993016i \(-0.462358\pi\)
−0.993016 + 0.117979i \(0.962358\pi\)
\(198\) 0 0
\(199\) 4687.76 1.66988 0.834941 0.550339i \(-0.185502\pi\)
0.834941 + 0.550339i \(0.185502\pi\)
\(200\) 496.470 894.593i 0.175529 0.316286i
\(201\) 0 0
\(202\) 3007.81 280.282i 1.04767 0.0976267i
\(203\) −2058.75 + 2058.75i −0.711804 + 0.711804i
\(204\) 0 0
\(205\) 2539.11 + 2539.11i 0.865069 + 0.865069i
\(206\) −2580.30 + 3110.61i −0.872710 + 1.05207i
\(207\) 0 0
\(208\) 714.069 + 313.530i 0.238037 + 0.104516i
\(209\) 5348.10i 1.77003i
\(210\) 0 0
\(211\) −1994.60 + 1994.60i −0.650777 + 0.650777i −0.953180 0.302403i \(-0.902211\pi\)
0.302403 + 0.953180i \(0.402211\pi\)
\(212\) 576.703 843.751i 0.186831 0.273345i
\(213\) 0 0
\(214\) 376.211 + 4037.26i 0.120174 + 1.28963i
\(215\) 2365.13i 0.750236i
\(216\) 0 0
\(217\) 1971.45i 0.616730i
\(218\) 4258.49 396.827i 1.32303 0.123287i
\(219\) 0 0
\(220\) −898.644 4779.96i −0.275393 1.46484i
\(221\) 458.571 458.571i 0.139578 0.139578i
\(222\) 0 0
\(223\) 3668.79i 1.10170i 0.834603 + 0.550852i \(0.185697\pi\)
−0.834603 + 0.550852i \(0.814303\pi\)
\(224\) 929.149 2796.16i 0.277149 0.834046i
\(225\) 0 0
\(226\) −2787.40 2312.20i −0.820422 0.680554i
\(227\) −2455.95 2455.95i −0.718092 0.718092i 0.250123 0.968214i \(-0.419529\pi\)
−0.968214 + 0.250123i \(0.919529\pi\)
\(228\) 0 0
\(229\) 1201.57 1201.57i 0.346733 0.346733i −0.512158 0.858891i \(-0.671154\pi\)
0.858891 + 0.512158i \(0.171154\pi\)
\(230\) −157.016 1684.99i −0.0450144 0.483066i
\(231\) 0 0
\(232\) −3891.15 + 1113.65i −1.10115 + 0.315150i
\(233\) 1560.55 0.438776 0.219388 0.975638i \(-0.429594\pi\)
0.219388 + 0.975638i \(0.429594\pi\)
\(234\) 0 0
\(235\) −607.412 607.412i −0.168609 0.168609i
\(236\) −4558.34 3115.62i −1.25730 0.859363i
\(237\) 0 0
\(238\) −1885.85 1564.34i −0.513618 0.426055i
\(239\) −3543.70 −0.959091 −0.479546 0.877517i \(-0.659198\pi\)
−0.479546 + 0.877517i \(0.659198\pi\)
\(240\) 0 0
\(241\) 1481.98 0.396110 0.198055 0.980191i \(-0.436538\pi\)
0.198055 + 0.980191i \(0.436538\pi\)
\(242\) 7187.70 + 5962.32i 1.90927 + 1.58377i
\(243\) 0 0
\(244\) 2416.19 3535.03i 0.633937 0.927488i
\(245\) 492.976 + 492.976i 0.128551 + 0.128551i
\(246\) 0 0
\(247\) 957.462 0.246647
\(248\) −1329.86 + 2396.28i −0.340508 + 0.613564i
\(249\) 0 0
\(250\) −398.998 4281.79i −0.100939 1.08322i
\(251\) −2357.87 + 2357.87i −0.592938 + 0.592938i −0.938424 0.345486i \(-0.887714\pi\)
0.345486 + 0.938424i \(0.387714\pi\)
\(252\) 0 0
\(253\) 3223.87 + 3223.87i 0.801118 + 0.801118i
\(254\) 6049.48 + 5018.15i 1.49440 + 1.23963i
\(255\) 0 0
\(256\) 3015.55 2771.95i 0.736218 0.676745i
\(257\) 2117.93i 0.514059i 0.966404 + 0.257029i \(0.0827437\pi\)
−0.966404 + 0.257029i \(0.917256\pi\)
\(258\) 0 0
\(259\) −4074.02 + 4074.02i −0.977402 + 0.977402i
\(260\) 855.750 160.883i 0.204121 0.0383751i
\(261\) 0 0
\(262\) 3736.34 348.170i 0.881038 0.0820994i
\(263\) 7741.72i 1.81511i 0.419929 + 0.907557i \(0.362055\pi\)
−0.419929 + 0.907557i \(0.637945\pi\)
\(264\) 0 0
\(265\) 1141.10i 0.264517i
\(266\) −335.640 3601.87i −0.0773661 0.830244i
\(267\) 0 0
\(268\) 2085.06 + 1425.14i 0.475245 + 0.324829i
\(269\) −1111.14 + 1111.14i −0.251849 + 0.251849i −0.821728 0.569880i \(-0.806990\pi\)
0.569880 + 0.821728i \(0.306990\pi\)
\(270\) 0 0
\(271\) 1728.54i 0.387458i 0.981055 + 0.193729i \(0.0620583\pi\)
−0.981055 + 0.193729i \(0.937942\pi\)
\(272\) −1236.99 3173.56i −0.275749 0.707446i
\(273\) 0 0
\(274\) 174.510 210.376i 0.0384765 0.0463842i
\(275\) 2176.19 + 2176.19i 0.477197 + 0.477197i
\(276\) 0 0
\(277\) −1977.36 + 1977.36i −0.428910 + 0.428910i −0.888257 0.459347i \(-0.848083\pi\)
0.459347 + 0.888257i \(0.348083\pi\)
\(278\) 840.366 78.3093i 0.181301 0.0168945i
\(279\) 0 0
\(280\) −905.208 3162.84i −0.193202 0.675057i
\(281\) −1583.09 −0.336083 −0.168041 0.985780i \(-0.553744\pi\)
−0.168041 + 0.985780i \(0.553744\pi\)
\(282\) 0 0
\(283\) −987.718 987.718i −0.207469 0.207469i 0.595722 0.803191i \(-0.296866\pi\)
−0.803191 + 0.595722i \(0.796866\pi\)
\(284\) −1823.28 + 342.780i −0.380956 + 0.0716206i
\(285\) 0 0
\(286\) −1497.73 + 1805.54i −0.309659 + 0.373300i
\(287\) −6543.64 −1.34585
\(288\) 0 0
\(289\) 2080.57 0.423483
\(290\) −2885.15 + 3478.11i −0.584213 + 0.704281i
\(291\) 0 0
\(292\) −2088.22 + 392.590i −0.418506 + 0.0786800i
\(293\) 140.498 + 140.498i 0.0280136 + 0.0280136i 0.720975 0.692961i \(-0.243694\pi\)
−0.692961 + 0.720975i \(0.743694\pi\)
\(294\) 0 0
\(295\) −6164.74 −1.21670
\(296\) −7700.10 + 2203.78i −1.51203 + 0.432743i
\(297\) 0 0
\(298\) −4433.47 + 413.132i −0.861825 + 0.0803090i
\(299\) −577.164 + 577.164i −0.111633 + 0.111633i
\(300\) 0 0
\(301\) 3047.64 + 3047.64i 0.583597 + 0.583597i
\(302\) −515.057 + 620.912i −0.0981397 + 0.118309i
\(303\) 0 0
\(304\) 2021.71 4604.46i 0.381423 0.868696i
\(305\) 4780.80i 0.897535i
\(306\) 0 0
\(307\) 5197.73 5197.73i 0.966288 0.966288i −0.0331621 0.999450i \(-0.510558\pi\)
0.999450 + 0.0331621i \(0.0105578\pi\)
\(308\) 7317.28 + 5001.35i 1.35370 + 0.925254i
\(309\) 0 0
\(310\) 283.906 + 3046.70i 0.0520154 + 0.558196i
\(311\) 8112.26i 1.47911i 0.673094 + 0.739557i \(0.264965\pi\)
−0.673094 + 0.739557i \(0.735035\pi\)
\(312\) 0 0
\(313\) 3307.27i 0.597246i 0.954371 + 0.298623i \(0.0965273\pi\)
−0.954371 + 0.298623i \(0.903473\pi\)
\(314\) −10103.3 + 941.473i −1.81580 + 0.169205i
\(315\) 0 0
\(316\) 4754.01 893.765i 0.846311 0.159108i
\(317\) 2991.50 2991.50i 0.530030 0.530030i −0.390551 0.920581i \(-0.627716\pi\)
0.920581 + 0.390551i \(0.127716\pi\)
\(318\) 0 0
\(319\) 12174.7i 2.13684i
\(320\) 1033.25 4455.03i 0.180501 0.778262i
\(321\) 0 0
\(322\) 2373.56 + 1968.90i 0.410786 + 0.340754i
\(323\) −2956.95 2956.95i −0.509379 0.509379i
\(324\) 0 0
\(325\) −389.600 + 389.600i −0.0664958 + 0.0664958i
\(326\) −470.676 5050.99i −0.0799641 0.858124i
\(327\) 0 0
\(328\) −7953.75 4414.07i −1.33894 0.743067i
\(329\) 1565.39 0.262318
\(330\) 0 0
\(331\) 3171.15 + 3171.15i 0.526592 + 0.526592i 0.919555 0.392962i \(-0.128550\pi\)
−0.392962 + 0.919555i \(0.628550\pi\)
\(332\) −2242.73 + 3281.25i −0.370741 + 0.542416i
\(333\) 0 0
\(334\) −6022.41 4995.69i −0.986622 0.818419i
\(335\) 2819.86 0.459897
\(336\) 0 0
\(337\) −2213.85 −0.357852 −0.178926 0.983863i \(-0.557262\pi\)
−0.178926 + 0.983863i \(0.557262\pi\)
\(338\) 4459.49 + 3699.22i 0.717646 + 0.595299i
\(339\) 0 0
\(340\) −3139.69 2145.97i −0.500805 0.342299i
\(341\) −5829.20 5829.20i −0.925715 0.925715i
\(342\) 0 0
\(343\) −6853.56 −1.07888
\(344\) 1648.57 + 5760.19i 0.258387 + 0.902816i
\(345\) 0 0
\(346\) 128.636 + 1380.44i 0.0199871 + 0.214489i
\(347\) 344.315 344.315i 0.0532674 0.0532674i −0.679971 0.733239i \(-0.738008\pi\)
0.733239 + 0.679971i \(0.238008\pi\)
\(348\) 0 0
\(349\) −8129.29 8129.29i −1.24685 1.24685i −0.957103 0.289747i \(-0.906429\pi\)
−0.289747 0.957103i \(-0.593571\pi\)
\(350\) 1602.21 + 1329.06i 0.244690 + 0.202975i
\(351\) 0 0
\(352\) 5520.40 + 11015.0i 0.835904 + 1.66791i
\(353\) 3235.69i 0.487871i 0.969791 + 0.243935i \(0.0784385\pi\)
−0.969791 + 0.243935i \(0.921561\pi\)
\(354\) 0 0
\(355\) −1464.70 + 1464.70i −0.218980 + 0.218980i
\(356\) −2018.17 10734.8i −0.300457 1.59816i
\(357\) 0 0
\(358\) −422.727 + 39.3917i −0.0624073 + 0.00581541i
\(359\) 4710.91i 0.692569i −0.938129 0.346285i \(-0.887443\pi\)
0.938129 0.346285i \(-0.112557\pi\)
\(360\) 0 0
\(361\) 685.094i 0.0998825i
\(362\) −576.728 6189.08i −0.0837353 0.898594i
\(363\) 0 0
\(364\) −895.385 + 1310.00i −0.128931 + 0.188634i
\(365\) −1677.53 + 1677.53i −0.240565 + 0.240565i
\(366\) 0 0
\(367\) 1585.57i 0.225521i 0.993622 + 0.112761i \(0.0359693\pi\)
−0.993622 + 0.112761i \(0.964031\pi\)
\(368\) 1556.90 + 3994.29i 0.220541 + 0.565807i
\(369\) 0 0
\(370\) −5709.35 + 6882.74i −0.802202 + 0.967072i
\(371\) 1470.38 + 1470.38i 0.205764 + 0.205764i
\(372\) 0 0
\(373\) 2078.83 2078.83i 0.288573 0.288573i −0.547943 0.836516i \(-0.684589\pi\)
0.836516 + 0.547943i \(0.184589\pi\)
\(374\) 10201.6 950.630i 1.41045 0.131433i
\(375\) 0 0
\(376\) 1902.72 + 1055.94i 0.260971 + 0.144830i
\(377\) 2179.62 0.297762
\(378\) 0 0
\(379\) −3704.15 3704.15i −0.502031 0.502031i 0.410038 0.912068i \(-0.365515\pi\)
−0.912068 + 0.410038i \(0.865515\pi\)
\(380\) −1037.40 5518.05i −0.140047 0.744920i
\(381\) 0 0
\(382\) −2368.86 + 2855.70i −0.317281 + 0.382488i
\(383\) 7560.19 1.00864 0.504318 0.863518i \(-0.331744\pi\)
0.504318 + 0.863518i \(0.331744\pi\)
\(384\) 0 0
\(385\) 9895.95 1.30999
\(386\) 3056.72 3684.94i 0.403065 0.485903i
\(387\) 0 0
\(388\) 2741.14 + 14580.4i 0.358660 + 1.90775i
\(389\) 4868.51 + 4868.51i 0.634559 + 0.634559i 0.949208 0.314649i \(-0.101887\pi\)
−0.314649 + 0.949208i \(0.601887\pi\)
\(390\) 0 0
\(391\) 3564.94 0.461091
\(392\) −1544.24 857.005i −0.198970 0.110422i
\(393\) 0 0
\(394\) 9636.25 897.953i 1.23215 0.114818i
\(395\) 3819.05 3819.05i 0.486474 0.486474i
\(396\) 0 0
\(397\) −2442.83 2442.83i −0.308822 0.308822i 0.535631 0.844452i \(-0.320074\pi\)
−0.844452 + 0.535631i \(0.820074\pi\)
\(398\) −8465.19 + 10205.0i −1.06613 + 1.28525i
\(399\) 0 0
\(400\) 1050.95 + 2696.25i 0.131368 + 0.337031i
\(401\) 10348.7i 1.28876i 0.764707 + 0.644378i \(0.222883\pi\)
−0.764707 + 0.644378i \(0.777117\pi\)
\(402\) 0 0
\(403\) 1043.59 1043.59i 0.128995 0.128995i
\(404\) −4821.37 + 7053.95i −0.593742 + 0.868681i
\(405\) 0 0
\(406\) −764.068 8199.49i −0.0933992 1.00230i
\(407\) 24092.2i 2.93417i
\(408\) 0 0
\(409\) 3378.72i 0.408477i 0.978921 + 0.204238i \(0.0654717\pi\)
−0.978921 + 0.204238i \(0.934528\pi\)
\(410\) −10112.6 + 942.343i −1.21811 + 0.113510i
\(411\) 0 0
\(412\) −2112.08 11234.3i −0.252560 1.34339i
\(413\) 7943.70 7943.70i 0.946450 0.946450i
\(414\) 0 0
\(415\) 4437.60i 0.524899i
\(416\) −1972.01 + 988.309i −0.232417 + 0.116480i
\(417\) 0 0
\(418\) 11642.5 + 9657.63i 1.36233 + 1.13007i
\(419\) 8945.75 + 8945.75i 1.04303 + 1.04303i 0.999032 + 0.0439961i \(0.0140089\pi\)
0.0439961 + 0.999032i \(0.485991\pi\)
\(420\) 0 0
\(421\) 10686.4 10686.4i 1.23711 1.23711i 0.275933 0.961177i \(-0.411013\pi\)
0.961177 0.275933i \(-0.0889867\pi\)
\(422\) −740.259 7943.99i −0.0853916 0.916368i
\(423\) 0 0
\(424\) 795.380 + 2779.10i 0.0911016 + 0.318313i
\(425\) 2406.42 0.274656
\(426\) 0 0
\(427\) 6160.40 + 6160.40i 0.698179 + 0.698179i
\(428\) −9468.23 6471.53i −1.06931 0.730871i
\(429\) 0 0
\(430\) 5148.75 + 4270.97i 0.577429 + 0.478987i
\(431\) 4267.29 0.476910 0.238455 0.971154i \(-0.423359\pi\)
0.238455 + 0.971154i \(0.423359\pi\)
\(432\) 0 0
\(433\) −15686.4 −1.74097 −0.870483 0.492198i \(-0.836194\pi\)
−0.870483 + 0.492198i \(0.836194\pi\)
\(434\) −4291.72 3560.05i −0.474675 0.393751i
\(435\) 0 0
\(436\) −6826.15 + 9987.07i −0.749801 + 1.09700i
\(437\) 3721.67 + 3721.67i 0.407395 + 0.407395i
\(438\) 0 0
\(439\) 5963.75 0.648370 0.324185 0.945994i \(-0.394910\pi\)
0.324185 + 0.945994i \(0.394910\pi\)
\(440\) 12028.5 + 6675.40i 1.30326 + 0.723267i
\(441\) 0 0
\(442\) 170.190 + 1826.37i 0.0183147 + 0.196542i
\(443\) −1512.40 + 1512.40i −0.162204 + 0.162204i −0.783542 0.621338i \(-0.786589\pi\)
0.621338 + 0.783542i \(0.286589\pi\)
\(444\) 0 0
\(445\) −8623.62 8623.62i −0.918649 0.918649i
\(446\) −7986.72 6625.12i −0.847942 0.703382i
\(447\) 0 0
\(448\) 4409.20 + 7072.02i 0.464989 + 0.745807i
\(449\) 5201.31i 0.546693i −0.961916 0.273346i \(-0.911869\pi\)
0.961916 0.273346i \(-0.0881305\pi\)
\(450\) 0 0
\(451\) 19348.3 19348.3i 2.02013 2.02013i
\(452\) 10067.0 1892.62i 1.04760 0.196950i
\(453\) 0 0
\(454\) 9781.40 911.478i 1.01115 0.0942242i
\(455\) 1771.66i 0.182542i
\(456\) 0 0
\(457\) 6308.57i 0.645738i −0.946444 0.322869i \(-0.895353\pi\)
0.946444 0.322869i \(-0.104647\pi\)
\(458\) 445.940 + 4785.54i 0.0454965 + 0.488239i
\(459\) 0 0
\(460\) 3951.67 + 2700.96i 0.400538 + 0.273767i
\(461\) −1200.54 + 1200.54i −0.121290 + 0.121290i −0.765146 0.643856i \(-0.777333\pi\)
0.643856 + 0.765146i \(0.277333\pi\)
\(462\) 0 0
\(463\) 15194.4i 1.52515i 0.646901 + 0.762574i \(0.276065\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(464\) 4602.32 10481.8i 0.460468 1.04872i
\(465\) 0 0
\(466\) −2818.05 + 3397.21i −0.280136 + 0.337710i
\(467\) 4068.55 + 4068.55i 0.403148 + 0.403148i 0.879341 0.476193i \(-0.157984\pi\)
−0.476193 + 0.879341i \(0.657984\pi\)
\(468\) 0 0
\(469\) −3633.58 + 3633.58i −0.357747 + 0.357747i
\(470\) 2419.17 225.430i 0.237421 0.0221240i
\(471\) 0 0
\(472\) 15014.0 4297.02i 1.46414 0.419039i
\(473\) −18022.6 −1.75196
\(474\) 0 0
\(475\) 2512.22 + 2512.22i 0.242671 + 0.242671i
\(476\) 6810.95 1280.47i 0.655839 0.123299i
\(477\) 0 0
\(478\) 6399.24 7714.41i 0.612331 0.738178i
\(479\) −3340.15 −0.318612 −0.159306 0.987229i \(-0.550926\pi\)
−0.159306 + 0.987229i \(0.550926\pi\)
\(480\) 0 0
\(481\) 4313.20 0.408867
\(482\) −2676.16 + 3226.17i −0.252896 + 0.304872i
\(483\) 0 0
\(484\) −25959.2 + 4880.39i −2.43794 + 0.458338i
\(485\) 11712.9 + 11712.9i 1.09661 + 1.09661i
\(486\) 0 0
\(487\) −10788.7 −1.00386 −0.501932 0.864907i \(-0.667377\pi\)
−0.501932 + 0.864907i \(0.667377\pi\)
\(488\) 3332.37 + 11643.5i 0.309118 + 1.08007i
\(489\) 0 0
\(490\) −1963.40 + 182.959i −0.181015 + 0.0168678i
\(491\) 4711.73 4711.73i 0.433071 0.433071i −0.456601 0.889672i \(-0.650933\pi\)
0.889672 + 0.456601i \(0.150933\pi\)
\(492\) 0 0
\(493\) −6731.37 6731.37i −0.614940 0.614940i
\(494\) −1728.99 + 2084.34i −0.157472 + 0.189836i
\(495\) 0 0
\(496\) −2815.09 7222.23i −0.254841 0.653806i
\(497\) 3774.73i 0.340683i
\(498\) 0 0
\(499\) −5656.27 + 5656.27i −0.507433 + 0.507433i −0.913738 0.406304i \(-0.866817\pi\)
0.406304 + 0.913738i \(0.366817\pi\)
\(500\) 10041.7 + 6863.50i 0.898158 + 0.613890i
\(501\) 0 0
\(502\) −875.080 9390.80i −0.0778022 0.834924i
\(503\) 4974.64i 0.440971i −0.975390 0.220485i \(-0.929236\pi\)
0.975390 0.220485i \(-0.0707641\pi\)
\(504\) 0 0
\(505\) 9539.83i 0.840627i
\(506\) −12839.8 + 1196.48i −1.12806 + 0.105118i
\(507\) 0 0
\(508\) −21848.4 + 4107.55i −1.90820 + 0.358746i
\(509\) −5549.92 + 5549.92i −0.483292 + 0.483292i −0.906181 0.422889i \(-0.861016\pi\)
0.422889 + 0.906181i \(0.361016\pi\)
\(510\) 0 0
\(511\) 4323.24i 0.374264i
\(512\) 588.859 + 11570.3i 0.0508284 + 0.998707i
\(513\) 0 0
\(514\) −4610.61 3824.58i −0.395653 0.328201i
\(515\) −9024.90 9024.90i −0.772203 0.772203i
\(516\) 0 0
\(517\) −4628.55 + 4628.55i −0.393740 + 0.393740i
\(518\) −1512.00 16225.8i −0.128250 1.37629i
\(519\) 0 0
\(520\) −1195.09 + 2153.44i −0.100785 + 0.181605i
\(521\) −21737.7 −1.82792 −0.913961 0.405802i \(-0.866992\pi\)
−0.913961 + 0.405802i \(0.866992\pi\)
\(522\) 0 0
\(523\) 2235.12 + 2235.12i 0.186874 + 0.186874i 0.794343 0.607469i \(-0.207815\pi\)
−0.607469 + 0.794343i \(0.707815\pi\)
\(524\) −5989.17 + 8762.52i −0.499309 + 0.730520i
\(525\) 0 0
\(526\) −16853.2 13980.1i −1.39703 1.15886i
\(527\) −6445.90 −0.532804
\(528\) 0 0
\(529\) 7680.11 0.631225
\(530\) 2484.10 + 2060.60i 0.203589 + 0.168881i
\(531\) 0 0
\(532\) 8447.15 + 5773.62i 0.688403 + 0.470522i
\(533\) 3463.90 + 3463.90i 0.281498 + 0.281498i
\(534\) 0 0
\(535\) −12804.9 −1.03478
\(536\) −6867.66 + 1965.53i −0.553429 + 0.158392i
\(537\) 0 0
\(538\) −412.378 4425.38i −0.0330463 0.354631i
\(539\) 3756.53 3756.53i 0.300196 0.300196i
\(540\) 0 0
\(541\) −3371.85 3371.85i −0.267961 0.267961i 0.560317 0.828278i \(-0.310679\pi\)
−0.828278 + 0.560317i \(0.810679\pi\)
\(542\) −3762.92 3121.40i −0.298213 0.247372i
\(543\) 0 0
\(544\) 9142.41 + 3037.98i 0.720547 + 0.239434i
\(545\) 13506.6i 1.06158i
\(546\) 0 0
\(547\) 3242.62 3242.62i 0.253463 0.253463i −0.568926 0.822389i \(-0.692641\pi\)
0.822389 + 0.568926i \(0.192641\pi\)
\(548\) 142.843 + 759.797i 0.0111350 + 0.0592280i
\(549\) 0 0
\(550\) −8667.21 + 807.653i −0.671948 + 0.0626153i
\(551\) 14054.6i 1.08665i
\(552\) 0 0
\(553\) 9842.23i 0.756843i
\(554\) −733.861 7875.32i −0.0562793 0.603954i
\(555\) 0 0
\(556\) −1347.06 + 1970.84i −0.102749 + 0.150327i
\(557\) 4967.01 4967.01i 0.377844 0.377844i −0.492480 0.870324i \(-0.663909\pi\)
0.870324 + 0.492480i \(0.163909\pi\)
\(558\) 0 0
\(559\) 3226.56i 0.244130i
\(560\) 8519.94 + 3740.90i 0.642917 + 0.282289i
\(561\) 0 0
\(562\) 2858.76 3446.29i 0.214572 0.258671i
\(563\) 10845.8 + 10845.8i 0.811891 + 0.811891i 0.984917 0.173026i \(-0.0553545\pi\)
−0.173026 + 0.984917i \(0.555355\pi\)
\(564\) 0 0
\(565\) 8087.17 8087.17i 0.602177 0.602177i
\(566\) 3933.83 366.573i 0.292140 0.0272230i
\(567\) 0 0
\(568\) 2546.28 4588.16i 0.188097 0.338934i
\(569\) −18374.6 −1.35378 −0.676892 0.736082i \(-0.736674\pi\)
−0.676892 + 0.736082i \(0.736674\pi\)
\(570\) 0 0
\(571\) 4779.72 + 4779.72i 0.350306 + 0.350306i 0.860224 0.509917i \(-0.170324\pi\)
−0.509917 + 0.860224i \(0.670324\pi\)
\(572\) −1225.95 6520.92i −0.0896143 0.476666i
\(573\) 0 0
\(574\) 11816.5 14245.1i 0.859256 1.03585i
\(575\) −3028.76 −0.219666
\(576\) 0 0
\(577\) −14300.3 −1.03176 −0.515882 0.856659i \(-0.672536\pi\)
−0.515882 + 0.856659i \(0.672536\pi\)
\(578\) −3757.11 + 4529.28i −0.270372 + 0.325940i
\(579\) 0 0
\(580\) −2361.60 12561.6i −0.169069 0.899295i
\(581\) −5718.15 5718.15i −0.408311 0.408311i
\(582\) 0 0
\(583\) −8695.29 −0.617705
\(584\) 2916.28 5254.87i 0.206638 0.372342i
\(585\) 0 0
\(586\) −559.569 + 52.1433i −0.0394464 + 0.00367580i
\(587\) −7852.73 + 7852.73i −0.552158 + 0.552158i −0.927063 0.374905i \(-0.877675\pi\)
0.374905 + 0.927063i \(0.377675\pi\)
\(588\) 0 0
\(589\) −6729.29 6729.29i −0.470756 0.470756i
\(590\) 11132.3 13420.3i 0.776798 0.936447i
\(591\) 0 0
\(592\) 9107.42 20742.2i 0.632285 1.44004i
\(593\) 27409.5i 1.89810i 0.315122 + 0.949051i \(0.397954\pi\)
−0.315122 + 0.949051i \(0.602046\pi\)
\(594\) 0 0
\(595\) 5471.45 5471.45i 0.376988 0.376988i
\(596\) 7106.62 10397.4i 0.488421 0.714589i
\(597\) 0 0
\(598\) −214.204 2298.70i −0.0146479 0.157192i
\(599\) 8983.16i 0.612758i −0.951910 0.306379i \(-0.900883\pi\)
0.951910 0.306379i \(-0.0991174\pi\)
\(600\) 0 0
\(601\) 1686.23i 0.114447i 0.998361 + 0.0572236i \(0.0182248\pi\)
−0.998361 + 0.0572236i \(0.981775\pi\)
\(602\) −12138.0 + 1131.07i −0.821771 + 0.0765766i
\(603\) 0 0
\(604\) −421.593 2242.49i −0.0284013 0.151069i
\(605\) −20853.9 + 20853.9i −1.40137 + 1.40137i
\(606\) 0 0
\(607\) 19571.7i 1.30872i 0.756185 + 0.654358i \(0.227061\pi\)
−0.756185 + 0.654358i \(0.772939\pi\)
\(608\) 6372.81 + 12715.9i 0.425085 + 0.848186i
\(609\) 0 0
\(610\) 10407.5 + 8633.21i 0.690800 + 0.573030i
\(611\) −828.643 828.643i −0.0548663 0.0548663i
\(612\) 0 0
\(613\) −16131.0 + 16131.0i −1.06285 + 1.06285i −0.0649592 + 0.997888i \(0.520692\pi\)
−0.997888 + 0.0649592i \(0.979308\pi\)
\(614\) 1929.04 + 20701.3i 0.126791 + 1.36064i
\(615\) 0 0
\(616\) −24101.2 + 6897.79i −1.57641 + 0.451169i
\(617\) 14419.1 0.940829 0.470415 0.882445i \(-0.344104\pi\)
0.470415 + 0.882445i \(0.344104\pi\)
\(618\) 0 0
\(619\) 14348.2 + 14348.2i 0.931665 + 0.931665i 0.997810 0.0661446i \(-0.0210699\pi\)
−0.0661446 + 0.997810i \(0.521070\pi\)
\(620\) −7145.16 4883.71i −0.462833 0.316346i
\(621\) 0 0
\(622\) −17659.9 14649.2i −1.13842 0.944339i
\(623\) 22224.3 1.42921
\(624\) 0 0
\(625\) 7928.50 0.507424
\(626\) −7199.73 5972.29i −0.459679 0.381311i
\(627\) 0 0
\(628\) 16195.1 23694.4i 1.02907 1.50559i
\(629\) −13320.5 13320.5i −0.844395 0.844395i
\(630\) 0 0
\(631\) 28650.9 1.80757 0.903785 0.427987i \(-0.140777\pi\)
0.903785 + 0.427987i \(0.140777\pi\)
\(632\) −6639.16 + 11963.2i −0.417866 + 0.752957i
\(633\) 0 0
\(634\) 1110.24 + 11914.4i 0.0695478 + 0.746342i
\(635\) −17551.5 + 17551.5i −1.09687 + 1.09687i
\(636\) 0 0
\(637\) 672.527 + 672.527i 0.0418312 + 0.0418312i
\(638\) 26503.6 + 21985.2i 1.64465 + 1.36426i
\(639\) 0 0
\(640\) 7832.48 + 10294.2i 0.483759 + 0.635806i
\(641\) 11361.1i 0.700060i −0.936739 0.350030i \(-0.886171\pi\)
0.936739 0.350030i \(-0.113829\pi\)
\(642\) 0 0
\(643\) 1801.19 1801.19i 0.110470 0.110470i −0.649711 0.760181i \(-0.725110\pi\)
0.760181 + 0.649711i \(0.225110\pi\)
\(644\) −8572.36 + 1611.62i −0.524532 + 0.0986131i
\(645\) 0 0
\(646\) 11776.8 1097.42i 0.717263 0.0668380i
\(647\) 3042.62i 0.184881i 0.995718 + 0.0924403i \(0.0294667\pi\)
−0.995718 + 0.0924403i \(0.970533\pi\)
\(648\) 0 0
\(649\) 46976.1i 2.84125i
\(650\) −144.593 1551.68i −0.00872523 0.0936336i
\(651\) 0 0
\(652\) 11845.6 + 8096.48i 0.711520 + 0.486323i
\(653\) 15755.2 15755.2i 0.944176 0.944176i −0.0543465 0.998522i \(-0.517308\pi\)
0.998522 + 0.0543465i \(0.0173076\pi\)
\(654\) 0 0
\(655\) 11850.5i 0.706928i
\(656\) 23972.1 9343.86i 1.42676 0.556123i
\(657\) 0 0
\(658\) −2826.78 + 3407.75i −0.167476 + 0.201896i
\(659\) 3650.15 + 3650.15i 0.215766 + 0.215766i 0.806711 0.590946i \(-0.201245\pi\)
−0.590946 + 0.806711i \(0.701245\pi\)
\(660\) 0 0
\(661\) 17498.6 17498.6i 1.02968 1.02968i 0.0301299 0.999546i \(-0.490408\pi\)
0.999546 0.0301299i \(-0.00959208\pi\)
\(662\) −12629.9 + 1176.91i −0.741502 + 0.0690967i
\(663\) 0 0
\(664\) −3093.15 10807.6i −0.180779 0.631651i
\(665\) 11424.0 0.666171
\(666\) 0 0
\(667\) 8472.21 + 8472.21i 0.491822 + 0.491822i
\(668\) 21750.6 4089.16i 1.25982 0.236848i
\(669\) 0 0
\(670\) −5092.12 + 6138.66i −0.293621 + 0.353966i
\(671\) −36430.3 −2.09594
\(672\) 0 0
\(673\) 5976.34 0.342305 0.171152 0.985245i \(-0.445251\pi\)
0.171152 + 0.985245i \(0.445251\pi\)
\(674\) 3997.78 4819.41i 0.228470 0.275425i
\(675\) 0 0
\(676\) −16106.0 + 3027.95i −0.916361 + 0.172278i
\(677\) −5706.93 5706.93i −0.323981 0.323981i 0.526311 0.850292i \(-0.323575\pi\)
−0.850292 + 0.526311i \(0.823575\pi\)
\(678\) 0 0
\(679\) −30185.7 −1.70607
\(680\) 10341.3 2959.70i 0.583194 0.166911i
\(681\) 0 0
\(682\) 23216.2 2163.40i 1.30351 0.121467i
\(683\) 18585.6 18585.6i 1.04123 1.04123i 0.0421122 0.999113i \(-0.486591\pi\)
0.999113 0.0421122i \(-0.0134087\pi\)
\(684\) 0 0
\(685\) 610.370 + 610.370i 0.0340453 + 0.0340453i
\(686\) 12376.2 14919.8i 0.688813 0.830378i
\(687\) 0 0
\(688\) −15516.6 6812.95i −0.859832 0.377531i
\(689\) 1556.71i 0.0860751i
\(690\) 0 0
\(691\) −7076.12 + 7076.12i −0.389563 + 0.389563i −0.874532 0.484968i \(-0.838831\pi\)
0.484968 + 0.874532i \(0.338831\pi\)
\(692\) −3237.44 2212.78i −0.177845 0.121557i
\(693\) 0 0
\(694\) 127.786 + 1371.32i 0.00698947 + 0.0750065i
\(695\) 2665.38i 0.145473i
\(696\) 0 0
\(697\) 21395.3i 1.16270i
\(698\) 32376.9 3017.03i 1.75571 0.163605i
\(699\) 0 0
\(700\) −5786.56 + 1087.89i −0.312445 + 0.0587403i
\(701\) 11574.5 11574.5i 0.623626 0.623626i −0.322831 0.946457i \(-0.604634\pi\)
0.946457 + 0.322831i \(0.104634\pi\)
\(702\) 0 0
\(703\) 27812.3i 1.49212i
\(704\) −33947.8 7873.47i −1.81741 0.421509i
\(705\) 0 0
\(706\) −7043.90 5843.03i −0.375497 0.311481i
\(707\) −12292.7 12292.7i −0.653912 0.653912i
\(708\) 0 0
\(709\) 11104.7 11104.7i 0.588216 0.588216i −0.348932 0.937148i \(-0.613456\pi\)
0.937148 + 0.348932i \(0.113456\pi\)
\(710\) −543.595 5833.52i −0.0287335 0.308349i
\(711\) 0 0
\(712\) 27013.4 + 14991.6i 1.42187 + 0.789091i
\(713\) 8112.92 0.426131
\(714\) 0 0
\(715\) −5238.46 5238.46i −0.273996 0.273996i
\(716\) 677.609 991.384i 0.0353680 0.0517455i
\(717\) 0 0
\(718\) 10255.4 + 8507.00i 0.533046 + 0.442170i
\(719\) 9398.56 0.487493 0.243746 0.969839i \(-0.421624\pi\)
0.243746 + 0.969839i \(0.421624\pi\)
\(720\) 0 0
\(721\) 23258.4 1.20137
\(722\) −1491.41 1237.15i −0.0768760 0.0637699i
\(723\) 0 0
\(724\) 14514.7 + 9920.78i 0.745076 + 0.509258i
\(725\) 5718.95 + 5718.95i 0.292961 + 0.292961i
\(726\) 0 0
\(727\) −16800.4 −0.857071 −0.428536 0.903525i \(-0.640970\pi\)
−0.428536 + 0.903525i \(0.640970\pi\)
\(728\) −1234.90 4314.81i −0.0628688 0.219667i
\(729\) 0 0
\(730\) −622.586 6681.19i −0.0315657 0.338742i
\(731\) −9964.65 + 9964.65i −0.504180 + 0.504180i
\(732\) 0 0
\(733\) 5536.14 + 5536.14i 0.278966 + 0.278966i 0.832696 0.553730i \(-0.186796\pi\)
−0.553730 + 0.832696i \(0.686796\pi\)
\(734\) −3451.70 2863.24i −0.173576 0.143984i
\(735\) 0 0
\(736\) −11506.8 3823.65i −0.576285 0.191497i
\(737\) 21487.7i 1.07396i
\(738\) 0 0
\(739\) −775.030 + 775.030i −0.0385791 + 0.0385791i −0.726133 0.687554i \(-0.758684\pi\)
0.687554 + 0.726133i \(0.258684\pi\)
\(740\) −4673.32 24857.8i −0.232155 1.23485i
\(741\) 0 0
\(742\) −5856.16 + 545.705i −0.289739 + 0.0269993i
\(743\) 21471.2i 1.06016i 0.847947 + 0.530081i \(0.177838\pi\)
−0.847947 + 0.530081i \(0.822162\pi\)
\(744\) 0 0
\(745\) 14061.6i 0.691511i
\(746\) 771.519 + 8279.45i 0.0378650 + 0.406343i
\(747\) 0 0
\(748\) −16352.6 + 23924.8i −0.799344 + 1.16949i
\(749\) 16500.0 16500.0i 0.804937 0.804937i
\(750\) 0 0
\(751\) 2293.60i 0.111444i 0.998446 + 0.0557221i \(0.0177461\pi\)
−0.998446 + 0.0557221i \(0.982254\pi\)
\(752\) −5734.66 + 2235.26i −0.278087 + 0.108393i
\(753\) 0 0
\(754\) −3935.97 + 4744.90i −0.190106 + 0.229176i
\(755\) −1801.47 1801.47i −0.0868372 0.0868372i
\(756\) 0 0
\(757\) −14151.4 + 14151.4i −0.679448 + 0.679448i −0.959875 0.280427i \(-0.909524\pi\)
0.280427 + 0.959875i \(0.409524\pi\)
\(758\) 14752.7 1374.73i 0.706916 0.0658738i
\(759\) 0 0
\(760\) 13885.8 + 7706.16i 0.662751 + 0.367805i
\(761\) 18852.9 0.898054 0.449027 0.893518i \(-0.351771\pi\)
0.449027 + 0.893518i \(0.351771\pi\)
\(762\) 0 0
\(763\) −17404.2 17404.2i −0.825785 0.825785i
\(764\) −1939.00 10313.7i −0.0918200 0.488399i
\(765\) 0 0
\(766\) −13652.2 + 16458.1i −0.643963 + 0.776311i
\(767\) −8410.06 −0.395919
\(768\) 0 0
\(769\) −12172.9 −0.570828 −0.285414 0.958404i \(-0.592131\pi\)
−0.285414 + 0.958404i \(0.592131\pi\)
\(770\) −17870.2 + 21542.9i −0.836359 + 1.00825i
\(771\) 0 0
\(772\) 2502.04 + 13308.6i 0.116646 + 0.620449i
\(773\) 4971.12 + 4971.12i 0.231305 + 0.231305i 0.813237 0.581932i \(-0.197703\pi\)
−0.581932 + 0.813237i \(0.697703\pi\)
\(774\) 0 0
\(775\) 5476.42 0.253831
\(776\) −36690.5 20362.0i −1.69731 0.941951i
\(777\) 0 0
\(778\) −19390.0 + 1806.86i −0.893530 + 0.0832635i
\(779\) 22335.9 22335.9i 1.02730 1.02730i
\(780\) 0 0
\(781\) 11161.2 + 11161.2i 0.511367 + 0.511367i
\(782\) −6437.59 + 7760.65i −0.294383 + 0.354885i
\(783\) 0 0
\(784\) 4654.25 1814.14i 0.212020 0.0826412i
\(785\) 32044.5i 1.45696i
\(786\) 0 0
\(787\) −3776.32 + 3776.32i −0.171043 + 0.171043i −0.787438 0.616394i \(-0.788593\pi\)
0.616394 + 0.787438i \(0.288593\pi\)
\(788\) −15446.4 + 22599.1i −0.698295 + 1.02165i
\(789\) 0 0
\(790\) 1417.37 + 15210.3i 0.0638326 + 0.685011i
\(791\) 20841.8i 0.936849i
\(792\) 0 0
\(793\) 6522.06i 0.292062i
\(794\) 9729.19 906.612i 0.434856 0.0405220i
\(795\) 0 0
\(796\) −6929.08 36856.4i −0.308536 1.64113i
\(797\) 1305.71 1305.71i 0.0580311 0.0580311i −0.677496 0.735527i \(-0.736935\pi\)
0.735527 + 0.677496i \(0.236935\pi\)
\(798\) 0 0
\(799\) 5118.23i 0.226621i
\(800\) −7767.37 2581.06i −0.343272 0.114068i
\(801\) 0 0
\(802\) −22528.5 18687.8i −0.991908 0.822805i
\(803\) 12783.0 + 12783.0i 0.561771 + 0.561771i
\(804\) 0 0
\(805\) −6886.46 + 6886.46i −0.301510 + 0.301510i
\(806\) 387.310 + 4156.36i 0.0169261 + 0.181640i
\(807\) 0 0
\(808\) −6649.56 23233.9i −0.289518 1.01159i
\(809\) −16741.4 −0.727560 −0.363780 0.931485i \(-0.618514\pi\)
−0.363780 + 0.931485i \(0.618514\pi\)
\(810\) 0 0
\(811\) −17759.3 17759.3i −0.768946 0.768946i 0.208975 0.977921i \(-0.432987\pi\)
−0.977921 + 0.208975i \(0.932987\pi\)
\(812\) 19229.5 + 13143.4i 0.831065 + 0.568032i
\(813\) 0 0
\(814\) 52447.3 + 43505.9i 2.25832 + 1.87332i
\(815\) 16020.2 0.688542
\(816\) 0 0
\(817\) −20805.5 −0.890932
\(818\) −7355.26 6101.32i −0.314390 0.260792i
\(819\) 0 0
\(820\) 16210.0 23716.3i 0.690340 1.01001i
\(821\) 30920.3 + 30920.3i 1.31440 + 1.31440i 0.918135 + 0.396269i \(0.129695\pi\)
0.396269 + 0.918135i \(0.370305\pi\)
\(822\) 0 0
\(823\) 19433.1 0.823080 0.411540 0.911392i \(-0.364991\pi\)
0.411540 + 0.911392i \(0.364991\pi\)
\(824\) 28270.4 + 15689.2i 1.19520 + 0.663298i
\(825\) 0 0
\(826\) 2948.16 + 31637.7i 0.124188 + 1.33271i
\(827\) −22294.5 + 22294.5i −0.937431 + 0.937431i −0.998155 0.0607235i \(-0.980659\pi\)
0.0607235 + 0.998155i \(0.480659\pi\)
\(828\) 0 0
\(829\) 16674.7 + 16674.7i 0.698595 + 0.698595i 0.964107 0.265513i \(-0.0855412\pi\)
−0.265513 + 0.964107i \(0.585541\pi\)
\(830\) −9660.38 8013.45i −0.403996 0.335121i
\(831\) 0 0
\(832\) 1409.58 6077.63i 0.0587359 0.253250i
\(833\) 4153.96i 0.172781i
\(834\) 0 0
\(835\) 17473.0 17473.0i 0.724164 0.724164i
\(836\) −42048.1 + 7905.14i −1.73955 + 0.327040i
\(837\) 0 0
\(838\) −35628.7 + 3320.05i −1.46870 + 0.136861i
\(839\) 30412.9i 1.25145i 0.780042 + 0.625727i \(0.215198\pi\)
−0.780042 + 0.625727i \(0.784802\pi\)
\(840\) 0 0
\(841\) 7605.69i 0.311849i
\(842\) 3966.06 + 42561.2i 0.162327 + 1.74199i
\(843\) 0 0
\(844\) 18630.3 + 12733.8i 0.759813 + 0.519331i
\(845\) −12938.4 + 12938.4i −0.526741 + 0.526741i
\(846\) 0 0
\(847\) 53743.3i 2.18022i
\(848\) −7486.23 3287.02i −0.303158 0.133109i
\(849\) 0 0
\(850\) −4345.54 + 5238.63i −0.175354 + 0.211393i
\(851\) 16765.4 + 16765.4i 0.675337 + 0.675337i
\(852\) 0 0
\(853\) 15673.4 15673.4i 0.629128 0.629128i −0.318721 0.947849i \(-0.603253\pi\)
0.947849 + 0.318721i \(0.103253\pi\)
\(854\) −24535.3 + 2286.32i −0.983115 + 0.0916114i
\(855\) 0 0
\(856\) 31185.9 8925.44i 1.24523 0.356385i
\(857\) 7458.42 0.297287 0.148643 0.988891i \(-0.452509\pi\)
0.148643 + 0.988891i \(0.452509\pi\)
\(858\) 0 0
\(859\) −22482.2 22482.2i −0.892996 0.892996i 0.101808 0.994804i \(-0.467537\pi\)
−0.994804 + 0.101808i \(0.967537\pi\)
\(860\) −18595.3 + 3495.95i −0.737319 + 0.138617i
\(861\) 0 0
\(862\) −7705.90 + 9289.63i −0.304483 + 0.367060i
\(863\) −27444.8 −1.08254 −0.541270 0.840849i \(-0.682056\pi\)
−0.541270 + 0.840849i \(0.682056\pi\)
\(864\) 0 0
\(865\) −4378.34 −0.172102
\(866\) 28326.5 34148.2i 1.11152 1.33996i
\(867\) 0 0
\(868\) 15500.0 2914.04i 0.606112 0.113950i
\(869\) −29101.6 29101.6i −1.13602 1.13602i
\(870\) 0 0
\(871\) 3846.90 0.149653
\(872\) −9414.53 32894.8i −0.365615 1.27748i
\(873\) 0 0
\(874\) −14822.5 + 1381.23i −0.573658 + 0.0534562i
\(875\) −17499.4 + 17499.4i −0.676101 + 0.676101i
\(876\) 0 0
\(877\) −167.934 167.934i −0.00646604 0.00646604i 0.703866 0.710332i \(-0.251455\pi\)
−0.710332 + 0.703866i \(0.751455\pi\)
\(878\) −10769.4 + 12982.7i −0.413951 + 0.499027i
\(879\) 0 0
\(880\) −36253.0 + 14130.7i −1.38874 + 0.541304i
\(881\) 20968.8i 0.801882i 0.916104 + 0.400941i \(0.131317\pi\)
−0.916104 + 0.400941i \(0.868683\pi\)
\(882\) 0 0
\(883\) −22968.4 + 22968.4i −0.875366 + 0.875366i −0.993051 0.117685i \(-0.962453\pi\)
0.117685 + 0.993051i \(0.462453\pi\)
\(884\) −4283.23 2927.58i −0.162964 0.111386i
\(885\) 0 0
\(886\) −561.301 6023.52i −0.0212836 0.228402i
\(887\) 41314.4i 1.56393i −0.623325 0.781963i \(-0.714218\pi\)
0.623325 0.781963i \(-0.285782\pi\)
\(888\) 0 0
\(889\) 45232.7i 1.70648i
\(890\) 34345.7 3200.50i 1.29356 0.120540i
\(891\) 0 0
\(892\) 28845.0 5422.91i 1.08274 0.203557i
\(893\) −5343.25 + 5343.25i −0.200230 + 0.200230i
\(894\) 0 0
\(895\) 1340.76i 0.0500743i
\(896\) −23357.5 3172.15i −0.870893 0.118275i
\(897\) 0 0
\(898\) 11322.9 + 9392.56i 0.420770 + 0.349036i
\(899\) −15318.9 15318.9i −0.568314 0.568314i
\(900\) 0 0
\(901\) −4807.61 + 4807.61i −0.177763 + 0.177763i
\(902\) 7180.77 + 77059.4i 0.265070 + 2.84456i
\(903\) 0 0
\(904\) −14059.0 + 25333.0i −0.517251 + 0.932039i
\(905\) 19629.8 0.721014
\(906\) 0 0
\(907\) −28396.2 28396.2i −1.03956 1.03956i −0.999185 0.0403761i \(-0.987144\pi\)
−0.0403761 0.999185i \(-0.512856\pi\)
\(908\) −15679.1 + 22939.5i −0.573050 + 0.838406i
\(909\) 0 0
\(910\) −3856.79 3199.27i −0.140496 0.116544i
\(911\) 42779.4 1.55581 0.777906 0.628380i \(-0.216282\pi\)
0.777906 + 0.628380i \(0.216282\pi\)
\(912\) 0 0
\(913\) 33815.0 1.22575
\(914\) 13733.4 + 11392.1i 0.497001 + 0.412271i
\(915\) 0 0
\(916\) −11223.1 7670.98i −0.404827 0.276699i
\(917\) −15270.2 15270.2i −0.549909 0.549909i
\(918\) 0 0
\(919\) 39163.0 1.40573 0.702866 0.711323i \(-0.251904\pi\)
0.702866 + 0.711323i \(0.251904\pi\)
\(920\) −13015.8 + 3725.12i −0.466432 + 0.133493i
\(921\) 0 0
\(922\) −445.557 4781.44i −0.0159150 0.170790i
\(923\) −1998.17 + 1998.17i −0.0712573 + 0.0712573i
\(924\) 0 0
\(925\) 11317.1 + 11317.1i 0.402274 + 0.402274i
\(926\) −33077.3 27438.2i −1.17385 0.973730i
\(927\) 0 0
\(928\) 14507.4 + 28947.1i 0.513178 + 1.02396i
\(929\) 22120.8i 0.781225i −0.920555 0.390613i \(-0.872263\pi\)
0.920555 0.390613i \(-0.127737\pi\)
\(930\) 0 0
\(931\) 4336.59 4336.59i 0.152659 0.152659i
\(932\) −2306.68 12269.4i −0.0810705 0.431221i
\(933\) 0 0
\(934\) −16204.0 + 1509.97i −0.567677 + 0.0528989i
\(935\) 32356.1i 1.13172i
\(936\) 0 0
\(937\) 13514.2i 0.471172i −0.971853 0.235586i \(-0.924299\pi\)
0.971853 0.235586i \(-0.0757010\pi\)
\(938\) −1348.54 14471.6i −0.0469417 0.503748i
\(939\) 0 0
\(940\) −3877.80 + 5673.46i −0.134553 + 0.196860i
\(941\) −3813.59 + 3813.59i −0.132114 + 0.132114i −0.770072 0.637957i \(-0.779780\pi\)
0.637957 + 0.770072i \(0.279780\pi\)
\(942\) 0 0
\(943\) 26928.5i 0.929916i
\(944\) −17758.0 + 40444.1i −0.612261 + 1.39443i
\(945\) 0 0
\(946\) 32545.3 39234.0i 1.11854 1.34842i
\(947\) −15811.7 15811.7i −0.542567 0.542567i 0.381714 0.924281i \(-0.375334\pi\)
−0.924281 + 0.381714i \(0.875334\pi\)
\(948\) 0 0
\(949\) −2288.52 + 2288.52i −0.0782809 + 0.0782809i
\(950\) −10005.5 + 932.363i −0.341708 + 0.0318420i
\(951\) 0 0
\(952\) −9511.74 + 17139.3i −0.323821 + 0.583496i
\(953\) 48996.7 1.66544 0.832718 0.553697i \(-0.186784\pi\)
0.832718 + 0.553697i \(0.186784\pi\)
\(954\) 0 0
\(955\) −8285.33 8285.33i −0.280740 0.280740i
\(956\) 5238.02 + 27861.5i 0.177207 + 0.942578i
\(957\) 0 0
\(958\) 6031.66 7271.29i 0.203418 0.245224i
\(959\) −1573.01 −0.0529667
\(960\) 0 0
\(961\) 15121.7 0.507594
\(962\) −7788.80 + 9389.56i −0.261040 + 0.314690i
\(963\) 0 0
\(964\) −2190.54 11651.7i −0.0731874 0.389290i
\(965\) 10691.2 + 10691.2i 0.356645 + 0.356645i
\(966\) 0 0
\(967\) −17758.0 −0.590548 −0.295274 0.955413i \(-0.595411\pi\)
−0.295274 + 0.955413i \(0.595411\pi\)
\(968\) 36253.0 65324.6i 1.20374 2.16902i
\(969\) 0 0
\(970\) −46649.4 + 4347.02i −1.54415 + 0.143891i
\(971\) 278.185 278.185i 0.00919401 0.00919401i −0.702495 0.711689i \(-0.747931\pi\)
0.711689 + 0.702495i \(0.247931\pi\)
\(972\) 0 0
\(973\) −3434.52 3434.52i −0.113161 0.113161i
\(974\) 19482.3 23486.3i 0.640917 0.772639i
\(975\) 0 0
\(976\) −31364.7 13771.5i −1.02865 0.451654i
\(977\) 2036.82i 0.0666978i 0.999444 + 0.0333489i \(0.0106173\pi\)
−0.999444 + 0.0333489i \(0.989383\pi\)
\(978\) 0 0
\(979\) −65713.0 + 65713.0i −2.14525 + 2.14525i
\(980\) 3147.23 4604.59i 0.102586 0.150090i
\(981\) 0 0
\(982\) 1748.67 + 18765.6i 0.0568252 + 0.609812i
\(983\) 4969.20i 0.161234i 0.996745 + 0.0806169i \(0.0256890\pi\)
−0.996745 + 0.0806169i \(0.974311\pi\)
\(984\) 0 0
\(985\) 30563.2i 0.988654i
\(986\) 26809.3 2498.22i 0.865906 0.0806893i
\(987\) 0 0
\(988\) −1415.25 7527.82i −0.0455718 0.242401i
\(989\) 12541.7 12541.7i 0.403237 0.403237i
\(990\) 0 0
\(991\) 43195.4i 1.38461i −0.721606 0.692304i \(-0.756596\pi\)
0.721606 0.692304i \(-0.243404\pi\)
\(992\) 20805.9 + 6913.68i 0.665914 + 0.221280i
\(993\) 0 0
\(994\) 8217.35 + 6816.43i 0.262212 + 0.217509i
\(995\) −29607.9 29607.9i −0.943352 0.943352i
\(996\) 0 0
\(997\) −22458.2 + 22458.2i −0.713400 + 0.713400i −0.967245 0.253845i \(-0.918305\pi\)
0.253845 + 0.967245i \(0.418305\pi\)
\(998\) −2099.22 22527.5i −0.0665827 0.714523i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.35.7 48
3.2 odd 2 inner 144.4.l.a.35.18 yes 48
4.3 odd 2 576.4.l.a.431.7 48
8.3 odd 2 1152.4.l.a.863.18 48
8.5 even 2 1152.4.l.b.863.18 48
12.11 even 2 576.4.l.a.431.18 48
16.3 odd 4 1152.4.l.b.287.7 48
16.5 even 4 576.4.l.a.143.18 48
16.11 odd 4 inner 144.4.l.a.107.18 yes 48
16.13 even 4 1152.4.l.a.287.7 48
24.5 odd 2 1152.4.l.b.863.7 48
24.11 even 2 1152.4.l.a.863.7 48
48.5 odd 4 576.4.l.a.143.7 48
48.11 even 4 inner 144.4.l.a.107.7 yes 48
48.29 odd 4 1152.4.l.a.287.18 48
48.35 even 4 1152.4.l.b.287.18 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.7 48 1.1 even 1 trivial
144.4.l.a.35.18 yes 48 3.2 odd 2 inner
144.4.l.a.107.7 yes 48 48.11 even 4 inner
144.4.l.a.107.18 yes 48 16.11 odd 4 inner
576.4.l.a.143.7 48 48.5 odd 4
576.4.l.a.143.18 48 16.5 even 4
576.4.l.a.431.7 48 4.3 odd 2
576.4.l.a.431.18 48 12.11 even 2
1152.4.l.a.287.7 48 16.13 even 4
1152.4.l.a.287.18 48 48.29 odd 4
1152.4.l.a.863.7 48 24.11 even 2
1152.4.l.a.863.18 48 8.3 odd 2
1152.4.l.b.287.7 48 16.3 odd 4
1152.4.l.b.287.18 48 48.35 even 4
1152.4.l.b.863.7 48 24.5 odd 2
1152.4.l.b.863.18 48 8.5 even 2