L(s) = 1 | + (−1.80 + 2.17i)2-s + (−1.47 − 7.86i)4-s + (−6.31 − 6.31i)5-s + 16.2·7-s + (19.7 + 10.9i)8-s + (25.1 − 2.34i)10-s + (−48.1 + 48.1i)11-s + (−8.61 − 8.61i)13-s + (−29.3 + 35.4i)14-s + (−59.6 + 23.2i)16-s + 53.2i·17-s + (−55.5 + 55.5i)19-s + (−40.3 + 58.9i)20-s + (−17.8 − 191. i)22-s − 66.9i·23-s + ⋯ |
L(s) = 1 | + (−0.638 + 0.769i)2-s + (−0.184 − 0.982i)4-s + (−0.564 − 0.564i)5-s + 0.878·7-s + (0.874 + 0.485i)8-s + (0.795 − 0.0741i)10-s + (−1.31 + 1.31i)11-s + (−0.183 − 0.183i)13-s + (−0.561 + 0.676i)14-s + (−0.931 + 0.363i)16-s + 0.759i·17-s + (−0.670 + 0.670i)19-s + (−0.450 + 0.659i)20-s + (−0.173 − 1.85i)22-s − 0.607i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 - 0.189i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.981 - 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0400201 + 0.417890i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0400201 + 0.417890i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.80 - 2.17i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (6.31 + 6.31i)T + 125iT^{2} \) |
| 7 | \( 1 - 16.2T + 343T^{2} \) |
| 11 | \( 1 + (48.1 - 48.1i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (8.61 + 8.61i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 - 53.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (55.5 - 55.5i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 66.9iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (126. - 126. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 - 121. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (250. - 250. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 402.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-187. - 187. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 96.1T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-90.3 - 90.3i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-488. + 488. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-378. - 378. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (223. - 223. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 231. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 265. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 604. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (351. + 351. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 - 1.36e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.85e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06175998957785052481946128942, −12.16765471501557557919050880370, −10.72302165395704027091222632601, −10.05791717211864505684057874274, −8.508545787147619668467614726949, −8.037180298275048389771060760773, −6.95324152755358829462695101905, −5.31351310379098552776269540823, −4.50981968085706295573989084909, −1.79290278272916336432322735229,
0.24711087767771283430747295041, 2.36709682841373501047030912645, 3.67341538781923736346035316808, 5.24942859412985327449396424740, 7.23321448559260104820751744010, 8.018958091560904509885405307371, 8.983611606834187851474701015675, 10.39183456293737784657054720729, 11.19441866577384401969542203479, 11.65482367576832003154342142392