Properties

Label 1152.4.l.a.287.18
Level $1152$
Weight $4$
Character 1152.287
Analytic conductor $67.970$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,4,Mod(287,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.287"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.18
Character \(\chi\) \(=\) 1152.287
Dual form 1152.4.l.a.863.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.31601 - 6.31601i) q^{5} -16.2772 q^{7} +(-48.1287 - 48.1287i) q^{11} +(8.61642 - 8.61642i) q^{13} -53.2206i q^{17} +(-55.5604 - 55.5604i) q^{19} -66.9842i q^{23} +45.2160i q^{25} +(126.481 + 126.481i) q^{29} +121.117i q^{31} +(-102.807 + 102.807i) q^{35} +(250.289 + 250.289i) q^{37} -402.012 q^{41} +(187.233 - 187.233i) q^{43} -96.1703 q^{47} -78.0518 q^{49} +(-90.3337 + 90.3337i) q^{53} -607.963 q^{55} +(488.025 + 488.025i) q^{59} +(-378.467 + 378.467i) q^{61} -108.843i q^{65} +(-223.231 - 223.231i) q^{67} -231.902i q^{71} +265.600i q^{73} +(783.402 + 783.402i) q^{77} +604.662i q^{79} +(-351.298 + 351.298i) q^{83} +(-336.142 - 336.142i) q^{85} +1365.36 q^{89} +(-140.251 + 140.251i) q^{91} -701.839 q^{95} -1854.47 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{19} + 864 q^{43} + 2352 q^{49} + 576 q^{55} - 1824 q^{61} + 816 q^{67} + 480 q^{85} - 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.31601 6.31601i 0.564921 0.564921i −0.365780 0.930701i \(-0.619198\pi\)
0.930701 + 0.365780i \(0.119198\pi\)
\(6\) 0 0
\(7\) −16.2772 −0.878888 −0.439444 0.898270i \(-0.644824\pi\)
−0.439444 + 0.898270i \(0.644824\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −48.1287 48.1287i −1.31921 1.31921i −0.914398 0.404816i \(-0.867335\pi\)
−0.404816 0.914398i \(-0.632665\pi\)
\(12\) 0 0
\(13\) 8.61642 8.61642i 0.183828 0.183828i −0.609194 0.793022i \(-0.708507\pi\)
0.793022 + 0.609194i \(0.208507\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 53.2206i 0.759287i −0.925133 0.379644i \(-0.876047\pi\)
0.925133 0.379644i \(-0.123953\pi\)
\(18\) 0 0
\(19\) −55.5604 55.5604i −0.670864 0.670864i 0.287051 0.957915i \(-0.407325\pi\)
−0.957915 + 0.287051i \(0.907325\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 66.9842i 0.607269i −0.952789 0.303634i \(-0.901800\pi\)
0.952789 0.303634i \(-0.0982001\pi\)
\(24\) 0 0
\(25\) 45.2160i 0.361728i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 126.481 + 126.481i 0.809892 + 0.809892i 0.984617 0.174726i \(-0.0559038\pi\)
−0.174726 + 0.984617i \(0.555904\pi\)
\(30\) 0 0
\(31\) 121.117i 0.701717i 0.936429 + 0.350858i \(0.114110\pi\)
−0.936429 + 0.350858i \(0.885890\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −102.807 + 102.807i −0.496502 + 0.496502i
\(36\) 0 0
\(37\) 250.289 + 250.289i 1.11209 + 1.11209i 0.992868 + 0.119222i \(0.0380400\pi\)
0.119222 + 0.992868i \(0.461960\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −402.012 −1.53131 −0.765655 0.643252i \(-0.777585\pi\)
−0.765655 + 0.643252i \(0.777585\pi\)
\(42\) 0 0
\(43\) 187.233 187.233i 0.664018 0.664018i −0.292307 0.956325i \(-0.594423\pi\)
0.956325 + 0.292307i \(0.0944228\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −96.1703 −0.298465 −0.149233 0.988802i \(-0.547680\pi\)
−0.149233 + 0.988802i \(0.547680\pi\)
\(48\) 0 0
\(49\) −78.0518 −0.227556
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −90.3337 + 90.3337i −0.234119 + 0.234119i −0.814409 0.580291i \(-0.802939\pi\)
0.580291 + 0.814409i \(0.302939\pi\)
\(54\) 0 0
\(55\) −607.963 −1.49050
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 488.025 + 488.025i 1.07687 + 1.07687i 0.996788 + 0.0800840i \(0.0255188\pi\)
0.0800840 + 0.996788i \(0.474481\pi\)
\(60\) 0 0
\(61\) −378.467 + 378.467i −0.794389 + 0.794389i −0.982204 0.187815i \(-0.939859\pi\)
0.187815 + 0.982204i \(0.439859\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 108.843i 0.207697i
\(66\) 0 0
\(67\) −223.231 223.231i −0.407045 0.407045i 0.473662 0.880707i \(-0.342932\pi\)
−0.880707 + 0.473662i \(0.842932\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 231.902i 0.387630i −0.981038 0.193815i \(-0.937914\pi\)
0.981038 0.193815i \(-0.0620862\pi\)
\(72\) 0 0
\(73\) 265.600i 0.425838i 0.977070 + 0.212919i \(0.0682970\pi\)
−0.977070 + 0.212919i \(0.931703\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 783.402 + 783.402i 1.15944 + 1.15944i
\(78\) 0 0
\(79\) 604.662i 0.861137i 0.902558 + 0.430569i \(0.141687\pi\)
−0.902558 + 0.430569i \(0.858313\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −351.298 + 351.298i −0.464577 + 0.464577i −0.900152 0.435575i \(-0.856545\pi\)
0.435575 + 0.900152i \(0.356545\pi\)
\(84\) 0 0
\(85\) −336.142 336.142i −0.428937 0.428937i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1365.36 1.62615 0.813077 0.582156i \(-0.197791\pi\)
0.813077 + 0.582156i \(0.197791\pi\)
\(90\) 0 0
\(91\) −140.251 + 140.251i −0.161564 + 0.161564i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −701.839 −0.757971
\(96\) 0 0
\(97\) −1854.47 −1.94117 −0.970584 0.240762i \(-0.922603\pi\)
−0.970584 + 0.240762i \(0.922603\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 755.210 755.210i 0.744022 0.744022i −0.229328 0.973349i \(-0.573653\pi\)
0.973349 + 0.229328i \(0.0736527\pi\)
\(102\) 0 0
\(103\) −1428.89 −1.36692 −0.683461 0.729987i \(-0.739526\pi\)
−0.683461 + 0.729987i \(0.739526\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1013.69 + 1013.69i 0.915859 + 0.915859i 0.996725 0.0808660i \(-0.0257686\pi\)
−0.0808660 + 0.996725i \(0.525769\pi\)
\(108\) 0 0
\(109\) 1069.24 1069.24i 0.939579 0.939579i −0.0586964 0.998276i \(-0.518694\pi\)
0.998276 + 0.0586964i \(0.0186944\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1280.42i 1.06595i −0.846132 0.532974i \(-0.821074\pi\)
0.846132 0.532974i \(-0.178926\pi\)
\(114\) 0 0
\(115\) −423.073 423.073i −0.343059 0.343059i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 866.283i 0.667328i
\(120\) 0 0
\(121\) 3301.75i 2.48065i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1075.09 + 1075.09i 0.769269 + 0.769269i
\(126\) 0 0
\(127\) 2778.90i 1.94163i −0.239828 0.970815i \(-0.577091\pi\)
0.239828 0.970815i \(-0.422909\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −938.133 + 938.133i −0.625687 + 0.625687i −0.946980 0.321293i \(-0.895883\pi\)
0.321293 + 0.946980i \(0.395883\pi\)
\(132\) 0 0
\(133\) 904.369 + 904.369i 0.589614 + 0.589614i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −96.6385 −0.0602656 −0.0301328 0.999546i \(-0.509593\pi\)
−0.0301328 + 0.999546i \(0.509593\pi\)
\(138\) 0 0
\(139\) −211.002 + 211.002i −0.128755 + 0.128755i −0.768548 0.639793i \(-0.779020\pi\)
0.639793 + 0.768548i \(0.279020\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −829.395 −0.485017
\(144\) 0 0
\(145\) 1597.71 0.915050
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1113.17 + 1113.17i −0.612042 + 0.612042i −0.943478 0.331435i \(-0.892467\pi\)
0.331435 + 0.943478i \(0.392467\pi\)
\(150\) 0 0
\(151\) −285.222 −0.153716 −0.0768578 0.997042i \(-0.524489\pi\)
−0.0768578 + 0.997042i \(0.524489\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 764.975 + 764.975i 0.396414 + 0.396414i
\(156\) 0 0
\(157\) −2536.76 + 2536.76i −1.28953 + 1.28953i −0.354454 + 0.935073i \(0.615333\pi\)
−0.935073 + 0.354454i \(0.884667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1090.32i 0.533721i
\(162\) 0 0
\(163\) −1268.22 1268.22i −0.609414 0.609414i 0.333379 0.942793i \(-0.391811\pi\)
−0.942793 + 0.333379i \(0.891811\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2766.46i 1.28189i 0.767588 + 0.640943i \(0.221457\pi\)
−0.767588 + 0.640943i \(0.778543\pi\)
\(168\) 0 0
\(169\) 2048.51i 0.932415i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −346.606 346.606i −0.152324 0.152324i 0.626831 0.779155i \(-0.284351\pi\)
−0.779155 + 0.626831i \(0.784351\pi\)
\(174\) 0 0
\(175\) 735.992i 0.317919i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 106.140 106.140i 0.0443198 0.0443198i −0.684600 0.728919i \(-0.740023\pi\)
0.728919 + 0.684600i \(0.240023\pi\)
\(180\) 0 0
\(181\) 1553.97 + 1553.97i 0.638154 + 0.638154i 0.950100 0.311946i \(-0.100981\pi\)
−0.311946 + 0.950100i \(0.600981\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3161.66 1.25649
\(186\) 0 0
\(187\) −2561.44 + 2561.44i −1.00166 + 1.00166i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1311.80 −0.496955 −0.248478 0.968638i \(-0.579930\pi\)
−0.248478 + 0.968638i \(0.579930\pi\)
\(192\) 0 0
\(193\) −1692.72 −0.631319 −0.315659 0.948873i \(-0.602226\pi\)
−0.315659 + 0.948873i \(0.602226\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2419.50 2419.50i 0.875037 0.875037i −0.117979 0.993016i \(-0.537642\pi\)
0.993016 + 0.117979i \(0.0376416\pi\)
\(198\) 0 0
\(199\) −4687.76 −1.66988 −0.834941 0.550339i \(-0.814498\pi\)
−0.834941 + 0.550339i \(0.814498\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2058.75 2058.75i −0.711804 0.711804i
\(204\) 0 0
\(205\) −2539.11 + 2539.11i −0.865069 + 0.865069i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5348.10i 1.77003i
\(210\) 0 0
\(211\) −1994.60 1994.60i −0.650777 0.650777i 0.302403 0.953180i \(-0.402211\pi\)
−0.953180 + 0.302403i \(0.902211\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2365.13i 0.750236i
\(216\) 0 0
\(217\) 1971.45i 0.616730i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −458.571 458.571i −0.139578 0.139578i
\(222\) 0 0
\(223\) 3668.79i 1.10170i 0.834603 + 0.550852i \(0.185697\pi\)
−0.834603 + 0.550852i \(0.814303\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2455.95 + 2455.95i −0.718092 + 0.718092i −0.968214 0.250123i \(-0.919529\pi\)
0.250123 + 0.968214i \(0.419529\pi\)
\(228\) 0 0
\(229\) −1201.57 1201.57i −0.346733 0.346733i 0.512158 0.858891i \(-0.328846\pi\)
−0.858891 + 0.512158i \(0.828846\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1560.55 0.438776 0.219388 0.975638i \(-0.429594\pi\)
0.219388 + 0.975638i \(0.429594\pi\)
\(234\) 0 0
\(235\) −607.412 + 607.412i −0.168609 + 0.168609i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3543.70 0.959091 0.479546 0.877517i \(-0.340802\pi\)
0.479546 + 0.877517i \(0.340802\pi\)
\(240\) 0 0
\(241\) 1481.98 0.396110 0.198055 0.980191i \(-0.436538\pi\)
0.198055 + 0.980191i \(0.436538\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −492.976 + 492.976i −0.128551 + 0.128551i
\(246\) 0 0
\(247\) −957.462 −0.246647
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2357.87 2357.87i −0.592938 0.592938i 0.345486 0.938424i \(-0.387714\pi\)
−0.938424 + 0.345486i \(0.887714\pi\)
\(252\) 0 0
\(253\) −3223.87 + 3223.87i −0.801118 + 0.801118i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2117.93i 0.514059i −0.966404 0.257029i \(-0.917256\pi\)
0.966404 0.257029i \(-0.0827437\pi\)
\(258\) 0 0
\(259\) −4074.02 4074.02i −0.977402 0.977402i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7741.72i 1.81511i 0.419929 + 0.907557i \(0.362055\pi\)
−0.419929 + 0.907557i \(0.637945\pi\)
\(264\) 0 0
\(265\) 1141.10i 0.264517i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1111.14 + 1111.14i 0.251849 + 0.251849i 0.821728 0.569880i \(-0.193010\pi\)
−0.569880 + 0.821728i \(0.693010\pi\)
\(270\) 0 0
\(271\) 1728.54i 0.387458i 0.981055 + 0.193729i \(0.0620583\pi\)
−0.981055 + 0.193729i \(0.937942\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2176.19 2176.19i 0.477197 0.477197i
\(276\) 0 0
\(277\) 1977.36 + 1977.36i 0.428910 + 0.428910i 0.888257 0.459347i \(-0.151917\pi\)
−0.459347 + 0.888257i \(0.651917\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1583.09 −0.336083 −0.168041 0.985780i \(-0.553744\pi\)
−0.168041 + 0.985780i \(0.553744\pi\)
\(282\) 0 0
\(283\) −987.718 + 987.718i −0.207469 + 0.207469i −0.803191 0.595722i \(-0.796866\pi\)
0.595722 + 0.803191i \(0.296866\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6543.64 1.34585
\(288\) 0 0
\(289\) 2080.57 0.423483
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −140.498 + 140.498i −0.0280136 + 0.0280136i −0.720975 0.692961i \(-0.756306\pi\)
0.692961 + 0.720975i \(0.256306\pi\)
\(294\) 0 0
\(295\) 6164.74 1.21670
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −577.164 577.164i −0.111633 0.111633i
\(300\) 0 0
\(301\) −3047.64 + 3047.64i −0.583597 + 0.583597i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4780.80i 0.897535i
\(306\) 0 0
\(307\) 5197.73 + 5197.73i 0.966288 + 0.966288i 0.999450 0.0331621i \(-0.0105578\pi\)
−0.0331621 + 0.999450i \(0.510558\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8112.26i 1.47911i 0.673094 + 0.739557i \(0.264965\pi\)
−0.673094 + 0.739557i \(0.735035\pi\)
\(312\) 0 0
\(313\) 3307.27i 0.597246i −0.954371 0.298623i \(-0.903473\pi\)
0.954371 0.298623i \(-0.0965273\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2991.50 2991.50i −0.530030 0.530030i 0.390551 0.920581i \(-0.372284\pi\)
−0.920581 + 0.390551i \(0.872284\pi\)
\(318\) 0 0
\(319\) 12174.7i 2.13684i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2956.95 + 2956.95i −0.509379 + 0.509379i
\(324\) 0 0
\(325\) 389.600 + 389.600i 0.0664958 + 0.0664958i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1565.39 0.262318
\(330\) 0 0
\(331\) 3171.15 3171.15i 0.526592 0.526592i −0.392962 0.919555i \(-0.628550\pi\)
0.919555 + 0.392962i \(0.128550\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2819.86 −0.459897
\(336\) 0 0
\(337\) −2213.85 −0.357852 −0.178926 0.983863i \(-0.557262\pi\)
−0.178926 + 0.983863i \(0.557262\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5829.20 5829.20i 0.925715 0.925715i
\(342\) 0 0
\(343\) 6853.56 1.07888
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 344.315 + 344.315i 0.0532674 + 0.0532674i 0.733239 0.679971i \(-0.238008\pi\)
−0.679971 + 0.733239i \(0.738008\pi\)
\(348\) 0 0
\(349\) 8129.29 8129.29i 1.24685 1.24685i 0.289747 0.957103i \(-0.406429\pi\)
0.957103 0.289747i \(-0.0935711\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3235.69i 0.487871i −0.969791 0.243935i \(-0.921561\pi\)
0.969791 0.243935i \(-0.0784385\pi\)
\(354\) 0 0
\(355\) −1464.70 1464.70i −0.218980 0.218980i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4710.91i 0.692569i −0.938129 0.346285i \(-0.887443\pi\)
0.938129 0.346285i \(-0.112557\pi\)
\(360\) 0 0
\(361\) 685.094i 0.0998825i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1677.53 + 1677.53i 0.240565 + 0.240565i
\(366\) 0 0
\(367\) 1585.57i 0.225521i 0.993622 + 0.112761i \(0.0359693\pi\)
−0.993622 + 0.112761i \(0.964031\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1470.38 1470.38i 0.205764 0.205764i
\(372\) 0 0
\(373\) −2078.83 2078.83i −0.288573 0.288573i 0.547943 0.836516i \(-0.315411\pi\)
−0.836516 + 0.547943i \(0.815411\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2179.62 0.297762
\(378\) 0 0
\(379\) −3704.15 + 3704.15i −0.502031 + 0.502031i −0.912068 0.410038i \(-0.865515\pi\)
0.410038 + 0.912068i \(0.365515\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7560.19 −1.00864 −0.504318 0.863518i \(-0.668256\pi\)
−0.504318 + 0.863518i \(0.668256\pi\)
\(384\) 0 0
\(385\) 9895.95 1.30999
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4868.51 + 4868.51i −0.634559 + 0.634559i −0.949208 0.314649i \(-0.898113\pi\)
0.314649 + 0.949208i \(0.398113\pi\)
\(390\) 0 0
\(391\) −3564.94 −0.461091
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3819.05 + 3819.05i 0.486474 + 0.486474i
\(396\) 0 0
\(397\) 2442.83 2442.83i 0.308822 0.308822i −0.535631 0.844452i \(-0.679926\pi\)
0.844452 + 0.535631i \(0.179926\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10348.7i 1.28876i −0.764707 0.644378i \(-0.777117\pi\)
0.764707 0.644378i \(-0.222883\pi\)
\(402\) 0 0
\(403\) 1043.59 + 1043.59i 0.128995 + 0.128995i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24092.2i 2.93417i
\(408\) 0 0
\(409\) 3378.72i 0.408477i −0.978921 0.204238i \(-0.934528\pi\)
0.978921 0.204238i \(-0.0654717\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7943.70 7943.70i −0.946450 0.946450i
\(414\) 0 0
\(415\) 4437.60i 0.524899i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8945.75 8945.75i 1.04303 1.04303i 0.0439961 0.999032i \(-0.485991\pi\)
0.999032 0.0439961i \(-0.0140089\pi\)
\(420\) 0 0
\(421\) −10686.4 10686.4i −1.23711 1.23711i −0.961177 0.275933i \(-0.911013\pi\)
−0.275933 0.961177i \(-0.588987\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2406.42 0.274656
\(426\) 0 0
\(427\) 6160.40 6160.40i 0.698179 0.698179i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4267.29 −0.476910 −0.238455 0.971154i \(-0.576641\pi\)
−0.238455 + 0.971154i \(0.576641\pi\)
\(432\) 0 0
\(433\) −15686.4 −1.74097 −0.870483 0.492198i \(-0.836194\pi\)
−0.870483 + 0.492198i \(0.836194\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3721.67 + 3721.67i −0.407395 + 0.407395i
\(438\) 0 0
\(439\) −5963.75 −0.648370 −0.324185 0.945994i \(-0.605090\pi\)
−0.324185 + 0.945994i \(0.605090\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1512.40 1512.40i −0.162204 0.162204i 0.621338 0.783542i \(-0.286589\pi\)
−0.783542 + 0.621338i \(0.786589\pi\)
\(444\) 0 0
\(445\) 8623.62 8623.62i 0.918649 0.918649i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5201.31i 0.546693i 0.961916 + 0.273346i \(0.0881305\pi\)
−0.961916 + 0.273346i \(0.911869\pi\)
\(450\) 0 0
\(451\) 19348.3 + 19348.3i 2.02013 + 2.02013i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1771.66i 0.182542i
\(456\) 0 0
\(457\) 6308.57i 0.645738i 0.946444 + 0.322869i \(0.104647\pi\)
−0.946444 + 0.322869i \(0.895353\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1200.54 + 1200.54i 0.121290 + 0.121290i 0.765146 0.643856i \(-0.222667\pi\)
−0.643856 + 0.765146i \(0.722667\pi\)
\(462\) 0 0
\(463\) 15194.4i 1.52515i 0.646901 + 0.762574i \(0.276065\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4068.55 4068.55i 0.403148 0.403148i −0.476193 0.879341i \(-0.657984\pi\)
0.879341 + 0.476193i \(0.157984\pi\)
\(468\) 0 0
\(469\) 3633.58 + 3633.58i 0.357747 + 0.357747i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18022.6 −1.75196
\(474\) 0 0
\(475\) 2512.22 2512.22i 0.242671 0.242671i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3340.15 0.318612 0.159306 0.987229i \(-0.449074\pi\)
0.159306 + 0.987229i \(0.449074\pi\)
\(480\) 0 0
\(481\) 4313.20 0.408867
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11712.9 + 11712.9i −1.09661 + 1.09661i
\(486\) 0 0
\(487\) 10788.7 1.00386 0.501932 0.864907i \(-0.332623\pi\)
0.501932 + 0.864907i \(0.332623\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4711.73 + 4711.73i 0.433071 + 0.433071i 0.889672 0.456601i \(-0.150933\pi\)
−0.456601 + 0.889672i \(0.650933\pi\)
\(492\) 0 0
\(493\) 6731.37 6731.37i 0.614940 0.614940i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3774.73i 0.340683i
\(498\) 0 0
\(499\) −5656.27 5656.27i −0.507433 0.507433i 0.406304 0.913738i \(-0.366817\pi\)
−0.913738 + 0.406304i \(0.866817\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4974.64i 0.440971i −0.975390 0.220485i \(-0.929236\pi\)
0.975390 0.220485i \(-0.0707641\pi\)
\(504\) 0 0
\(505\) 9539.83i 0.840627i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5549.92 + 5549.92i 0.483292 + 0.483292i 0.906181 0.422889i \(-0.138984\pi\)
−0.422889 + 0.906181i \(0.638984\pi\)
\(510\) 0 0
\(511\) 4323.24i 0.374264i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9024.90 + 9024.90i −0.772203 + 0.772203i
\(516\) 0 0
\(517\) 4628.55 + 4628.55i 0.393740 + 0.393740i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21737.7 −1.82792 −0.913961 0.405802i \(-0.866992\pi\)
−0.913961 + 0.405802i \(0.866992\pi\)
\(522\) 0 0
\(523\) 2235.12 2235.12i 0.186874 0.186874i −0.607469 0.794343i \(-0.707815\pi\)
0.794343 + 0.607469i \(0.207815\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6445.90 0.532804
\(528\) 0 0
\(529\) 7680.11 0.631225
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3463.90 + 3463.90i −0.281498 + 0.281498i
\(534\) 0 0
\(535\) 12804.9 1.03478
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3756.53 + 3756.53i 0.300196 + 0.300196i
\(540\) 0 0
\(541\) 3371.85 3371.85i 0.267961 0.267961i −0.560317 0.828278i \(-0.689321\pi\)
0.828278 + 0.560317i \(0.189321\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13506.6i 1.06158i
\(546\) 0 0
\(547\) 3242.62 + 3242.62i 0.253463 + 0.253463i 0.822389 0.568926i \(-0.192641\pi\)
−0.568926 + 0.822389i \(0.692641\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14054.6i 1.08665i
\(552\) 0 0
\(553\) 9842.23i 0.756843i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4967.01 4967.01i −0.377844 0.377844i 0.492480 0.870324i \(-0.336091\pi\)
−0.870324 + 0.492480i \(0.836091\pi\)
\(558\) 0 0
\(559\) 3226.56i 0.244130i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10845.8 10845.8i 0.811891 0.811891i −0.173026 0.984917i \(-0.555355\pi\)
0.984917 + 0.173026i \(0.0553545\pi\)
\(564\) 0 0
\(565\) −8087.17 8087.17i −0.602177 0.602177i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18374.6 −1.35378 −0.676892 0.736082i \(-0.736674\pi\)
−0.676892 + 0.736082i \(0.736674\pi\)
\(570\) 0 0
\(571\) 4779.72 4779.72i 0.350306 0.350306i −0.509917 0.860224i \(-0.670324\pi\)
0.860224 + 0.509917i \(0.170324\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3028.76 0.219666
\(576\) 0 0
\(577\) −14300.3 −1.03176 −0.515882 0.856659i \(-0.672536\pi\)
−0.515882 + 0.856659i \(0.672536\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5718.15 5718.15i 0.408311 0.408311i
\(582\) 0 0
\(583\) 8695.29 0.617705
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7852.73 7852.73i −0.552158 0.552158i 0.374905 0.927063i \(-0.377675\pi\)
−0.927063 + 0.374905i \(0.877675\pi\)
\(588\) 0 0
\(589\) 6729.29 6729.29i 0.470756 0.470756i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 27409.5i 1.89810i −0.315122 0.949051i \(-0.602046\pi\)
0.315122 0.949051i \(-0.397954\pi\)
\(594\) 0 0
\(595\) 5471.45 + 5471.45i 0.376988 + 0.376988i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8983.16i 0.612758i −0.951910 0.306379i \(-0.900883\pi\)
0.951910 0.306379i \(-0.0991174\pi\)
\(600\) 0 0
\(601\) 1686.23i 0.114447i −0.998361 0.0572236i \(-0.981775\pi\)
0.998361 0.0572236i \(-0.0182248\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20853.9 + 20853.9i 1.40137 + 1.40137i
\(606\) 0 0
\(607\) 19571.7i 1.30872i 0.756185 + 0.654358i \(0.227061\pi\)
−0.756185 + 0.654358i \(0.772939\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −828.643 + 828.643i −0.0548663 + 0.0548663i
\(612\) 0 0
\(613\) 16131.0 + 16131.0i 1.06285 + 1.06285i 0.997888 + 0.0649592i \(0.0206917\pi\)
0.0649592 + 0.997888i \(0.479308\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14419.1 0.940829 0.470415 0.882445i \(-0.344104\pi\)
0.470415 + 0.882445i \(0.344104\pi\)
\(618\) 0 0
\(619\) 14348.2 14348.2i 0.931665 0.931665i −0.0661446 0.997810i \(-0.521070\pi\)
0.997810 + 0.0661446i \(0.0210699\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22224.3 −1.42921
\(624\) 0 0
\(625\) 7928.50 0.507424
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13320.5 13320.5i 0.844395 0.844395i
\(630\) 0 0
\(631\) −28650.9 −1.80757 −0.903785 0.427987i \(-0.859223\pi\)
−0.903785 + 0.427987i \(0.859223\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17551.5 17551.5i −1.09687 1.09687i
\(636\) 0 0
\(637\) −672.527 + 672.527i −0.0418312 + 0.0418312i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11361.1i 0.700060i 0.936739 + 0.350030i \(0.113829\pi\)
−0.936739 + 0.350030i \(0.886171\pi\)
\(642\) 0 0
\(643\) 1801.19 + 1801.19i 0.110470 + 0.110470i 0.760181 0.649711i \(-0.225110\pi\)
−0.649711 + 0.760181i \(0.725110\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3042.62i 0.184881i 0.995718 + 0.0924403i \(0.0294667\pi\)
−0.995718 + 0.0924403i \(0.970533\pi\)
\(648\) 0 0
\(649\) 46976.1i 2.84125i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15755.2 15755.2i −0.944176 0.944176i 0.0543465 0.998522i \(-0.482692\pi\)
−0.998522 + 0.0543465i \(0.982692\pi\)
\(654\) 0 0
\(655\) 11850.5i 0.706928i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3650.15 3650.15i 0.215766 0.215766i −0.590946 0.806711i \(-0.701245\pi\)
0.806711 + 0.590946i \(0.201245\pi\)
\(660\) 0 0
\(661\) −17498.6 17498.6i −1.02968 1.02968i −0.999546 0.0301299i \(-0.990408\pi\)
−0.0301299 0.999546i \(-0.509592\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 11424.0 0.666171
\(666\) 0 0
\(667\) 8472.21 8472.21i 0.491822 0.491822i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36430.3 2.09594
\(672\) 0 0
\(673\) 5976.34 0.342305 0.171152 0.985245i \(-0.445251\pi\)
0.171152 + 0.985245i \(0.445251\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5706.93 5706.93i 0.323981 0.323981i −0.526311 0.850292i \(-0.676425\pi\)
0.850292 + 0.526311i \(0.176425\pi\)
\(678\) 0 0
\(679\) 30185.7 1.70607
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18585.6 + 18585.6i 1.04123 + 1.04123i 0.999113 + 0.0421122i \(0.0134087\pi\)
0.0421122 + 0.999113i \(0.486591\pi\)
\(684\) 0 0
\(685\) −610.370 + 610.370i −0.0340453 + 0.0340453i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1556.71i 0.0860751i
\(690\) 0 0
\(691\) −7076.12 7076.12i −0.389563 0.389563i 0.484968 0.874532i \(-0.338831\pi\)
−0.874532 + 0.484968i \(0.838831\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2665.38i 0.145473i
\(696\) 0 0
\(697\) 21395.3i 1.16270i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11574.5 11574.5i −0.623626 0.623626i 0.322831 0.946457i \(-0.395366\pi\)
−0.946457 + 0.322831i \(0.895366\pi\)
\(702\) 0 0
\(703\) 27812.3i 1.49212i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12292.7 + 12292.7i −0.653912 + 0.653912i
\(708\) 0 0
\(709\) −11104.7 11104.7i −0.588216 0.588216i 0.348932 0.937148i \(-0.386544\pi\)
−0.937148 + 0.348932i \(0.886544\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8112.92 0.426131
\(714\) 0 0
\(715\) −5238.46 + 5238.46i −0.273996 + 0.273996i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9398.56 −0.487493 −0.243746 0.969839i \(-0.578376\pi\)
−0.243746 + 0.969839i \(0.578376\pi\)
\(720\) 0 0
\(721\) 23258.4 1.20137
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5718.95 + 5718.95i −0.292961 + 0.292961i
\(726\) 0 0
\(727\) 16800.4 0.857071 0.428536 0.903525i \(-0.359030\pi\)
0.428536 + 0.903525i \(0.359030\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9964.65 9964.65i −0.504180 0.504180i
\(732\) 0 0
\(733\) −5536.14 + 5536.14i −0.278966 + 0.278966i −0.832696 0.553730i \(-0.813204\pi\)
0.553730 + 0.832696i \(0.313204\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21487.7i 1.07396i
\(738\) 0 0
\(739\) −775.030 775.030i −0.0385791 0.0385791i 0.687554 0.726133i \(-0.258684\pi\)
−0.726133 + 0.687554i \(0.758684\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21471.2i 1.06016i 0.847947 + 0.530081i \(0.177838\pi\)
−0.847947 + 0.530081i \(0.822162\pi\)
\(744\) 0 0
\(745\) 14061.6i 0.691511i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16500.0 16500.0i −0.804937 0.804937i
\(750\) 0 0
\(751\) 2293.60i 0.111444i 0.998446 + 0.0557221i \(0.0177461\pi\)
−0.998446 + 0.0557221i \(0.982254\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1801.47 + 1801.47i −0.0868372 + 0.0868372i
\(756\) 0 0
\(757\) 14151.4 + 14151.4i 0.679448 + 0.679448i 0.959875 0.280427i \(-0.0904761\pi\)
−0.280427 + 0.959875i \(0.590476\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18852.9 0.898054 0.449027 0.893518i \(-0.351771\pi\)
0.449027 + 0.893518i \(0.351771\pi\)
\(762\) 0 0
\(763\) −17404.2 + 17404.2i −0.825785 + 0.825785i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8410.06 0.395919
\(768\) 0 0
\(769\) −12172.9 −0.570828 −0.285414 0.958404i \(-0.592131\pi\)
−0.285414 + 0.958404i \(0.592131\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4971.12 + 4971.12i −0.231305 + 0.231305i −0.813237 0.581932i \(-0.802297\pi\)
0.581932 + 0.813237i \(0.302297\pi\)
\(774\) 0 0
\(775\) −5476.42 −0.253831
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22335.9 + 22335.9i 1.02730 + 1.02730i
\(780\) 0 0
\(781\) −11161.2 + 11161.2i −0.511367 + 0.511367i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 32044.5i 1.45696i
\(786\) 0 0
\(787\) −3776.32 3776.32i −0.171043 0.171043i 0.616394 0.787438i \(-0.288593\pi\)
−0.787438 + 0.616394i \(0.788593\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20841.8i 0.936849i
\(792\) 0 0
\(793\) 6522.06i 0.292062i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1305.71 1305.71i −0.0580311 0.0580311i 0.677496 0.735527i \(-0.263065\pi\)
−0.735527 + 0.677496i \(0.763065\pi\)
\(798\) 0 0
\(799\) 5118.23i 0.226621i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12783.0 12783.0i 0.561771 0.561771i
\(804\) 0 0
\(805\) 6886.46 + 6886.46i 0.301510 + 0.301510i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16741.4 −0.727560 −0.363780 0.931485i \(-0.618514\pi\)
−0.363780 + 0.931485i \(0.618514\pi\)
\(810\) 0 0
\(811\) −17759.3 + 17759.3i −0.768946 + 0.768946i −0.977921 0.208975i \(-0.932987\pi\)
0.208975 + 0.977921i \(0.432987\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16020.2 −0.688542
\(816\) 0 0
\(817\) −20805.5 −0.890932
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30920.3 + 30920.3i −1.31440 + 1.31440i −0.396269 + 0.918135i \(0.629695\pi\)
−0.918135 + 0.396269i \(0.870305\pi\)
\(822\) 0 0
\(823\) −19433.1 −0.823080 −0.411540 0.911392i \(-0.635009\pi\)
−0.411540 + 0.911392i \(0.635009\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22294.5 22294.5i −0.937431 0.937431i 0.0607235 0.998155i \(-0.480659\pi\)
−0.998155 + 0.0607235i \(0.980659\pi\)
\(828\) 0 0
\(829\) −16674.7 + 16674.7i −0.698595 + 0.698595i −0.964107 0.265513i \(-0.914459\pi\)
0.265513 + 0.964107i \(0.414459\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4153.96i 0.172781i
\(834\) 0 0
\(835\) 17473.0 + 17473.0i 0.724164 + 0.724164i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30412.9i 1.25145i 0.780042 + 0.625727i \(0.215198\pi\)
−0.780042 + 0.625727i \(0.784802\pi\)
\(840\) 0 0
\(841\) 7605.69i 0.311849i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12938.4 + 12938.4i 0.526741 + 0.526741i
\(846\) 0 0
\(847\) 53743.3i 2.18022i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 16765.4 16765.4i 0.675337 0.675337i
\(852\) 0 0
\(853\) −15673.4 15673.4i −0.629128 0.629128i 0.318721 0.947849i \(-0.396747\pi\)
−0.947849 + 0.318721i \(0.896747\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7458.42 0.297287 0.148643 0.988891i \(-0.452509\pi\)
0.148643 + 0.988891i \(0.452509\pi\)
\(858\) 0 0
\(859\) −22482.2 + 22482.2i −0.892996 + 0.892996i −0.994804 0.101808i \(-0.967537\pi\)
0.101808 + 0.994804i \(0.467537\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27444.8 1.08254 0.541270 0.840849i \(-0.317944\pi\)
0.541270 + 0.840849i \(0.317944\pi\)
\(864\) 0 0
\(865\) −4378.34 −0.172102
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 29101.6 29101.6i 1.13602 1.13602i
\(870\) 0 0
\(871\) −3846.90 −0.149653
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −17499.4 17499.4i −0.676101 0.676101i
\(876\) 0 0
\(877\) 167.934 167.934i 0.00646604 0.00646604i −0.703866 0.710332i \(-0.748545\pi\)
0.710332 + 0.703866i \(0.248545\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20968.8i 0.801882i −0.916104 0.400941i \(-0.868683\pi\)
0.916104 0.400941i \(-0.131317\pi\)
\(882\) 0 0
\(883\) −22968.4 22968.4i −0.875366 0.875366i 0.117685 0.993051i \(-0.462453\pi\)
−0.993051 + 0.117685i \(0.962453\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41314.4i 1.56393i −0.623325 0.781963i \(-0.714218\pi\)
0.623325 0.781963i \(-0.285782\pi\)
\(888\) 0 0
\(889\) 45232.7i 1.70648i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5343.25 + 5343.25i 0.200230 + 0.200230i
\(894\) 0 0
\(895\) 1340.76i 0.0500743i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15318.9 + 15318.9i −0.568314 + 0.568314i
\(900\) 0 0
\(901\) 4807.61 + 4807.61i 0.177763 + 0.177763i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19629.8 0.721014
\(906\) 0 0
\(907\) −28396.2 + 28396.2i −1.03956 + 1.03956i −0.0403761 + 0.999185i \(0.512856\pi\)
−0.999185 + 0.0403761i \(0.987144\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −42779.4 −1.55581 −0.777906 0.628380i \(-0.783718\pi\)
−0.777906 + 0.628380i \(0.783718\pi\)
\(912\) 0 0
\(913\) 33815.0 1.22575
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15270.2 15270.2i 0.549909 0.549909i
\(918\) 0 0
\(919\) −39163.0 −1.40573 −0.702866 0.711323i \(-0.748096\pi\)
−0.702866 + 0.711323i \(0.748096\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1998.17 1998.17i −0.0712573 0.0712573i
\(924\) 0 0
\(925\) −11317.1 + 11317.1i −0.402274 + 0.402274i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22120.8i 0.781225i 0.920555 + 0.390613i \(0.127737\pi\)
−0.920555 + 0.390613i \(0.872263\pi\)
\(930\) 0 0
\(931\) 4336.59 + 4336.59i 0.152659 + 0.152659i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32356.1i 1.13172i
\(936\) 0 0
\(937\) 13514.2i 0.471172i 0.971853 + 0.235586i \(0.0757010\pi\)
−0.971853 + 0.235586i \(0.924299\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3813.59 + 3813.59i 0.132114 + 0.132114i 0.770072 0.637957i \(-0.220220\pi\)
−0.637957 + 0.770072i \(0.720220\pi\)
\(942\) 0 0
\(943\) 26928.5i 0.929916i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15811.7 + 15811.7i −0.542567 + 0.542567i −0.924281 0.381714i \(-0.875334\pi\)
0.381714 + 0.924281i \(0.375334\pi\)
\(948\) 0 0
\(949\) 2288.52 + 2288.52i 0.0782809 + 0.0782809i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48996.7 1.66544 0.832718 0.553697i \(-0.186784\pi\)
0.832718 + 0.553697i \(0.186784\pi\)
\(954\) 0 0
\(955\) −8285.33 + 8285.33i −0.280740 + 0.280740i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1573.01 0.0529667
\(960\) 0 0
\(961\) 15121.7 0.507594
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10691.2 + 10691.2i −0.356645 + 0.356645i
\(966\) 0 0
\(967\) 17758.0 0.590548 0.295274 0.955413i \(-0.404589\pi\)
0.295274 + 0.955413i \(0.404589\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 278.185 + 278.185i 0.00919401 + 0.00919401i 0.711689 0.702495i \(-0.247931\pi\)
−0.702495 + 0.711689i \(0.747931\pi\)
\(972\) 0 0
\(973\) 3434.52 3434.52i 0.113161 0.113161i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2036.82i 0.0666978i −0.999444 0.0333489i \(-0.989383\pi\)
0.999444 0.0333489i \(-0.0106173\pi\)
\(978\) 0 0
\(979\) −65713.0 65713.0i −2.14525 2.14525i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4969.20i 0.161234i 0.996745 + 0.0806169i \(0.0256890\pi\)
−0.996745 + 0.0806169i \(0.974311\pi\)
\(984\) 0 0
\(985\) 30563.2i 0.988654i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12541.7 12541.7i −0.403237 0.403237i
\(990\) 0 0
\(991\) 43195.4i 1.38461i −0.721606 0.692304i \(-0.756596\pi\)
0.721606 0.692304i \(-0.243404\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29607.9 + 29607.9i −0.943352 + 0.943352i
\(996\) 0 0
\(997\) 22458.2 + 22458.2i 0.713400 + 0.713400i 0.967245 0.253845i \(-0.0816954\pi\)
−0.253845 + 0.967245i \(0.581695\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.l.a.287.18 48
3.2 odd 2 inner 1152.4.l.a.287.7 48
4.3 odd 2 1152.4.l.b.287.18 48
8.3 odd 2 144.4.l.a.107.7 yes 48
8.5 even 2 576.4.l.a.143.7 48
12.11 even 2 1152.4.l.b.287.7 48
16.3 odd 4 inner 1152.4.l.a.863.7 48
16.5 even 4 144.4.l.a.35.18 yes 48
16.11 odd 4 576.4.l.a.431.18 48
16.13 even 4 1152.4.l.b.863.7 48
24.5 odd 2 576.4.l.a.143.18 48
24.11 even 2 144.4.l.a.107.18 yes 48
48.5 odd 4 144.4.l.a.35.7 48
48.11 even 4 576.4.l.a.431.7 48
48.29 odd 4 1152.4.l.b.863.18 48
48.35 even 4 inner 1152.4.l.a.863.18 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.7 48 48.5 odd 4
144.4.l.a.35.18 yes 48 16.5 even 4
144.4.l.a.107.7 yes 48 8.3 odd 2
144.4.l.a.107.18 yes 48 24.11 even 2
576.4.l.a.143.7 48 8.5 even 2
576.4.l.a.143.18 48 24.5 odd 2
576.4.l.a.431.7 48 48.11 even 4
576.4.l.a.431.18 48 16.11 odd 4
1152.4.l.a.287.7 48 3.2 odd 2 inner
1152.4.l.a.287.18 48 1.1 even 1 trivial
1152.4.l.a.863.7 48 16.3 odd 4 inner
1152.4.l.a.863.18 48 48.35 even 4 inner
1152.4.l.b.287.7 48 12.11 even 2
1152.4.l.b.287.18 48 4.3 odd 2
1152.4.l.b.863.7 48 16.13 even 4
1152.4.l.b.863.18 48 48.29 odd 4