Properties

Label 576.4.l.a.143.18
Level $576$
Weight $4$
Character 576.143
Analytic conductor $33.985$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(143,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.143"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.18
Character \(\chi\) \(=\) 576.143
Dual form 576.4.l.a.431.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.31601 - 6.31601i) q^{5} -16.2772 q^{7} +(-48.1287 - 48.1287i) q^{11} +(-8.61642 + 8.61642i) q^{13} +53.2206i q^{17} +(55.5604 + 55.5604i) q^{19} +66.9842i q^{23} +45.2160i q^{25} +(126.481 + 126.481i) q^{29} +121.117i q^{31} +(-102.807 + 102.807i) q^{35} +(-250.289 - 250.289i) q^{37} +402.012 q^{41} +(-187.233 + 187.233i) q^{43} +96.1703 q^{47} -78.0518 q^{49} +(-90.3337 + 90.3337i) q^{53} -607.963 q^{55} +(488.025 + 488.025i) q^{59} +(378.467 - 378.467i) q^{61} +108.843i q^{65} +(223.231 + 223.231i) q^{67} +231.902i q^{71} +265.600i q^{73} +(783.402 + 783.402i) q^{77} +604.662i q^{79} +(-351.298 + 351.298i) q^{83} +(336.142 + 336.142i) q^{85} -1365.36 q^{89} +(140.251 - 140.251i) q^{91} +701.839 q^{95} -1854.47 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{19} - 864 q^{43} + 2352 q^{49} + 576 q^{55} + 1824 q^{61} - 816 q^{67} - 480 q^{85} + 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.31601 6.31601i 0.564921 0.564921i −0.365780 0.930701i \(-0.619198\pi\)
0.930701 + 0.365780i \(0.119198\pi\)
\(6\) 0 0
\(7\) −16.2772 −0.878888 −0.439444 0.898270i \(-0.644824\pi\)
−0.439444 + 0.898270i \(0.644824\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −48.1287 48.1287i −1.31921 1.31921i −0.914398 0.404816i \(-0.867335\pi\)
−0.404816 0.914398i \(-0.632665\pi\)
\(12\) 0 0
\(13\) −8.61642 + 8.61642i −0.183828 + 0.183828i −0.793022 0.609194i \(-0.791493\pi\)
0.609194 + 0.793022i \(0.291493\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 53.2206i 0.759287i 0.925133 + 0.379644i \(0.123953\pi\)
−0.925133 + 0.379644i \(0.876047\pi\)
\(18\) 0 0
\(19\) 55.5604 + 55.5604i 0.670864 + 0.670864i 0.957915 0.287051i \(-0.0926750\pi\)
−0.287051 + 0.957915i \(0.592675\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 66.9842i 0.607269i 0.952789 + 0.303634i \(0.0982001\pi\)
−0.952789 + 0.303634i \(0.901800\pi\)
\(24\) 0 0
\(25\) 45.2160i 0.361728i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 126.481 + 126.481i 0.809892 + 0.809892i 0.984617 0.174726i \(-0.0559038\pi\)
−0.174726 + 0.984617i \(0.555904\pi\)
\(30\) 0 0
\(31\) 121.117i 0.701717i 0.936429 + 0.350858i \(0.114110\pi\)
−0.936429 + 0.350858i \(0.885890\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −102.807 + 102.807i −0.496502 + 0.496502i
\(36\) 0 0
\(37\) −250.289 250.289i −1.11209 1.11209i −0.992868 0.119222i \(-0.961960\pi\)
−0.119222 0.992868i \(-0.538040\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 402.012 1.53131 0.765655 0.643252i \(-0.222415\pi\)
0.765655 + 0.643252i \(0.222415\pi\)
\(42\) 0 0
\(43\) −187.233 + 187.233i −0.664018 + 0.664018i −0.956325 0.292307i \(-0.905577\pi\)
0.292307 + 0.956325i \(0.405577\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 96.1703 0.298465 0.149233 0.988802i \(-0.452320\pi\)
0.149233 + 0.988802i \(0.452320\pi\)
\(48\) 0 0
\(49\) −78.0518 −0.227556
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −90.3337 + 90.3337i −0.234119 + 0.234119i −0.814409 0.580291i \(-0.802939\pi\)
0.580291 + 0.814409i \(0.302939\pi\)
\(54\) 0 0
\(55\) −607.963 −1.49050
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 488.025 + 488.025i 1.07687 + 1.07687i 0.996788 + 0.0800840i \(0.0255188\pi\)
0.0800840 + 0.996788i \(0.474481\pi\)
\(60\) 0 0
\(61\) 378.467 378.467i 0.794389 0.794389i −0.187815 0.982204i \(-0.560141\pi\)
0.982204 + 0.187815i \(0.0601405\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 108.843i 0.207697i
\(66\) 0 0
\(67\) 223.231 + 223.231i 0.407045 + 0.407045i 0.880707 0.473662i \(-0.157068\pi\)
−0.473662 + 0.880707i \(0.657068\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 231.902i 0.387630i 0.981038 + 0.193815i \(0.0620862\pi\)
−0.981038 + 0.193815i \(0.937914\pi\)
\(72\) 0 0
\(73\) 265.600i 0.425838i 0.977070 + 0.212919i \(0.0682970\pi\)
−0.977070 + 0.212919i \(0.931703\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 783.402 + 783.402i 1.15944 + 1.15944i
\(78\) 0 0
\(79\) 604.662i 0.861137i 0.902558 + 0.430569i \(0.141687\pi\)
−0.902558 + 0.430569i \(0.858313\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −351.298 + 351.298i −0.464577 + 0.464577i −0.900152 0.435575i \(-0.856545\pi\)
0.435575 + 0.900152i \(0.356545\pi\)
\(84\) 0 0
\(85\) 336.142 + 336.142i 0.428937 + 0.428937i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1365.36 −1.62615 −0.813077 0.582156i \(-0.802209\pi\)
−0.813077 + 0.582156i \(0.802209\pi\)
\(90\) 0 0
\(91\) 140.251 140.251i 0.161564 0.161564i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 701.839 0.757971
\(96\) 0 0
\(97\) −1854.47 −1.94117 −0.970584 0.240762i \(-0.922603\pi\)
−0.970584 + 0.240762i \(0.922603\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 755.210 755.210i 0.744022 0.744022i −0.229328 0.973349i \(-0.573653\pi\)
0.973349 + 0.229328i \(0.0736527\pi\)
\(102\) 0 0
\(103\) −1428.89 −1.36692 −0.683461 0.729987i \(-0.739526\pi\)
−0.683461 + 0.729987i \(0.739526\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1013.69 + 1013.69i 0.915859 + 0.915859i 0.996725 0.0808660i \(-0.0257686\pi\)
−0.0808660 + 0.996725i \(0.525769\pi\)
\(108\) 0 0
\(109\) −1069.24 + 1069.24i −0.939579 + 0.939579i −0.998276 0.0586964i \(-0.981306\pi\)
0.0586964 + 0.998276i \(0.481306\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1280.42i 1.06595i 0.846132 + 0.532974i \(0.178926\pi\)
−0.846132 + 0.532974i \(0.821074\pi\)
\(114\) 0 0
\(115\) 423.073 + 423.073i 0.343059 + 0.343059i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 866.283i 0.667328i
\(120\) 0 0
\(121\) 3301.75i 2.48065i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1075.09 + 1075.09i 0.769269 + 0.769269i
\(126\) 0 0
\(127\) 2778.90i 1.94163i −0.239828 0.970815i \(-0.577091\pi\)
0.239828 0.970815i \(-0.422909\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −938.133 + 938.133i −0.625687 + 0.625687i −0.946980 0.321293i \(-0.895883\pi\)
0.321293 + 0.946980i \(0.395883\pi\)
\(132\) 0 0
\(133\) −904.369 904.369i −0.589614 0.589614i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 96.6385 0.0602656 0.0301328 0.999546i \(-0.490407\pi\)
0.0301328 + 0.999546i \(0.490407\pi\)
\(138\) 0 0
\(139\) 211.002 211.002i 0.128755 0.128755i −0.639793 0.768548i \(-0.720980\pi\)
0.768548 + 0.639793i \(0.220980\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 829.395 0.485017
\(144\) 0 0
\(145\) 1597.71 0.915050
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1113.17 + 1113.17i −0.612042 + 0.612042i −0.943478 0.331435i \(-0.892467\pi\)
0.331435 + 0.943478i \(0.392467\pi\)
\(150\) 0 0
\(151\) −285.222 −0.153716 −0.0768578 0.997042i \(-0.524489\pi\)
−0.0768578 + 0.997042i \(0.524489\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 764.975 + 764.975i 0.396414 + 0.396414i
\(156\) 0 0
\(157\) 2536.76 2536.76i 1.28953 1.28953i 0.354454 0.935073i \(-0.384667\pi\)
0.935073 0.354454i \(-0.115333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1090.32i 0.533721i
\(162\) 0 0
\(163\) 1268.22 + 1268.22i 0.609414 + 0.609414i 0.942793 0.333379i \(-0.108189\pi\)
−0.333379 + 0.942793i \(0.608189\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2766.46i 1.28189i −0.767588 0.640943i \(-0.778543\pi\)
0.767588 0.640943i \(-0.221457\pi\)
\(168\) 0 0
\(169\) 2048.51i 0.932415i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −346.606 346.606i −0.152324 0.152324i 0.626831 0.779155i \(-0.284351\pi\)
−0.779155 + 0.626831i \(0.784351\pi\)
\(174\) 0 0
\(175\) 735.992i 0.317919i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 106.140 106.140i 0.0443198 0.0443198i −0.684600 0.728919i \(-0.740023\pi\)
0.728919 + 0.684600i \(0.240023\pi\)
\(180\) 0 0
\(181\) −1553.97 1553.97i −0.638154 0.638154i 0.311946 0.950100i \(-0.399019\pi\)
−0.950100 + 0.311946i \(0.899019\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3161.66 −1.25649
\(186\) 0 0
\(187\) 2561.44 2561.44i 1.00166 1.00166i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1311.80 0.496955 0.248478 0.968638i \(-0.420070\pi\)
0.248478 + 0.968638i \(0.420070\pi\)
\(192\) 0 0
\(193\) −1692.72 −0.631319 −0.315659 0.948873i \(-0.602226\pi\)
−0.315659 + 0.948873i \(0.602226\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2419.50 2419.50i 0.875037 0.875037i −0.117979 0.993016i \(-0.537642\pi\)
0.993016 + 0.117979i \(0.0376416\pi\)
\(198\) 0 0
\(199\) −4687.76 −1.66988 −0.834941 0.550339i \(-0.814498\pi\)
−0.834941 + 0.550339i \(0.814498\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2058.75 2058.75i −0.711804 0.711804i
\(204\) 0 0
\(205\) 2539.11 2539.11i 0.865069 0.865069i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5348.10i 1.77003i
\(210\) 0 0
\(211\) 1994.60 + 1994.60i 0.650777 + 0.650777i 0.953180 0.302403i \(-0.0977888\pi\)
−0.302403 + 0.953180i \(0.597789\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2365.13i 0.750236i
\(216\) 0 0
\(217\) 1971.45i 0.616730i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −458.571 458.571i −0.139578 0.139578i
\(222\) 0 0
\(223\) 3668.79i 1.10170i 0.834603 + 0.550852i \(0.185697\pi\)
−0.834603 + 0.550852i \(0.814303\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2455.95 + 2455.95i −0.718092 + 0.718092i −0.968214 0.250123i \(-0.919529\pi\)
0.250123 + 0.968214i \(0.419529\pi\)
\(228\) 0 0
\(229\) 1201.57 + 1201.57i 0.346733 + 0.346733i 0.858891 0.512158i \(-0.171154\pi\)
−0.512158 + 0.858891i \(0.671154\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1560.55 −0.438776 −0.219388 0.975638i \(-0.570406\pi\)
−0.219388 + 0.975638i \(0.570406\pi\)
\(234\) 0 0
\(235\) 607.412 607.412i 0.168609 0.168609i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3543.70 −0.959091 −0.479546 0.877517i \(-0.659198\pi\)
−0.479546 + 0.877517i \(0.659198\pi\)
\(240\) 0 0
\(241\) 1481.98 0.396110 0.198055 0.980191i \(-0.436538\pi\)
0.198055 + 0.980191i \(0.436538\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −492.976 + 492.976i −0.128551 + 0.128551i
\(246\) 0 0
\(247\) −957.462 −0.246647
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2357.87 2357.87i −0.592938 0.592938i 0.345486 0.938424i \(-0.387714\pi\)
−0.938424 + 0.345486i \(0.887714\pi\)
\(252\) 0 0
\(253\) 3223.87 3223.87i 0.801118 0.801118i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2117.93i 0.514059i 0.966404 + 0.257029i \(0.0827437\pi\)
−0.966404 + 0.257029i \(0.917256\pi\)
\(258\) 0 0
\(259\) 4074.02 + 4074.02i 0.977402 + 0.977402i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7741.72i 1.81511i −0.419929 0.907557i \(-0.637945\pi\)
0.419929 0.907557i \(-0.362055\pi\)
\(264\) 0 0
\(265\) 1141.10i 0.264517i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1111.14 + 1111.14i 0.251849 + 0.251849i 0.821728 0.569880i \(-0.193010\pi\)
−0.569880 + 0.821728i \(0.693010\pi\)
\(270\) 0 0
\(271\) 1728.54i 0.387458i 0.981055 + 0.193729i \(0.0620583\pi\)
−0.981055 + 0.193729i \(0.937942\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2176.19 2176.19i 0.477197 0.477197i
\(276\) 0 0
\(277\) −1977.36 1977.36i −0.428910 0.428910i 0.459347 0.888257i \(-0.348083\pi\)
−0.888257 + 0.459347i \(0.848083\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1583.09 0.336083 0.168041 0.985780i \(-0.446256\pi\)
0.168041 + 0.985780i \(0.446256\pi\)
\(282\) 0 0
\(283\) 987.718 987.718i 0.207469 0.207469i −0.595722 0.803191i \(-0.703134\pi\)
0.803191 + 0.595722i \(0.203134\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6543.64 −1.34585
\(288\) 0 0
\(289\) 2080.57 0.423483
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −140.498 + 140.498i −0.0280136 + 0.0280136i −0.720975 0.692961i \(-0.756306\pi\)
0.692961 + 0.720975i \(0.256306\pi\)
\(294\) 0 0
\(295\) 6164.74 1.21670
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −577.164 577.164i −0.111633 0.111633i
\(300\) 0 0
\(301\) 3047.64 3047.64i 0.583597 0.583597i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4780.80i 0.897535i
\(306\) 0 0
\(307\) −5197.73 5197.73i −0.966288 0.966288i 0.0331621 0.999450i \(-0.489442\pi\)
−0.999450 + 0.0331621i \(0.989442\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8112.26i 1.47911i −0.673094 0.739557i \(-0.735035\pi\)
0.673094 0.739557i \(-0.264965\pi\)
\(312\) 0 0
\(313\) 3307.27i 0.597246i −0.954371 0.298623i \(-0.903473\pi\)
0.954371 0.298623i \(-0.0965273\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2991.50 2991.50i −0.530030 0.530030i 0.390551 0.920581i \(-0.372284\pi\)
−0.920581 + 0.390551i \(0.872284\pi\)
\(318\) 0 0
\(319\) 12174.7i 2.13684i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2956.95 + 2956.95i −0.509379 + 0.509379i
\(324\) 0 0
\(325\) −389.600 389.600i −0.0664958 0.0664958i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1565.39 −0.262318
\(330\) 0 0
\(331\) −3171.15 + 3171.15i −0.526592 + 0.526592i −0.919555 0.392962i \(-0.871450\pi\)
0.392962 + 0.919555i \(0.371450\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2819.86 0.459897
\(336\) 0 0
\(337\) −2213.85 −0.357852 −0.178926 0.983863i \(-0.557262\pi\)
−0.178926 + 0.983863i \(0.557262\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5829.20 5829.20i 0.925715 0.925715i
\(342\) 0 0
\(343\) 6853.56 1.07888
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 344.315 + 344.315i 0.0532674 + 0.0532674i 0.733239 0.679971i \(-0.238008\pi\)
−0.679971 + 0.733239i \(0.738008\pi\)
\(348\) 0 0
\(349\) −8129.29 + 8129.29i −1.24685 + 1.24685i −0.289747 + 0.957103i \(0.593571\pi\)
−0.957103 + 0.289747i \(0.906429\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3235.69i 0.487871i 0.969791 + 0.243935i \(0.0784385\pi\)
−0.969791 + 0.243935i \(0.921561\pi\)
\(354\) 0 0
\(355\) 1464.70 + 1464.70i 0.218980 + 0.218980i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4710.91i 0.692569i 0.938129 + 0.346285i \(0.112557\pi\)
−0.938129 + 0.346285i \(0.887443\pi\)
\(360\) 0 0
\(361\) 685.094i 0.0998825i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1677.53 + 1677.53i 0.240565 + 0.240565i
\(366\) 0 0
\(367\) 1585.57i 0.225521i 0.993622 + 0.112761i \(0.0359693\pi\)
−0.993622 + 0.112761i \(0.964031\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1470.38 1470.38i 0.205764 0.205764i
\(372\) 0 0
\(373\) 2078.83 + 2078.83i 0.288573 + 0.288573i 0.836516 0.547943i \(-0.184589\pi\)
−0.547943 + 0.836516i \(0.684589\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2179.62 −0.297762
\(378\) 0 0
\(379\) 3704.15 3704.15i 0.502031 0.502031i −0.410038 0.912068i \(-0.634485\pi\)
0.912068 + 0.410038i \(0.134485\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7560.19 1.00864 0.504318 0.863518i \(-0.331744\pi\)
0.504318 + 0.863518i \(0.331744\pi\)
\(384\) 0 0
\(385\) 9895.95 1.30999
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4868.51 + 4868.51i −0.634559 + 0.634559i −0.949208 0.314649i \(-0.898113\pi\)
0.314649 + 0.949208i \(0.398113\pi\)
\(390\) 0 0
\(391\) −3564.94 −0.461091
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3819.05 + 3819.05i 0.486474 + 0.486474i
\(396\) 0 0
\(397\) −2442.83 + 2442.83i −0.308822 + 0.308822i −0.844452 0.535631i \(-0.820074\pi\)
0.535631 + 0.844452i \(0.320074\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10348.7i 1.28876i 0.764707 + 0.644378i \(0.222883\pi\)
−0.764707 + 0.644378i \(0.777117\pi\)
\(402\) 0 0
\(403\) −1043.59 1043.59i −0.128995 0.128995i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24092.2i 2.93417i
\(408\) 0 0
\(409\) 3378.72i 0.408477i −0.978921 0.204238i \(-0.934528\pi\)
0.978921 0.204238i \(-0.0654717\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7943.70 7943.70i −0.946450 0.946450i
\(414\) 0 0
\(415\) 4437.60i 0.524899i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8945.75 8945.75i 1.04303 1.04303i 0.0439961 0.999032i \(-0.485991\pi\)
0.999032 0.0439961i \(-0.0140089\pi\)
\(420\) 0 0
\(421\) 10686.4 + 10686.4i 1.23711 + 1.23711i 0.961177 + 0.275933i \(0.0889867\pi\)
0.275933 + 0.961177i \(0.411013\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2406.42 −0.274656
\(426\) 0 0
\(427\) −6160.40 + 6160.40i −0.698179 + 0.698179i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4267.29 0.476910 0.238455 0.971154i \(-0.423359\pi\)
0.238455 + 0.971154i \(0.423359\pi\)
\(432\) 0 0
\(433\) −15686.4 −1.74097 −0.870483 0.492198i \(-0.836194\pi\)
−0.870483 + 0.492198i \(0.836194\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3721.67 + 3721.67i −0.407395 + 0.407395i
\(438\) 0 0
\(439\) −5963.75 −0.648370 −0.324185 0.945994i \(-0.605090\pi\)
−0.324185 + 0.945994i \(0.605090\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1512.40 1512.40i −0.162204 0.162204i 0.621338 0.783542i \(-0.286589\pi\)
−0.783542 + 0.621338i \(0.786589\pi\)
\(444\) 0 0
\(445\) −8623.62 + 8623.62i −0.918649 + 0.918649i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5201.31i 0.546693i −0.961916 0.273346i \(-0.911869\pi\)
0.961916 0.273346i \(-0.0881305\pi\)
\(450\) 0 0
\(451\) −19348.3 19348.3i −2.02013 2.02013i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1771.66i 0.182542i
\(456\) 0 0
\(457\) 6308.57i 0.645738i 0.946444 + 0.322869i \(0.104647\pi\)
−0.946444 + 0.322869i \(0.895353\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1200.54 + 1200.54i 0.121290 + 0.121290i 0.765146 0.643856i \(-0.222667\pi\)
−0.643856 + 0.765146i \(0.722667\pi\)
\(462\) 0 0
\(463\) 15194.4i 1.52515i 0.646901 + 0.762574i \(0.276065\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4068.55 4068.55i 0.403148 0.403148i −0.476193 0.879341i \(-0.657984\pi\)
0.879341 + 0.476193i \(0.157984\pi\)
\(468\) 0 0
\(469\) −3633.58 3633.58i −0.357747 0.357747i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18022.6 1.75196
\(474\) 0 0
\(475\) −2512.22 + 2512.22i −0.242671 + 0.242671i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3340.15 −0.318612 −0.159306 0.987229i \(-0.550926\pi\)
−0.159306 + 0.987229i \(0.550926\pi\)
\(480\) 0 0
\(481\) 4313.20 0.408867
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11712.9 + 11712.9i −1.09661 + 1.09661i
\(486\) 0 0
\(487\) 10788.7 1.00386 0.501932 0.864907i \(-0.332623\pi\)
0.501932 + 0.864907i \(0.332623\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4711.73 + 4711.73i 0.433071 + 0.433071i 0.889672 0.456601i \(-0.150933\pi\)
−0.456601 + 0.889672i \(0.650933\pi\)
\(492\) 0 0
\(493\) −6731.37 + 6731.37i −0.614940 + 0.614940i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3774.73i 0.340683i
\(498\) 0 0
\(499\) 5656.27 + 5656.27i 0.507433 + 0.507433i 0.913738 0.406304i \(-0.133183\pi\)
−0.406304 + 0.913738i \(0.633183\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4974.64i 0.440971i 0.975390 + 0.220485i \(0.0707641\pi\)
−0.975390 + 0.220485i \(0.929236\pi\)
\(504\) 0 0
\(505\) 9539.83i 0.840627i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5549.92 + 5549.92i 0.483292 + 0.483292i 0.906181 0.422889i \(-0.138984\pi\)
−0.422889 + 0.906181i \(0.638984\pi\)
\(510\) 0 0
\(511\) 4323.24i 0.374264i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9024.90 + 9024.90i −0.772203 + 0.772203i
\(516\) 0 0
\(517\) −4628.55 4628.55i −0.393740 0.393740i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21737.7 1.82792 0.913961 0.405802i \(-0.133008\pi\)
0.913961 + 0.405802i \(0.133008\pi\)
\(522\) 0 0
\(523\) −2235.12 + 2235.12i −0.186874 + 0.186874i −0.794343 0.607469i \(-0.792185\pi\)
0.607469 + 0.794343i \(0.292185\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6445.90 −0.532804
\(528\) 0 0
\(529\) 7680.11 0.631225
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3463.90 + 3463.90i −0.281498 + 0.281498i
\(534\) 0 0
\(535\) 12804.9 1.03478
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3756.53 + 3756.53i 0.300196 + 0.300196i
\(540\) 0 0
\(541\) −3371.85 + 3371.85i −0.267961 + 0.267961i −0.828278 0.560317i \(-0.810679\pi\)
0.560317 + 0.828278i \(0.310679\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13506.6i 1.06158i
\(546\) 0 0
\(547\) −3242.62 3242.62i −0.253463 0.253463i 0.568926 0.822389i \(-0.307359\pi\)
−0.822389 + 0.568926i \(0.807359\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14054.6i 1.08665i
\(552\) 0 0
\(553\) 9842.23i 0.756843i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4967.01 4967.01i −0.377844 0.377844i 0.492480 0.870324i \(-0.336091\pi\)
−0.870324 + 0.492480i \(0.836091\pi\)
\(558\) 0 0
\(559\) 3226.56i 0.244130i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10845.8 10845.8i 0.811891 0.811891i −0.173026 0.984917i \(-0.555355\pi\)
0.984917 + 0.173026i \(0.0553545\pi\)
\(564\) 0 0
\(565\) 8087.17 + 8087.17i 0.602177 + 0.602177i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18374.6 1.35378 0.676892 0.736082i \(-0.263326\pi\)
0.676892 + 0.736082i \(0.263326\pi\)
\(570\) 0 0
\(571\) −4779.72 + 4779.72i −0.350306 + 0.350306i −0.860224 0.509917i \(-0.829676\pi\)
0.509917 + 0.860224i \(0.329676\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3028.76 −0.219666
\(576\) 0 0
\(577\) −14300.3 −1.03176 −0.515882 0.856659i \(-0.672536\pi\)
−0.515882 + 0.856659i \(0.672536\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5718.15 5718.15i 0.408311 0.408311i
\(582\) 0 0
\(583\) 8695.29 0.617705
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7852.73 7852.73i −0.552158 0.552158i 0.374905 0.927063i \(-0.377675\pi\)
−0.927063 + 0.374905i \(0.877675\pi\)
\(588\) 0 0
\(589\) −6729.29 + 6729.29i −0.470756 + 0.470756i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 27409.5i 1.89810i 0.315122 + 0.949051i \(0.397954\pi\)
−0.315122 + 0.949051i \(0.602046\pi\)
\(594\) 0 0
\(595\) −5471.45 5471.45i −0.376988 0.376988i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8983.16i 0.612758i 0.951910 + 0.306379i \(0.0991174\pi\)
−0.951910 + 0.306379i \(0.900883\pi\)
\(600\) 0 0
\(601\) 1686.23i 0.114447i −0.998361 0.0572236i \(-0.981775\pi\)
0.998361 0.0572236i \(-0.0182248\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20853.9 + 20853.9i 1.40137 + 1.40137i
\(606\) 0 0
\(607\) 19571.7i 1.30872i 0.756185 + 0.654358i \(0.227061\pi\)
−0.756185 + 0.654358i \(0.772939\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −828.643 + 828.643i −0.0548663 + 0.0548663i
\(612\) 0 0
\(613\) −16131.0 16131.0i −1.06285 1.06285i −0.997888 0.0649592i \(-0.979308\pi\)
−0.0649592 0.997888i \(-0.520692\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14419.1 −0.940829 −0.470415 0.882445i \(-0.655896\pi\)
−0.470415 + 0.882445i \(0.655896\pi\)
\(618\) 0 0
\(619\) −14348.2 + 14348.2i −0.931665 + 0.931665i −0.997810 0.0661446i \(-0.978930\pi\)
0.0661446 + 0.997810i \(0.478930\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22224.3 1.42921
\(624\) 0 0
\(625\) 7928.50 0.507424
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13320.5 13320.5i 0.844395 0.844395i
\(630\) 0 0
\(631\) −28650.9 −1.80757 −0.903785 0.427987i \(-0.859223\pi\)
−0.903785 + 0.427987i \(0.859223\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17551.5 17551.5i −1.09687 1.09687i
\(636\) 0 0
\(637\) 672.527 672.527i 0.0418312 0.0418312i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11361.1i 0.700060i −0.936739 0.350030i \(-0.886171\pi\)
0.936739 0.350030i \(-0.113829\pi\)
\(642\) 0 0
\(643\) −1801.19 1801.19i −0.110470 0.110470i 0.649711 0.760181i \(-0.274890\pi\)
−0.760181 + 0.649711i \(0.774890\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3042.62i 0.184881i −0.995718 0.0924403i \(-0.970533\pi\)
0.995718 0.0924403i \(-0.0294667\pi\)
\(648\) 0 0
\(649\) 46976.1i 2.84125i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15755.2 15755.2i −0.944176 0.944176i 0.0543465 0.998522i \(-0.482692\pi\)
−0.998522 + 0.0543465i \(0.982692\pi\)
\(654\) 0 0
\(655\) 11850.5i 0.706928i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3650.15 3650.15i 0.215766 0.215766i −0.590946 0.806711i \(-0.701245\pi\)
0.806711 + 0.590946i \(0.201245\pi\)
\(660\) 0 0
\(661\) 17498.6 + 17498.6i 1.02968 + 1.02968i 0.999546 + 0.0301299i \(0.00959208\pi\)
0.0301299 + 0.999546i \(0.490408\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11424.0 −0.666171
\(666\) 0 0
\(667\) −8472.21 + 8472.21i −0.491822 + 0.491822i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −36430.3 −2.09594
\(672\) 0 0
\(673\) 5976.34 0.342305 0.171152 0.985245i \(-0.445251\pi\)
0.171152 + 0.985245i \(0.445251\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5706.93 5706.93i 0.323981 0.323981i −0.526311 0.850292i \(-0.676425\pi\)
0.850292 + 0.526311i \(0.176425\pi\)
\(678\) 0 0
\(679\) 30185.7 1.70607
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18585.6 + 18585.6i 1.04123 + 1.04123i 0.999113 + 0.0421122i \(0.0134087\pi\)
0.0421122 + 0.999113i \(0.486591\pi\)
\(684\) 0 0
\(685\) 610.370 610.370i 0.0340453 0.0340453i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1556.71i 0.0860751i
\(690\) 0 0
\(691\) 7076.12 + 7076.12i 0.389563 + 0.389563i 0.874532 0.484968i \(-0.161169\pi\)
−0.484968 + 0.874532i \(0.661169\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2665.38i 0.145473i
\(696\) 0 0
\(697\) 21395.3i 1.16270i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11574.5 11574.5i −0.623626 0.623626i 0.322831 0.946457i \(-0.395366\pi\)
−0.946457 + 0.322831i \(0.895366\pi\)
\(702\) 0 0
\(703\) 27812.3i 1.49212i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12292.7 + 12292.7i −0.653912 + 0.653912i
\(708\) 0 0
\(709\) 11104.7 + 11104.7i 0.588216 + 0.588216i 0.937148 0.348932i \(-0.113456\pi\)
−0.348932 + 0.937148i \(0.613456\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8112.92 −0.426131
\(714\) 0 0
\(715\) 5238.46 5238.46i 0.273996 0.273996i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9398.56 0.487493 0.243746 0.969839i \(-0.421624\pi\)
0.243746 + 0.969839i \(0.421624\pi\)
\(720\) 0 0
\(721\) 23258.4 1.20137
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5718.95 + 5718.95i −0.292961 + 0.292961i
\(726\) 0 0
\(727\) 16800.4 0.857071 0.428536 0.903525i \(-0.359030\pi\)
0.428536 + 0.903525i \(0.359030\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9964.65 9964.65i −0.504180 0.504180i
\(732\) 0 0
\(733\) 5536.14 5536.14i 0.278966 0.278966i −0.553730 0.832696i \(-0.686796\pi\)
0.832696 + 0.553730i \(0.186796\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21487.7i 1.07396i
\(738\) 0 0
\(739\) 775.030 + 775.030i 0.0385791 + 0.0385791i 0.726133 0.687554i \(-0.241316\pi\)
−0.687554 + 0.726133i \(0.741316\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21471.2i 1.06016i −0.847947 0.530081i \(-0.822162\pi\)
0.847947 0.530081i \(-0.177838\pi\)
\(744\) 0 0
\(745\) 14061.6i 0.691511i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16500.0 16500.0i −0.804937 0.804937i
\(750\) 0 0
\(751\) 2293.60i 0.111444i 0.998446 + 0.0557221i \(0.0177461\pi\)
−0.998446 + 0.0557221i \(0.982254\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1801.47 + 1801.47i −0.0868372 + 0.0868372i
\(756\) 0 0
\(757\) −14151.4 14151.4i −0.679448 0.679448i 0.280427 0.959875i \(-0.409524\pi\)
−0.959875 + 0.280427i \(0.909524\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18852.9 −0.898054 −0.449027 0.893518i \(-0.648229\pi\)
−0.449027 + 0.893518i \(0.648229\pi\)
\(762\) 0 0
\(763\) 17404.2 17404.2i 0.825785 0.825785i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8410.06 −0.395919
\(768\) 0 0
\(769\) −12172.9 −0.570828 −0.285414 0.958404i \(-0.592131\pi\)
−0.285414 + 0.958404i \(0.592131\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4971.12 + 4971.12i −0.231305 + 0.231305i −0.813237 0.581932i \(-0.802297\pi\)
0.581932 + 0.813237i \(0.302297\pi\)
\(774\) 0 0
\(775\) −5476.42 −0.253831
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22335.9 + 22335.9i 1.02730 + 1.02730i
\(780\) 0 0
\(781\) 11161.2 11161.2i 0.511367 0.511367i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 32044.5i 1.45696i
\(786\) 0 0
\(787\) 3776.32 + 3776.32i 0.171043 + 0.171043i 0.787438 0.616394i \(-0.211407\pi\)
−0.616394 + 0.787438i \(0.711407\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20841.8i 0.936849i
\(792\) 0 0
\(793\) 6522.06i 0.292062i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1305.71 1305.71i −0.0580311 0.0580311i 0.677496 0.735527i \(-0.263065\pi\)
−0.735527 + 0.677496i \(0.763065\pi\)
\(798\) 0 0
\(799\) 5118.23i 0.226621i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12783.0 12783.0i 0.561771 0.561771i
\(804\) 0 0
\(805\) −6886.46 6886.46i −0.301510 0.301510i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16741.4 0.727560 0.363780 0.931485i \(-0.381486\pi\)
0.363780 + 0.931485i \(0.381486\pi\)
\(810\) 0 0
\(811\) 17759.3 17759.3i 0.768946 0.768946i −0.208975 0.977921i \(-0.567013\pi\)
0.977921 + 0.208975i \(0.0670128\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16020.2 0.688542
\(816\) 0 0
\(817\) −20805.5 −0.890932
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30920.3 + 30920.3i −1.31440 + 1.31440i −0.396269 + 0.918135i \(0.629695\pi\)
−0.918135 + 0.396269i \(0.870305\pi\)
\(822\) 0 0
\(823\) −19433.1 −0.823080 −0.411540 0.911392i \(-0.635009\pi\)
−0.411540 + 0.911392i \(0.635009\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22294.5 22294.5i −0.937431 0.937431i 0.0607235 0.998155i \(-0.480659\pi\)
−0.998155 + 0.0607235i \(0.980659\pi\)
\(828\) 0 0
\(829\) 16674.7 16674.7i 0.698595 0.698595i −0.265513 0.964107i \(-0.585541\pi\)
0.964107 + 0.265513i \(0.0855412\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4153.96i 0.172781i
\(834\) 0 0
\(835\) −17473.0 17473.0i −0.724164 0.724164i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30412.9i 1.25145i −0.780042 0.625727i \(-0.784802\pi\)
0.780042 0.625727i \(-0.215198\pi\)
\(840\) 0 0
\(841\) 7605.69i 0.311849i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12938.4 + 12938.4i 0.526741 + 0.526741i
\(846\) 0 0
\(847\) 53743.3i 2.18022i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 16765.4 16765.4i 0.675337 0.675337i
\(852\) 0 0
\(853\) 15673.4 + 15673.4i 0.629128 + 0.629128i 0.947849 0.318721i \(-0.103253\pi\)
−0.318721 + 0.947849i \(0.603253\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −7458.42 −0.297287 −0.148643 0.988891i \(-0.547491\pi\)
−0.148643 + 0.988891i \(0.547491\pi\)
\(858\) 0 0
\(859\) 22482.2 22482.2i 0.892996 0.892996i −0.101808 0.994804i \(-0.532463\pi\)
0.994804 + 0.101808i \(0.0324628\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27444.8 −1.08254 −0.541270 0.840849i \(-0.682056\pi\)
−0.541270 + 0.840849i \(0.682056\pi\)
\(864\) 0 0
\(865\) −4378.34 −0.172102
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 29101.6 29101.6i 1.13602 1.13602i
\(870\) 0 0
\(871\) −3846.90 −0.149653
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −17499.4 17499.4i −0.676101 0.676101i
\(876\) 0 0
\(877\) −167.934 + 167.934i −0.00646604 + 0.00646604i −0.710332 0.703866i \(-0.751455\pi\)
0.703866 + 0.710332i \(0.251455\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20968.8i 0.801882i 0.916104 + 0.400941i \(0.131317\pi\)
−0.916104 + 0.400941i \(0.868683\pi\)
\(882\) 0 0
\(883\) 22968.4 + 22968.4i 0.875366 + 0.875366i 0.993051 0.117685i \(-0.0375474\pi\)
−0.117685 + 0.993051i \(0.537547\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41314.4i 1.56393i 0.623325 + 0.781963i \(0.285782\pi\)
−0.623325 + 0.781963i \(0.714218\pi\)
\(888\) 0 0
\(889\) 45232.7i 1.70648i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5343.25 + 5343.25i 0.200230 + 0.200230i
\(894\) 0 0
\(895\) 1340.76i 0.0500743i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15318.9 + 15318.9i −0.568314 + 0.568314i
\(900\) 0 0
\(901\) −4807.61 4807.61i −0.177763 0.177763i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19629.8 −0.721014
\(906\) 0 0
\(907\) 28396.2 28396.2i 1.03956 1.03956i 0.0403761 0.999185i \(-0.487144\pi\)
0.999185 0.0403761i \(-0.0128556\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42779.4 1.55581 0.777906 0.628380i \(-0.216282\pi\)
0.777906 + 0.628380i \(0.216282\pi\)
\(912\) 0 0
\(913\) 33815.0 1.22575
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15270.2 15270.2i 0.549909 0.549909i
\(918\) 0 0
\(919\) −39163.0 −1.40573 −0.702866 0.711323i \(-0.748096\pi\)
−0.702866 + 0.711323i \(0.748096\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1998.17 1998.17i −0.0712573 0.0712573i
\(924\) 0 0
\(925\) 11317.1 11317.1i 0.402274 0.402274i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22120.8i 0.781225i −0.920555 0.390613i \(-0.872263\pi\)
0.920555 0.390613i \(-0.127737\pi\)
\(930\) 0 0
\(931\) −4336.59 4336.59i −0.152659 0.152659i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 32356.1i 1.13172i
\(936\) 0 0
\(937\) 13514.2i 0.471172i 0.971853 + 0.235586i \(0.0757010\pi\)
−0.971853 + 0.235586i \(0.924299\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3813.59 + 3813.59i 0.132114 + 0.132114i 0.770072 0.637957i \(-0.220220\pi\)
−0.637957 + 0.770072i \(0.720220\pi\)
\(942\) 0 0
\(943\) 26928.5i 0.929916i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15811.7 + 15811.7i −0.542567 + 0.542567i −0.924281 0.381714i \(-0.875334\pi\)
0.381714 + 0.924281i \(0.375334\pi\)
\(948\) 0 0
\(949\) −2288.52 2288.52i −0.0782809 0.0782809i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −48996.7 −1.66544 −0.832718 0.553697i \(-0.813216\pi\)
−0.832718 + 0.553697i \(0.813216\pi\)
\(954\) 0 0
\(955\) 8285.33 8285.33i 0.280740 0.280740i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1573.01 −0.0529667
\(960\) 0 0
\(961\) 15121.7 0.507594
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10691.2 + 10691.2i −0.356645 + 0.356645i
\(966\) 0 0
\(967\) 17758.0 0.590548 0.295274 0.955413i \(-0.404589\pi\)
0.295274 + 0.955413i \(0.404589\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 278.185 + 278.185i 0.00919401 + 0.00919401i 0.711689 0.702495i \(-0.247931\pi\)
−0.702495 + 0.711689i \(0.747931\pi\)
\(972\) 0 0
\(973\) −3434.52 + 3434.52i −0.113161 + 0.113161i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2036.82i 0.0666978i 0.999444 + 0.0333489i \(0.0106173\pi\)
−0.999444 + 0.0333489i \(0.989383\pi\)
\(978\) 0 0
\(979\) 65713.0 + 65713.0i 2.14525 + 2.14525i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4969.20i 0.161234i −0.996745 0.0806169i \(-0.974311\pi\)
0.996745 0.0806169i \(-0.0256890\pi\)
\(984\) 0 0
\(985\) 30563.2i 0.988654i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12541.7 12541.7i −0.403237 0.403237i
\(990\) 0 0
\(991\) 43195.4i 1.38461i −0.721606 0.692304i \(-0.756596\pi\)
0.721606 0.692304i \(-0.243404\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29607.9 + 29607.9i −0.943352 + 0.943352i
\(996\) 0 0
\(997\) −22458.2 22458.2i −0.713400 0.713400i 0.253845 0.967245i \(-0.418305\pi\)
−0.967245 + 0.253845i \(0.918305\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.l.a.143.18 48
3.2 odd 2 inner 576.4.l.a.143.7 48
4.3 odd 2 144.4.l.a.107.18 yes 48
8.3 odd 2 1152.4.l.b.287.7 48
8.5 even 2 1152.4.l.a.287.7 48
12.11 even 2 144.4.l.a.107.7 yes 48
16.3 odd 4 inner 576.4.l.a.431.7 48
16.5 even 4 1152.4.l.b.863.18 48
16.11 odd 4 1152.4.l.a.863.18 48
16.13 even 4 144.4.l.a.35.7 48
24.5 odd 2 1152.4.l.a.287.18 48
24.11 even 2 1152.4.l.b.287.18 48
48.5 odd 4 1152.4.l.b.863.7 48
48.11 even 4 1152.4.l.a.863.7 48
48.29 odd 4 144.4.l.a.35.18 yes 48
48.35 even 4 inner 576.4.l.a.431.18 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.7 48 16.13 even 4
144.4.l.a.35.18 yes 48 48.29 odd 4
144.4.l.a.107.7 yes 48 12.11 even 2
144.4.l.a.107.18 yes 48 4.3 odd 2
576.4.l.a.143.7 48 3.2 odd 2 inner
576.4.l.a.143.18 48 1.1 even 1 trivial
576.4.l.a.431.7 48 16.3 odd 4 inner
576.4.l.a.431.18 48 48.35 even 4 inner
1152.4.l.a.287.7 48 8.5 even 2
1152.4.l.a.287.18 48 24.5 odd 2
1152.4.l.a.863.7 48 48.11 even 4
1152.4.l.a.863.18 48 16.11 odd 4
1152.4.l.b.287.7 48 8.3 odd 2
1152.4.l.b.287.18 48 24.11 even 2
1152.4.l.b.863.7 48 48.5 odd 4
1152.4.l.b.863.18 48 16.5 even 4