Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.l (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 608 | 48 | 560 |
Cusp forms | 544 | 48 | 496 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
576.4.l.a | $48$ | $33.985$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{4}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)