Properties

Label 576.4.l
Level $576$
Weight $4$
Character orbit 576.l
Rep. character $\chi_{576}(143,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $48$
Newform subspaces $1$
Sturm bound $384$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 48 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(384\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(576, [\chi])\).

Total New Old
Modular forms 608 48 560
Cusp forms 544 48 496
Eisenstein series 64 0 64

Trace form

\( 48 q + 48 q^{19} - 864 q^{43} + 2352 q^{49} + 576 q^{55} + 1824 q^{61} - 816 q^{67} - 480 q^{85} + 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(576, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
576.4.l.a 576.l 48.k $48$ $33.985$ None 144.4.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{4}^{\mathrm{old}}(576, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 2}\)