Properties

Label 14.48.a.b
Level $14$
Weight $48$
Character orbit 14.a
Self dual yes
Analytic conductor $195.871$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,48,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 48, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 48); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 48 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-50331648] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(195.870727717\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 12\!\cdots\!04 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: multiple of \( 2^{38}\cdot 3^{10}\cdot 5^{4}\cdot 7^{6}\cdot 11 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8388608 q^{2} + ( - \beta_1 + 14398787209) q^{3} + 70368744177664 q^{4} + (\beta_{2} - 46118 \beta_1 - 32\!\cdots\!15) q^{5} + (8388608 \beta_1 - 12\!\cdots\!72) q^{6} - 27\!\cdots\!43 q^{7} - 59\!\cdots\!12 q^{8}+ \cdots + (94\!\cdots\!90 \beta_{5} + \cdots - 41\!\cdots\!41) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 50331648 q^{2} + 86392723256 q^{3} + 422212465065984 q^{4} - 19\!\cdots\!52 q^{5} - 72\!\cdots\!48 q^{6} - 16\!\cdots\!58 q^{7} - 35\!\cdots\!72 q^{8} + 61\!\cdots\!82 q^{9} + 16\!\cdots\!16 q^{10}+ \cdots - 25\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2 x^{5} + \cdots - 12\!\cdots\!04 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 14\!\cdots\!81 \nu^{5} + \cdots + 14\!\cdots\!44 ) / 82\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 91\!\cdots\!69 \nu^{5} + \cdots + 19\!\cdots\!56 ) / 85\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 39\!\cdots\!71 \nu^{5} + \cdots + 82\!\cdots\!04 ) / 25\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 22\!\cdots\!57 \nu^{5} + \cdots - 54\!\cdots\!32 ) / 12\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{5} - 6\beta_{4} + 216296\beta_{2} + 31256905256\beta _1 + 36616041983826691938817 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 82874430530 \beta_{5} + 694117179615 \beta_{4} - 1070672421429 \beta_{3} + \cdots + 11\!\cdots\!97 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 32\!\cdots\!20 \beta_{5} + \cdots + 21\!\cdots\!10 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 38\!\cdots\!50 \beta_{5} + \cdots + 22\!\cdots\!75 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.32016e11
1.11403e11
2.54547e9
−3.00976e10
−8.70292e10
−1.28837e11
−8.38861e6 −2.49632e11 7.03687e13 8.52652e15 2.09407e18 −2.73687e19 −5.90296e20 3.57276e22 −7.15256e22
1.2 −8.38861e6 −2.08406e11 7.03687e13 −4.20201e16 1.74824e18 −2.73687e19 −5.90296e20 1.68445e22 3.52490e23
1.3 −8.38861e6 9.30785e9 7.03687e13 1.53089e16 −7.80799e16 −2.73687e19 −5.90296e20 −2.65022e22 −1.28421e23
1.4 −8.38861e6 7.45939e10 7.03687e13 −2.75974e15 −6.25739e17 −2.73687e19 −5.90296e20 −2.10246e22 2.31504e22
1.5 −8.38861e6 1.88457e11 7.03687e13 −3.51579e16 −1.58089e18 −2.73687e19 −5.90296e20 8.92728e21 2.94926e23
1.6 −8.38861e6 2.72073e11 7.03687e13 3.64201e16 −2.28231e18 −2.73687e19 −5.90296e20 4.74348e22 −3.05514e23
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.48.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.48.a.b 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 86392723256 T_{3}^{5} + \cdots + 18\!\cdots\!04 \) acting on \(S_{48}^{\mathrm{new}}(\Gamma_0(14))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8388608)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots + 18\!\cdots\!04 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T + 27\!\cdots\!43)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 15\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 87\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 85\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 89\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 35\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 10\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 33\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 82\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 40\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 97\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 94\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 29\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 36\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 40\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 51\!\cdots\!00 \) Copy content Toggle raw display
show more
show less