Properties

Label 14.48
Level 14
Weight 48
Dimension 88
Nonzero newspaces 2
Newform subspaces 6
Sturm bound 576
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 14 = 2 \cdot 7 \)
Weight: \( k \) = \( 48 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 6 \)
Sturm bound: \(576\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{48}(\Gamma_1(14))\).

Total New Old
Modular forms 288 88 200
Cusp forms 276 88 188
Eisenstein series 12 0 12

Trace form

\( 88 q + 16777216 q^{2} - 39596886558 q^{3} - 562949953421312 q^{4} - 49\!\cdots\!74 q^{5} + 61\!\cdots\!40 q^{6} + 87\!\cdots\!80 q^{7} + 11\!\cdots\!24 q^{8} - 11\!\cdots\!56 q^{9} - 60\!\cdots\!84 q^{10}+ \cdots - 36\!\cdots\!68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{48}^{\mathrm{new}}(\Gamma_1(14))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
14.48.a \(\chi_{14}(1, \cdot)\) 14.48.a.a 5 1
14.48.a.b 6
14.48.a.c 6
14.48.a.d 7
14.48.c \(\chi_{14}(9, \cdot)\) 14.48.c.a 32 2
14.48.c.b 32

Decomposition of \(S_{48}^{\mathrm{old}}(\Gamma_1(14))\) into lower level spaces

\( S_{48}^{\mathrm{old}}(\Gamma_1(14)) \cong \) \(S_{48}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{48}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{48}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)