Properties

Label 1323.2.i.d.1097.18
Level $1323$
Weight $2$
Character 1323.1097
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(521,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.18
Character \(\chi\) \(=\) 1323.1097
Dual form 1323.2.i.d.521.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.981621i q^{2} +1.03642 q^{4} +(0.940599 + 1.62916i) q^{5} +2.98061i q^{8} +(-1.59922 + 0.923312i) q^{10} +(3.54040 + 2.04405i) q^{11} +(3.51415 + 2.02890i) q^{13} -0.852996 q^{16} +(0.810727 + 1.40422i) q^{17} +(-7.03722 - 4.06294i) q^{19} +(0.974855 + 1.68850i) q^{20} +(-2.00648 + 3.47533i) q^{22} +(3.73318 - 2.15535i) q^{23} +(0.730548 - 1.26535i) q^{25} +(-1.99161 + 3.44957i) q^{26} +(0.542317 - 0.313107i) q^{29} -4.27047i q^{31} +5.12391i q^{32} +(-1.37841 + 0.795827i) q^{34} +(-3.97076 + 6.87757i) q^{37} +(3.98827 - 6.90789i) q^{38} +(-4.85591 + 2.80356i) q^{40} +(-0.912023 + 1.57967i) q^{41} +(-3.53614 - 6.12477i) q^{43} +(3.66933 + 2.11849i) q^{44} +(2.11574 + 3.66457i) q^{46} -7.93736 q^{47} +(1.24209 + 0.717122i) q^{50} +(3.64214 + 2.10279i) q^{52} +(7.24978 - 4.18567i) q^{53} +7.69052i q^{55} +(0.307352 + 0.532350i) q^{58} -8.17430 q^{59} +3.74415i q^{61} +4.19198 q^{62} -6.73573 q^{64} +7.63351i q^{65} +12.5312 q^{67} +(0.840253 + 1.45536i) q^{68} +14.4969i q^{71} +(3.28167 - 1.89468i) q^{73} +(-6.75117 - 3.89779i) q^{74} +(-7.29351 - 4.21091i) q^{76} +8.36133 q^{79} +(-0.802327 - 1.38967i) q^{80} +(-1.55064 - 0.895261i) q^{82} +(-4.38300 - 7.59159i) q^{83} +(-1.52514 + 2.64162i) q^{85} +(6.01221 - 3.47115i) q^{86} +(-6.09252 + 10.5526i) q^{88} +(-4.90379 + 8.49362i) q^{89} +(3.86914 - 2.23385i) q^{92} -7.79148i q^{94} -15.2864i q^{95} +(11.4579 - 6.61525i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 24 q^{11} + 48 q^{16} - 48 q^{23} - 24 q^{25} + 96 q^{44} - 48 q^{50} + 48 q^{53} - 48 q^{64} - 168 q^{74} + 48 q^{79} - 24 q^{85} + 24 q^{86} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.981621i 0.694111i 0.937845 + 0.347056i \(0.112818\pi\)
−0.937845 + 0.347056i \(0.887182\pi\)
\(3\) 0 0
\(4\) 1.03642 0.518210
\(5\) 0.940599 + 1.62916i 0.420648 + 0.728585i 0.996003 0.0893196i \(-0.0284692\pi\)
−0.575355 + 0.817904i \(0.695136\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.98061i 1.05381i
\(9\) 0 0
\(10\) −1.59922 + 0.923312i −0.505719 + 0.291977i
\(11\) 3.54040 + 2.04405i 1.06747 + 0.616304i 0.927489 0.373850i \(-0.121963\pi\)
0.139980 + 0.990154i \(0.455296\pi\)
\(12\) 0 0
\(13\) 3.51415 + 2.02890i 0.974651 + 0.562715i 0.900651 0.434544i \(-0.143090\pi\)
0.0739997 + 0.997258i \(0.476424\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.852996 −0.213249
\(17\) 0.810727 + 1.40422i 0.196630 + 0.340574i 0.947434 0.319952i \(-0.103667\pi\)
−0.750803 + 0.660526i \(0.770333\pi\)
\(18\) 0 0
\(19\) −7.03722 4.06294i −1.61445 0.932103i −0.988322 0.152382i \(-0.951305\pi\)
−0.626128 0.779720i \(-0.715361\pi\)
\(20\) 0.974855 + 1.68850i 0.217984 + 0.377560i
\(21\) 0 0
\(22\) −2.00648 + 3.47533i −0.427783 + 0.740943i
\(23\) 3.73318 2.15535i 0.778423 0.449423i −0.0574484 0.998348i \(-0.518296\pi\)
0.835871 + 0.548926i \(0.184963\pi\)
\(24\) 0 0
\(25\) 0.730548 1.26535i 0.146110 0.253069i
\(26\) −1.99161 + 3.44957i −0.390587 + 0.676516i
\(27\) 0 0
\(28\) 0 0
\(29\) 0.542317 0.313107i 0.100706 0.0581425i −0.448801 0.893632i \(-0.648149\pi\)
0.549507 + 0.835489i \(0.314816\pi\)
\(30\) 0 0
\(31\) 4.27047i 0.766999i −0.923541 0.383499i \(-0.874719\pi\)
0.923541 0.383499i \(-0.125281\pi\)
\(32\) 5.12391i 0.905788i
\(33\) 0 0
\(34\) −1.37841 + 0.795827i −0.236396 + 0.136483i
\(35\) 0 0
\(36\) 0 0
\(37\) −3.97076 + 6.87757i −0.652790 + 1.13066i 0.329653 + 0.944102i \(0.393068\pi\)
−0.982443 + 0.186563i \(0.940265\pi\)
\(38\) 3.98827 6.90789i 0.646983 1.12061i
\(39\) 0 0
\(40\) −4.85591 + 2.80356i −0.767787 + 0.443282i
\(41\) −0.912023 + 1.57967i −0.142434 + 0.246703i −0.928413 0.371551i \(-0.878826\pi\)
0.785979 + 0.618254i \(0.212160\pi\)
\(42\) 0 0
\(43\) −3.53614 6.12477i −0.539256 0.934019i −0.998944 0.0459387i \(-0.985372\pi\)
0.459688 0.888080i \(-0.347961\pi\)
\(44\) 3.66933 + 2.11849i 0.553173 + 0.319375i
\(45\) 0 0
\(46\) 2.11574 + 3.66457i 0.311949 + 0.540312i
\(47\) −7.93736 −1.15778 −0.578891 0.815405i \(-0.696515\pi\)
−0.578891 + 0.815405i \(0.696515\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.24209 + 0.717122i 0.175658 + 0.101416i
\(51\) 0 0
\(52\) 3.64214 + 2.10279i 0.505073 + 0.291604i
\(53\) 7.24978 4.18567i 0.995835 0.574945i 0.0888214 0.996048i \(-0.471690\pi\)
0.907013 + 0.421102i \(0.138357\pi\)
\(54\) 0 0
\(55\) 7.69052i 1.03699i
\(56\) 0 0
\(57\) 0 0
\(58\) 0.307352 + 0.532350i 0.0403573 + 0.0699009i
\(59\) −8.17430 −1.06420 −0.532101 0.846681i \(-0.678598\pi\)
−0.532101 + 0.846681i \(0.678598\pi\)
\(60\) 0 0
\(61\) 3.74415i 0.479390i 0.970848 + 0.239695i \(0.0770474\pi\)
−0.970848 + 0.239695i \(0.922953\pi\)
\(62\) 4.19198 0.532382
\(63\) 0 0
\(64\) −6.73573 −0.841966
\(65\) 7.63351i 0.946820i
\(66\) 0 0
\(67\) 12.5312 1.53093 0.765464 0.643479i \(-0.222510\pi\)
0.765464 + 0.643479i \(0.222510\pi\)
\(68\) 0.840253 + 1.45536i 0.101896 + 0.176489i
\(69\) 0 0
\(70\) 0 0
\(71\) 14.4969i 1.72047i 0.509898 + 0.860235i \(0.329683\pi\)
−0.509898 + 0.860235i \(0.670317\pi\)
\(72\) 0 0
\(73\) 3.28167 1.89468i 0.384091 0.221755i −0.295506 0.955341i \(-0.595488\pi\)
0.679597 + 0.733586i \(0.262155\pi\)
\(74\) −6.75117 3.89779i −0.784807 0.453109i
\(75\) 0 0
\(76\) −7.29351 4.21091i −0.836623 0.483025i
\(77\) 0 0
\(78\) 0 0
\(79\) 8.36133 0.940723 0.470361 0.882474i \(-0.344124\pi\)
0.470361 + 0.882474i \(0.344124\pi\)
\(80\) −0.802327 1.38967i −0.0897029 0.155370i
\(81\) 0 0
\(82\) −1.55064 0.895261i −0.171239 0.0988651i
\(83\) −4.38300 7.59159i −0.481097 0.833285i 0.518668 0.854976i \(-0.326428\pi\)
−0.999765 + 0.0216912i \(0.993095\pi\)
\(84\) 0 0
\(85\) −1.52514 + 2.64162i −0.165424 + 0.286524i
\(86\) 6.01221 3.47115i 0.648313 0.374304i
\(87\) 0 0
\(88\) −6.09252 + 10.5526i −0.649465 + 1.12491i
\(89\) −4.90379 + 8.49362i −0.519801 + 0.900322i 0.479934 + 0.877305i \(0.340661\pi\)
−0.999735 + 0.0230174i \(0.992673\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.86914 2.23385i 0.403386 0.232895i
\(93\) 0 0
\(94\) 7.79148i 0.803630i
\(95\) 15.2864i 1.56835i
\(96\) 0 0
\(97\) 11.4579 6.61525i 1.16338 0.671677i 0.211267 0.977428i \(-0.432241\pi\)
0.952111 + 0.305752i \(0.0989077\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.757155 1.31143i 0.0757155 0.131143i
\(101\) 0.524900 0.909154i 0.0522295 0.0904642i −0.838729 0.544550i \(-0.816701\pi\)
0.890958 + 0.454085i \(0.150034\pi\)
\(102\) 0 0
\(103\) 1.41937 0.819472i 0.139854 0.0807449i −0.428440 0.903570i \(-0.640937\pi\)
0.568295 + 0.822825i \(0.307603\pi\)
\(104\) −6.04736 + 10.4743i −0.592992 + 1.02709i
\(105\) 0 0
\(106\) 4.10874 + 7.11654i 0.399076 + 0.691220i
\(107\) −2.97522 1.71775i −0.287626 0.166061i 0.349245 0.937031i \(-0.386438\pi\)
−0.636871 + 0.770971i \(0.719771\pi\)
\(108\) 0 0
\(109\) −1.84529 3.19614i −0.176747 0.306134i 0.764018 0.645195i \(-0.223224\pi\)
−0.940764 + 0.339061i \(0.889891\pi\)
\(110\) −7.54918 −0.719786
\(111\) 0 0
\(112\) 0 0
\(113\) −15.0858 8.70977i −1.41915 0.819346i −0.422925 0.906165i \(-0.638997\pi\)
−0.996224 + 0.0868183i \(0.972330\pi\)
\(114\) 0 0
\(115\) 7.02285 + 4.05465i 0.654885 + 0.378098i
\(116\) 0.562068 0.324510i 0.0521867 0.0301300i
\(117\) 0 0
\(118\) 8.02407i 0.738675i
\(119\) 0 0
\(120\) 0 0
\(121\) 2.85627 + 4.94720i 0.259661 + 0.449746i
\(122\) −3.67534 −0.332750
\(123\) 0 0
\(124\) 4.42600i 0.397466i
\(125\) 12.1546 1.08714
\(126\) 0 0
\(127\) −10.1288 −0.898783 −0.449391 0.893335i \(-0.648359\pi\)
−0.449391 + 0.893335i \(0.648359\pi\)
\(128\) 3.63588i 0.321369i
\(129\) 0 0
\(130\) −7.49322 −0.657199
\(131\) 2.48851 + 4.31022i 0.217422 + 0.376586i 0.954019 0.299746i \(-0.0969019\pi\)
−0.736597 + 0.676332i \(0.763569\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.3009i 1.06263i
\(135\) 0 0
\(136\) −4.18544 + 2.41647i −0.358899 + 0.207210i
\(137\) 0.728035 + 0.420331i 0.0622003 + 0.0359113i 0.530778 0.847511i \(-0.321900\pi\)
−0.468577 + 0.883422i \(0.655233\pi\)
\(138\) 0 0
\(139\) −5.74392 3.31626i −0.487193 0.281281i 0.236216 0.971701i \(-0.424093\pi\)
−0.723409 + 0.690419i \(0.757426\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −14.2305 −1.19420
\(143\) 8.29433 + 14.3662i 0.693606 + 1.20136i
\(144\) 0 0
\(145\) 1.02020 + 0.589015i 0.0847234 + 0.0489151i
\(146\) 1.85985 + 3.22136i 0.153923 + 0.266602i
\(147\) 0 0
\(148\) −4.11538 + 7.12804i −0.338282 + 0.585921i
\(149\) −14.7023 + 8.48838i −1.20446 + 0.695395i −0.961544 0.274652i \(-0.911437\pi\)
−0.242916 + 0.970047i \(0.578104\pi\)
\(150\) 0 0
\(151\) −0.975709 + 1.68998i −0.0794021 + 0.137528i −0.902992 0.429657i \(-0.858634\pi\)
0.823590 + 0.567186i \(0.191968\pi\)
\(152\) 12.1101 20.9752i 0.982256 1.70132i
\(153\) 0 0
\(154\) 0 0
\(155\) 6.95730 4.01680i 0.558823 0.322637i
\(156\) 0 0
\(157\) 9.52118i 0.759873i 0.925013 + 0.379936i \(0.124054\pi\)
−0.925013 + 0.379936i \(0.875946\pi\)
\(158\) 8.20766i 0.652966i
\(159\) 0 0
\(160\) −8.34769 + 4.81954i −0.659943 + 0.381018i
\(161\) 0 0
\(162\) 0 0
\(163\) −0.555106 + 0.961472i −0.0434793 + 0.0753083i −0.886946 0.461873i \(-0.847178\pi\)
0.843467 + 0.537181i \(0.180511\pi\)
\(164\) −0.945238 + 1.63720i −0.0738107 + 0.127844i
\(165\) 0 0
\(166\) 7.45206 4.30245i 0.578392 0.333935i
\(167\) 7.00830 12.1387i 0.542319 0.939324i −0.456452 0.889748i \(-0.650880\pi\)
0.998770 0.0495754i \(-0.0157868\pi\)
\(168\) 0 0
\(169\) 1.73285 + 3.00138i 0.133296 + 0.230875i
\(170\) −2.59307 1.49711i −0.198879 0.114823i
\(171\) 0 0
\(172\) −3.66492 6.34783i −0.279448 0.484018i
\(173\) 7.11768 0.541147 0.270574 0.962699i \(-0.412787\pi\)
0.270574 + 0.962699i \(0.412787\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.01994 1.74357i −0.227637 0.131426i
\(177\) 0 0
\(178\) −8.33752 4.81367i −0.624924 0.360800i
\(179\) −5.19845 + 3.00133i −0.388550 + 0.224330i −0.681532 0.731788i \(-0.738686\pi\)
0.292981 + 0.956118i \(0.405353\pi\)
\(180\) 0 0
\(181\) 1.30283i 0.0968385i 0.998827 + 0.0484192i \(0.0154184\pi\)
−0.998827 + 0.0484192i \(0.984582\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.42428 + 11.1272i 0.473604 + 0.820307i
\(185\) −14.9396 −1.09838
\(186\) 0 0
\(187\) 6.62866i 0.484736i
\(188\) −8.22643 −0.599974
\(189\) 0 0
\(190\) 15.0054 1.08861
\(191\) 5.73288i 0.414817i −0.978254 0.207408i \(-0.933497\pi\)
0.978254 0.207408i \(-0.0665029\pi\)
\(192\) 0 0
\(193\) 1.55904 0.112222 0.0561109 0.998425i \(-0.482130\pi\)
0.0561109 + 0.998425i \(0.482130\pi\)
\(194\) 6.49367 + 11.2474i 0.466218 + 0.807514i
\(195\) 0 0
\(196\) 0 0
\(197\) 19.5504i 1.39291i −0.717602 0.696454i \(-0.754760\pi\)
0.717602 0.696454i \(-0.245240\pi\)
\(198\) 0 0
\(199\) −0.845590 + 0.488202i −0.0599423 + 0.0346077i −0.529672 0.848203i \(-0.677685\pi\)
0.469729 + 0.882810i \(0.344352\pi\)
\(200\) 3.77151 + 2.17748i 0.266686 + 0.153971i
\(201\) 0 0
\(202\) 0.892445 + 0.515253i 0.0627922 + 0.0362531i
\(203\) 0 0
\(204\) 0 0
\(205\) −3.43139 −0.239659
\(206\) 0.804411 + 1.39328i 0.0560460 + 0.0970745i
\(207\) 0 0
\(208\) −2.99756 1.73064i −0.207843 0.119998i
\(209\) −16.6097 28.7688i −1.14892 1.98998i
\(210\) 0 0
\(211\) 11.9752 20.7417i 0.824408 1.42792i −0.0779625 0.996956i \(-0.524841\pi\)
0.902371 0.430961i \(-0.141825\pi\)
\(212\) 7.51382 4.33810i 0.516051 0.297942i
\(213\) 0 0
\(214\) 1.68618 2.92054i 0.115265 0.199644i
\(215\) 6.65218 11.5219i 0.453675 0.785787i
\(216\) 0 0
\(217\) 0 0
\(218\) 3.13740 1.81138i 0.212491 0.122682i
\(219\) 0 0
\(220\) 7.97060i 0.537378i
\(221\) 6.57953i 0.442587i
\(222\) 0 0
\(223\) −2.68394 + 1.54957i −0.179730 + 0.103767i −0.587166 0.809467i \(-0.699756\pi\)
0.407436 + 0.913234i \(0.366423\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 8.54970 14.8085i 0.568717 0.985047i
\(227\) 10.8991 18.8779i 0.723401 1.25297i −0.236228 0.971698i \(-0.575911\pi\)
0.959629 0.281269i \(-0.0907554\pi\)
\(228\) 0 0
\(229\) 11.1810 6.45536i 0.738862 0.426582i −0.0827937 0.996567i \(-0.526384\pi\)
0.821655 + 0.569985i \(0.193051\pi\)
\(230\) −3.98013 + 6.89378i −0.262442 + 0.454563i
\(231\) 0 0
\(232\) 0.933250 + 1.61644i 0.0612709 + 0.106124i
\(233\) 0.699758 + 0.404005i 0.0458427 + 0.0264673i 0.522746 0.852488i \(-0.324908\pi\)
−0.476904 + 0.878956i \(0.658241\pi\)
\(234\) 0 0
\(235\) −7.46587 12.9313i −0.487020 0.843543i
\(236\) −8.47200 −0.551480
\(237\) 0 0
\(238\) 0 0
\(239\) −12.2032 7.04552i −0.789360 0.455737i 0.0503775 0.998730i \(-0.483958\pi\)
−0.839737 + 0.542993i \(0.817291\pi\)
\(240\) 0 0
\(241\) −16.0205 9.24943i −1.03197 0.595808i −0.114422 0.993432i \(-0.536502\pi\)
−0.917549 + 0.397624i \(0.869835\pi\)
\(242\) −4.85628 + 2.80377i −0.312173 + 0.180233i
\(243\) 0 0
\(244\) 3.88051i 0.248424i
\(245\) 0 0
\(246\) 0 0
\(247\) −16.4866 28.5556i −1.04902 1.81695i
\(248\) 12.7286 0.808268
\(249\) 0 0
\(250\) 11.9312i 0.754596i
\(251\) 22.1733 1.39957 0.699783 0.714355i \(-0.253280\pi\)
0.699783 + 0.714355i \(0.253280\pi\)
\(252\) 0 0
\(253\) 17.6226 1.10792
\(254\) 9.94262i 0.623855i
\(255\) 0 0
\(256\) −17.0405 −1.06503
\(257\) 2.02896 + 3.51427i 0.126563 + 0.219214i 0.922343 0.386372i \(-0.126272\pi\)
−0.795780 + 0.605586i \(0.792939\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.91152i 0.490652i
\(261\) 0 0
\(262\) −4.23100 + 2.44277i −0.261392 + 0.150915i
\(263\) −8.62617 4.98032i −0.531913 0.307100i 0.209882 0.977727i \(-0.432692\pi\)
−0.741795 + 0.670627i \(0.766025\pi\)
\(264\) 0 0
\(265\) 13.6383 + 7.87406i 0.837793 + 0.483700i
\(266\) 0 0
\(267\) 0 0
\(268\) 12.9876 0.793341
\(269\) 4.98399 + 8.63253i 0.303880 + 0.526335i 0.977011 0.213188i \(-0.0683846\pi\)
−0.673132 + 0.739523i \(0.735051\pi\)
\(270\) 0 0
\(271\) 16.4822 + 9.51601i 1.00122 + 0.578057i 0.908610 0.417646i \(-0.137145\pi\)
0.0926133 + 0.995702i \(0.470478\pi\)
\(272\) −0.691547 1.19780i −0.0419312 0.0726270i
\(273\) 0 0
\(274\) −0.412606 + 0.714655i −0.0249265 + 0.0431739i
\(275\) 5.17286 2.98655i 0.311935 0.180096i
\(276\) 0 0
\(277\) 7.81184 13.5305i 0.469368 0.812969i −0.530019 0.847986i \(-0.677815\pi\)
0.999387 + 0.0350166i \(0.0111484\pi\)
\(278\) 3.25531 5.63836i 0.195240 0.338166i
\(279\) 0 0
\(280\) 0 0
\(281\) 20.8780 12.0539i 1.24547 0.719075i 0.275271 0.961367i \(-0.411232\pi\)
0.970203 + 0.242292i \(0.0778991\pi\)
\(282\) 0 0
\(283\) 3.01779i 0.179389i 0.995969 + 0.0896946i \(0.0285891\pi\)
−0.995969 + 0.0896946i \(0.971411\pi\)
\(284\) 15.0249i 0.891564i
\(285\) 0 0
\(286\) −14.1022 + 8.14189i −0.833879 + 0.481440i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.18544 12.4456i 0.422673 0.732091i
\(290\) −0.578190 + 1.00145i −0.0339525 + 0.0588074i
\(291\) 0 0
\(292\) 3.40119 1.96368i 0.199040 0.114916i
\(293\) −14.9237 + 25.8485i −0.871849 + 1.51009i −0.0117671 + 0.999931i \(0.503746\pi\)
−0.860082 + 0.510156i \(0.829588\pi\)
\(294\) 0 0
\(295\) −7.68873 13.3173i −0.447655 0.775362i
\(296\) −20.4994 11.8353i −1.19150 0.687914i
\(297\) 0 0
\(298\) −8.33238 14.4321i −0.482682 0.836029i
\(299\) 17.4920 1.01159
\(300\) 0 0
\(301\) 0 0
\(302\) −1.65892 0.957777i −0.0954600 0.0551139i
\(303\) 0 0
\(304\) 6.00272 + 3.46567i 0.344280 + 0.198770i
\(305\) −6.09984 + 3.52175i −0.349276 + 0.201655i
\(306\) 0 0
\(307\) 2.68853i 0.153442i −0.997053 0.0767212i \(-0.975555\pi\)
0.997053 0.0767212i \(-0.0244451\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 3.94297 + 6.82943i 0.223946 + 0.387886i
\(311\) 11.0753 0.628020 0.314010 0.949420i \(-0.398327\pi\)
0.314010 + 0.949420i \(0.398327\pi\)
\(312\) 0 0
\(313\) 16.7397i 0.946186i −0.881013 0.473093i \(-0.843137\pi\)
0.881013 0.473093i \(-0.156863\pi\)
\(314\) −9.34619 −0.527436
\(315\) 0 0
\(316\) 8.66584 0.487492
\(317\) 2.94187i 0.165232i 0.996581 + 0.0826160i \(0.0263275\pi\)
−0.996581 + 0.0826160i \(0.973672\pi\)
\(318\) 0 0
\(319\) 2.56002 0.143334
\(320\) −6.33562 10.9736i −0.354172 0.613444i
\(321\) 0 0
\(322\) 0 0
\(323\) 13.1758i 0.733118i
\(324\) 0 0
\(325\) 5.13452 2.96442i 0.284812 0.164436i
\(326\) −0.943801 0.544904i −0.0522723 0.0301794i
\(327\) 0 0
\(328\) −4.70839 2.71839i −0.259977 0.150098i
\(329\) 0 0
\(330\) 0 0
\(331\) 4.88153 0.268313 0.134157 0.990960i \(-0.457167\pi\)
0.134157 + 0.990960i \(0.457167\pi\)
\(332\) −4.54263 7.86807i −0.249309 0.431816i
\(333\) 0 0
\(334\) 11.9156 + 6.87950i 0.651995 + 0.376429i
\(335\) 11.7868 + 20.4154i 0.643982 + 1.11541i
\(336\) 0 0
\(337\) 6.51421 11.2830i 0.354852 0.614621i −0.632241 0.774772i \(-0.717865\pi\)
0.987093 + 0.160151i \(0.0511980\pi\)
\(338\) −2.94622 + 1.70100i −0.160253 + 0.0925221i
\(339\) 0 0
\(340\) −1.58068 + 2.73782i −0.0857245 + 0.148479i
\(341\) 8.72904 15.1191i 0.472704 0.818748i
\(342\) 0 0
\(343\) 0 0
\(344\) 18.2556 10.5399i 0.984275 0.568272i
\(345\) 0 0
\(346\) 6.98687i 0.375617i
\(347\) 2.15180i 0.115515i −0.998331 0.0577573i \(-0.981605\pi\)
0.998331 0.0577573i \(-0.0183949\pi\)
\(348\) 0 0
\(349\) 25.2919 14.6023i 1.35384 0.781642i 0.365058 0.930985i \(-0.381049\pi\)
0.988785 + 0.149343i \(0.0477159\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10.4735 + 18.1407i −0.558240 + 0.966901i
\(353\) −5.41764 + 9.38362i −0.288352 + 0.499440i −0.973416 0.229042i \(-0.926441\pi\)
0.685065 + 0.728482i \(0.259774\pi\)
\(354\) 0 0
\(355\) −23.6179 + 13.6358i −1.25351 + 0.723713i
\(356\) −5.08239 + 8.80295i −0.269366 + 0.466556i
\(357\) 0 0
\(358\) −2.94617 5.10291i −0.155710 0.269697i
\(359\) −18.1425 10.4746i −0.957527 0.552829i −0.0621161 0.998069i \(-0.519785\pi\)
−0.895411 + 0.445240i \(0.853118\pi\)
\(360\) 0 0
\(361\) 23.5150 + 40.7292i 1.23763 + 2.14364i
\(362\) −1.27888 −0.0672167
\(363\) 0 0
\(364\) 0 0
\(365\) 6.17348 + 3.56426i 0.323135 + 0.186562i
\(366\) 0 0
\(367\) 4.97835 + 2.87425i 0.259868 + 0.150035i 0.624274 0.781205i \(-0.285395\pi\)
−0.364407 + 0.931240i \(0.618728\pi\)
\(368\) −3.18439 + 1.83851i −0.165998 + 0.0958389i
\(369\) 0 0
\(370\) 14.6650i 0.762398i
\(371\) 0 0
\(372\) 0 0
\(373\) −14.4467 25.0224i −0.748023 1.29561i −0.948769 0.315970i \(-0.897670\pi\)
0.200747 0.979643i \(-0.435663\pi\)
\(374\) −6.50684 −0.336461
\(375\) 0 0
\(376\) 23.6582i 1.22008i
\(377\) 2.54104 0.130870
\(378\) 0 0
\(379\) −0.411434 −0.0211339 −0.0105670 0.999944i \(-0.503364\pi\)
−0.0105670 + 0.999944i \(0.503364\pi\)
\(380\) 15.8431i 0.812734i
\(381\) 0 0
\(382\) 5.62752 0.287929
\(383\) −12.4007 21.4787i −0.633648 1.09751i −0.986800 0.161944i \(-0.948223\pi\)
0.353152 0.935566i \(-0.385110\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.53038i 0.0778944i
\(387\) 0 0
\(388\) 11.8752 6.85617i 0.602874 0.348069i
\(389\) 3.82694 + 2.20948i 0.194033 + 0.112025i 0.593869 0.804561i \(-0.297600\pi\)
−0.399836 + 0.916587i \(0.630933\pi\)
\(390\) 0 0
\(391\) 6.05319 + 3.49481i 0.306123 + 0.176740i
\(392\) 0 0
\(393\) 0 0
\(394\) 19.1911 0.966833
\(395\) 7.86465 + 13.6220i 0.395714 + 0.685396i
\(396\) 0 0
\(397\) 19.2780 + 11.1301i 0.967533 + 0.558605i 0.898483 0.439008i \(-0.144670\pi\)
0.0690495 + 0.997613i \(0.478003\pi\)
\(398\) −0.479229 0.830049i −0.0240216 0.0416066i
\(399\) 0 0
\(400\) −0.623155 + 1.07934i −0.0311578 + 0.0539668i
\(401\) −5.31899 + 3.07092i −0.265617 + 0.153354i −0.626894 0.779104i \(-0.715674\pi\)
0.361277 + 0.932459i \(0.382341\pi\)
\(402\) 0 0
\(403\) 8.66434 15.0071i 0.431602 0.747556i
\(404\) 0.544017 0.942265i 0.0270658 0.0468794i
\(405\) 0 0
\(406\) 0 0
\(407\) −28.1162 + 16.2329i −1.39367 + 0.804633i
\(408\) 0 0
\(409\) 0.884369i 0.0437293i −0.999761 0.0218646i \(-0.993040\pi\)
0.999761 0.0218646i \(-0.00696028\pi\)
\(410\) 3.36833i 0.166350i
\(411\) 0 0
\(412\) 1.47106 0.849316i 0.0724739 0.0418428i
\(413\) 0 0
\(414\) 0 0
\(415\) 8.24530 14.2813i 0.404746 0.701040i
\(416\) −10.3959 + 18.0062i −0.509700 + 0.882827i
\(417\) 0 0
\(418\) 28.2401 16.3044i 1.38127 0.797476i
\(419\) 7.59365 13.1526i 0.370974 0.642546i −0.618742 0.785595i \(-0.712357\pi\)
0.989716 + 0.143049i \(0.0456905\pi\)
\(420\) 0 0
\(421\) 13.3318 + 23.0914i 0.649753 + 1.12541i 0.983182 + 0.182630i \(0.0584611\pi\)
−0.333428 + 0.942775i \(0.608206\pi\)
\(422\) 20.3605 + 11.7551i 0.991133 + 0.572231i
\(423\) 0 0
\(424\) 12.4759 + 21.6088i 0.605881 + 1.04942i
\(425\) 2.36910 0.114918
\(426\) 0 0
\(427\) 0 0
\(428\) −3.08358 1.78031i −0.149050 0.0860543i
\(429\) 0 0
\(430\) 11.3102 + 6.52992i 0.545424 + 0.314901i
\(431\) −4.06785 + 2.34857i −0.195941 + 0.113127i −0.594761 0.803903i \(-0.702753\pi\)
0.398820 + 0.917029i \(0.369420\pi\)
\(432\) 0 0
\(433\) 8.97714i 0.431414i 0.976458 + 0.215707i \(0.0692056\pi\)
−0.976458 + 0.215707i \(0.930794\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.91250 3.31254i −0.0915919 0.158642i
\(437\) −35.0283 −1.67563
\(438\) 0 0
\(439\) 16.5136i 0.788151i 0.919078 + 0.394075i \(0.128935\pi\)
−0.919078 + 0.394075i \(0.871065\pi\)
\(440\) −22.9225 −1.09279
\(441\) 0 0
\(442\) −6.45861 −0.307205
\(443\) 1.06368i 0.0505368i −0.999681 0.0252684i \(-0.991956\pi\)
0.999681 0.0252684i \(-0.00804404\pi\)
\(444\) 0 0
\(445\) −18.4500 −0.874614
\(446\) −1.52110 2.63461i −0.0720260 0.124753i
\(447\) 0 0
\(448\) 0 0
\(449\) 15.9081i 0.750749i 0.926873 + 0.375374i \(0.122486\pi\)
−0.926873 + 0.375374i \(0.877514\pi\)
\(450\) 0 0
\(451\) −6.45785 + 3.72844i −0.304088 + 0.175565i
\(452\) −15.6352 9.02697i −0.735417 0.424593i
\(453\) 0 0
\(454\) 18.5309 + 10.6988i 0.869698 + 0.502121i
\(455\) 0 0
\(456\) 0 0
\(457\) −32.7925 −1.53397 −0.766985 0.641666i \(-0.778244\pi\)
−0.766985 + 0.641666i \(0.778244\pi\)
\(458\) 6.33672 + 10.9755i 0.296095 + 0.512852i
\(459\) 0 0
\(460\) 7.27862 + 4.20231i 0.339368 + 0.195934i
\(461\) 9.23690 + 15.9988i 0.430205 + 0.745138i 0.996891 0.0787967i \(-0.0251078\pi\)
−0.566685 + 0.823934i \(0.691774\pi\)
\(462\) 0 0
\(463\) −0.201921 + 0.349738i −0.00938408 + 0.0162537i −0.870679 0.491851i \(-0.836320\pi\)
0.861295 + 0.508105i \(0.169654\pi\)
\(464\) −0.462594 + 0.267079i −0.0214754 + 0.0123988i
\(465\) 0 0
\(466\) −0.396580 + 0.686897i −0.0183712 + 0.0318199i
\(467\) −7.51283 + 13.0126i −0.347652 + 0.602151i −0.985832 0.167736i \(-0.946354\pi\)
0.638180 + 0.769887i \(0.279688\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 12.6936 7.32866i 0.585512 0.338046i
\(471\) 0 0
\(472\) 24.3644i 1.12146i
\(473\) 28.9122i 1.32938i
\(474\) 0 0
\(475\) −10.2821 + 5.93635i −0.471773 + 0.272379i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.91604 11.9789i 0.316332 0.547903i
\(479\) 15.5400 26.9161i 0.710041 1.22983i −0.254800 0.966994i \(-0.582010\pi\)
0.964841 0.262833i \(-0.0846569\pi\)
\(480\) 0 0
\(481\) −27.9077 + 16.1125i −1.27248 + 0.734669i
\(482\) 9.07944 15.7261i 0.413557 0.716302i
\(483\) 0 0
\(484\) 2.96029 + 5.12738i 0.134559 + 0.233063i
\(485\) 21.5547 + 12.4446i 0.978747 + 0.565080i
\(486\) 0 0
\(487\) −6.74782 11.6876i −0.305773 0.529614i 0.671660 0.740859i \(-0.265582\pi\)
−0.977433 + 0.211245i \(0.932248\pi\)
\(488\) −11.1599 −0.505184
\(489\) 0 0
\(490\) 0 0
\(491\) 7.07098 + 4.08243i 0.319109 + 0.184238i 0.650995 0.759082i \(-0.274352\pi\)
−0.331886 + 0.943319i \(0.607685\pi\)
\(492\) 0 0
\(493\) 0.879342 + 0.507688i 0.0396036 + 0.0228651i
\(494\) 28.0308 16.1836i 1.26116 0.728134i
\(495\) 0 0
\(496\) 3.64269i 0.163562i
\(497\) 0 0
\(498\) 0 0
\(499\) 14.0097 + 24.2655i 0.627159 + 1.08627i 0.988119 + 0.153690i \(0.0491158\pi\)
−0.360960 + 0.932581i \(0.617551\pi\)
\(500\) 12.5973 0.563367
\(501\) 0 0
\(502\) 21.7658i 0.971455i
\(503\) 5.89656 0.262915 0.131457 0.991322i \(-0.458034\pi\)
0.131457 + 0.991322i \(0.458034\pi\)
\(504\) 0 0
\(505\) 1.97488 0.0878811
\(506\) 17.2987i 0.769022i
\(507\) 0 0
\(508\) −10.4977 −0.465758
\(509\) 7.01957 + 12.1582i 0.311137 + 0.538905i 0.978609 0.205730i \(-0.0659569\pi\)
−0.667472 + 0.744635i \(0.732624\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 9.45558i 0.417882i
\(513\) 0 0
\(514\) −3.44968 + 1.99168i −0.152159 + 0.0878490i
\(515\) 2.67011 + 1.54159i 0.117659 + 0.0679305i
\(516\) 0 0
\(517\) −28.1014 16.2243i −1.23590 0.713546i
\(518\) 0 0
\(519\) 0 0
\(520\) −22.7526 −0.997765
\(521\) −19.2229 33.2950i −0.842170 1.45868i −0.888057 0.459734i \(-0.847945\pi\)
0.0458870 0.998947i \(-0.485389\pi\)
\(522\) 0 0
\(523\) −9.08734 5.24658i −0.397362 0.229417i 0.287983 0.957635i \(-0.407015\pi\)
−0.685345 + 0.728219i \(0.740349\pi\)
\(524\) 2.57914 + 4.46720i 0.112670 + 0.195150i
\(525\) 0 0
\(526\) 4.88879 8.46764i 0.213161 0.369207i
\(527\) 5.99668 3.46219i 0.261220 0.150815i
\(528\) 0 0
\(529\) −2.20889 + 3.82591i −0.0960388 + 0.166344i
\(530\) −7.72935 + 13.3876i −0.335741 + 0.581521i
\(531\) 0 0
\(532\) 0 0
\(533\) −6.40998 + 3.70080i −0.277647 + 0.160300i
\(534\) 0 0
\(535\) 6.46284i 0.279413i
\(536\) 37.3506i 1.61330i
\(537\) 0 0
\(538\) −8.47388 + 4.89240i −0.365335 + 0.210926i
\(539\) 0 0
\(540\) 0 0
\(541\) −22.5783 + 39.1067i −0.970715 + 1.68133i −0.277311 + 0.960780i \(0.589443\pi\)
−0.693405 + 0.720548i \(0.743890\pi\)
\(542\) −9.34112 + 16.1793i −0.401236 + 0.694960i
\(543\) 0 0
\(544\) −7.19510 + 4.15409i −0.308487 + 0.178105i
\(545\) 3.47136 6.01257i 0.148697 0.257550i
\(546\) 0 0
\(547\) −4.05733 7.02751i −0.173479 0.300475i 0.766155 0.642656i \(-0.222168\pi\)
−0.939634 + 0.342181i \(0.888834\pi\)
\(548\) 0.754550 + 0.435640i 0.0322328 + 0.0186096i
\(549\) 0 0
\(550\) 2.93166 + 5.07779i 0.125007 + 0.216518i
\(551\) −5.08854 −0.216779
\(552\) 0 0
\(553\) 0 0
\(554\) 13.2818 + 7.66827i 0.564291 + 0.325794i
\(555\) 0 0
\(556\) −5.95311 3.43703i −0.252468 0.145763i
\(557\) −14.0925 + 8.13633i −0.597120 + 0.344747i −0.767908 0.640561i \(-0.778702\pi\)
0.170788 + 0.985308i \(0.445369\pi\)
\(558\) 0 0
\(559\) 28.6978i 1.21379i
\(560\) 0 0
\(561\) 0 0
\(562\) 11.8324 + 20.4942i 0.499118 + 0.864498i
\(563\) 10.2719 0.432908 0.216454 0.976293i \(-0.430551\pi\)
0.216454 + 0.976293i \(0.430551\pi\)
\(564\) 0 0
\(565\) 32.7696i 1.37863i
\(566\) −2.96233 −0.124516
\(567\) 0 0
\(568\) −43.2098 −1.81304
\(569\) 20.6157i 0.864256i 0.901812 + 0.432128i \(0.142237\pi\)
−0.901812 + 0.432128i \(0.857763\pi\)
\(570\) 0 0
\(571\) 4.25655 0.178131 0.0890656 0.996026i \(-0.471612\pi\)
0.0890656 + 0.996026i \(0.471612\pi\)
\(572\) 8.59640 + 14.8894i 0.359434 + 0.622557i
\(573\) 0 0
\(574\) 0 0
\(575\) 6.29836i 0.262660i
\(576\) 0 0
\(577\) −14.6609 + 8.46446i −0.610340 + 0.352380i −0.773099 0.634286i \(-0.781294\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(578\) 12.2168 + 7.05338i 0.508153 + 0.293382i
\(579\) 0 0
\(580\) 1.05736 + 0.610467i 0.0439045 + 0.0253483i
\(581\) 0 0
\(582\) 0 0
\(583\) 34.2228 1.41736
\(584\) 5.64730 + 9.78141i 0.233687 + 0.404758i
\(585\) 0 0
\(586\) −25.3735 14.6494i −1.04817 0.605160i
\(587\) −12.0558 20.8812i −0.497594 0.861858i 0.502402 0.864634i \(-0.332450\pi\)
−0.999996 + 0.00277589i \(0.999116\pi\)
\(588\) 0 0
\(589\) −17.3507 + 30.0522i −0.714922 + 1.23828i
\(590\) 13.0725 7.54743i 0.538187 0.310723i
\(591\) 0 0
\(592\) 3.38705 5.86654i 0.139207 0.241113i
\(593\) −19.2908 + 33.4126i −0.792178 + 1.37209i 0.132437 + 0.991191i \(0.457720\pi\)
−0.924616 + 0.380902i \(0.875614\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −15.2378 + 8.79752i −0.624163 + 0.360360i
\(597\) 0 0
\(598\) 17.1705i 0.702154i
\(599\) 33.8236i 1.38199i −0.722857 0.690997i \(-0.757172\pi\)
0.722857 0.690997i \(-0.242828\pi\)
\(600\) 0 0
\(601\) −27.4855 + 15.8688i −1.12116 + 0.647300i −0.941696 0.336465i \(-0.890769\pi\)
−0.179461 + 0.983765i \(0.557435\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.01124 + 1.75153i −0.0411469 + 0.0712686i
\(605\) −5.37320 + 9.30666i −0.218452 + 0.378370i
\(606\) 0 0
\(607\) 0.169355 0.0977772i 0.00687391 0.00396865i −0.496559 0.868003i \(-0.665403\pi\)
0.503433 + 0.864034i \(0.332070\pi\)
\(608\) 20.8181 36.0581i 0.844287 1.46235i
\(609\) 0 0
\(610\) −3.45702 5.98774i −0.139971 0.242436i
\(611\) −27.8931 16.1041i −1.12843 0.651502i
\(612\) 0 0
\(613\) −1.46664 2.54029i −0.0592370 0.102602i 0.834886 0.550423i \(-0.185533\pi\)
−0.894123 + 0.447821i \(0.852200\pi\)
\(614\) 2.63912 0.106506
\(615\) 0 0
\(616\) 0 0
\(617\) 7.86982 + 4.54365i 0.316827 + 0.182920i 0.649977 0.759953i \(-0.274778\pi\)
−0.333150 + 0.942874i \(0.608112\pi\)
\(618\) 0 0
\(619\) −24.8586 14.3521i −0.999152 0.576861i −0.0911550 0.995837i \(-0.529056\pi\)
−0.907997 + 0.418976i \(0.862389\pi\)
\(620\) 7.21068 4.16309i 0.289588 0.167194i
\(621\) 0 0
\(622\) 10.8717i 0.435916i
\(623\) 0 0
\(624\) 0 0
\(625\) 7.77986 + 13.4751i 0.311194 + 0.539004i
\(626\) 16.4321 0.656758
\(627\) 0 0
\(628\) 9.86793i 0.393773i
\(629\) −12.8768 −0.513433
\(630\) 0 0
\(631\) −20.7691 −0.826805 −0.413403 0.910548i \(-0.635660\pi\)
−0.413403 + 0.910548i \(0.635660\pi\)
\(632\) 24.9219i 0.991340i
\(633\) 0 0
\(634\) −2.88781 −0.114689
\(635\) −9.52711 16.5014i −0.378072 0.654839i
\(636\) 0 0
\(637\) 0 0
\(638\) 2.51297i 0.0994895i
\(639\) 0 0
\(640\) −5.92345 + 3.41990i −0.234145 + 0.135184i
\(641\) 39.7733 + 22.9632i 1.57095 + 0.906990i 0.996052 + 0.0887664i \(0.0282925\pi\)
0.574900 + 0.818224i \(0.305041\pi\)
\(642\) 0 0
\(643\) 9.15428 + 5.28523i 0.361010 + 0.208429i 0.669524 0.742791i \(-0.266498\pi\)
−0.308514 + 0.951220i \(0.599832\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.9336 0.508866
\(647\) −19.2562 33.3526i −0.757038 1.31123i −0.944355 0.328928i \(-0.893313\pi\)
0.187317 0.982299i \(-0.440021\pi\)
\(648\) 0 0
\(649\) −28.9402 16.7087i −1.13600 0.655872i
\(650\) 2.90993 + 5.04015i 0.114137 + 0.197691i
\(651\) 0 0
\(652\) −0.575323 + 0.996488i −0.0225314 + 0.0390255i
\(653\) −11.0867 + 6.40089i −0.433855 + 0.250486i −0.700988 0.713173i \(-0.747257\pi\)
0.267133 + 0.963660i \(0.413924\pi\)
\(654\) 0 0
\(655\) −4.68137 + 8.10837i −0.182916 + 0.316820i
\(656\) 0.777952 1.34745i 0.0303739 0.0526092i
\(657\) 0 0
\(658\) 0 0
\(659\) −41.5777 + 24.0049i −1.61964 + 0.935097i −0.632622 + 0.774461i \(0.718021\pi\)
−0.987014 + 0.160636i \(0.948645\pi\)
\(660\) 0 0
\(661\) 10.8312i 0.421285i 0.977563 + 0.210643i \(0.0675557\pi\)
−0.977563 + 0.210643i \(0.932444\pi\)
\(662\) 4.79182i 0.186239i
\(663\) 0 0
\(664\) 22.6276 13.0640i 0.878121 0.506983i
\(665\) 0 0
\(666\) 0 0
\(667\) 1.34971 2.33777i 0.0522611 0.0905188i
\(668\) 7.26354 12.5808i 0.281035 0.486767i
\(669\) 0 0
\(670\) −20.0402 + 11.5702i −0.774219 + 0.446995i
\(671\) −7.65323 + 13.2558i −0.295450 + 0.511734i
\(672\) 0 0
\(673\) −6.19553 10.7310i −0.238820 0.413649i 0.721556 0.692356i \(-0.243427\pi\)
−0.960376 + 0.278707i \(0.910094\pi\)
\(674\) 11.0756 + 6.39449i 0.426616 + 0.246307i
\(675\) 0 0
\(676\) 1.79595 + 3.11068i 0.0690752 + 0.119642i
\(677\) 28.9895 1.11416 0.557078 0.830460i \(-0.311922\pi\)
0.557078 + 0.830460i \(0.311922\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −7.87364 4.54585i −0.301940 0.174325i
\(681\) 0 0
\(682\) 14.8413 + 8.56862i 0.568302 + 0.328109i
\(683\) 0.132048 0.0762380i 0.00505268 0.00291717i −0.497472 0.867480i \(-0.665738\pi\)
0.502524 + 0.864563i \(0.332405\pi\)
\(684\) 0 0
\(685\) 1.58145i 0.0604242i
\(686\) 0 0
\(687\) 0 0
\(688\) 3.01631 + 5.22441i 0.114996 + 0.199179i
\(689\) 33.9691 1.29412
\(690\) 0 0
\(691\) 43.2353i 1.64475i −0.568948 0.822373i \(-0.692650\pi\)
0.568948 0.822373i \(-0.307350\pi\)
\(692\) 7.37691 0.280428
\(693\) 0 0
\(694\) 2.11225 0.0801799
\(695\) 12.4771i 0.473282i
\(696\) 0 0
\(697\) −2.95761 −0.112027
\(698\) 14.3339 + 24.8271i 0.542546 + 0.939718i
\(699\) 0 0
\(700\) 0 0
\(701\) 11.5821i 0.437451i −0.975786 0.218726i \(-0.929810\pi\)
0.975786 0.218726i \(-0.0701900\pi\)
\(702\) 0 0
\(703\) 55.8863 32.2660i 2.10779 1.21693i
\(704\) −23.8472 13.7682i −0.898774 0.518907i
\(705\) 0 0
\(706\) −9.21116 5.31807i −0.346667 0.200148i
\(707\) 0 0
\(708\) 0 0
\(709\) −37.8948 −1.42317 −0.711584 0.702601i \(-0.752022\pi\)
−0.711584 + 0.702601i \(0.752022\pi\)
\(710\) −13.3852 23.1838i −0.502337 0.870073i
\(711\) 0 0
\(712\) −25.3162 14.6163i −0.948765 0.547770i
\(713\) −9.20437 15.9424i −0.344707 0.597049i
\(714\) 0 0
\(715\) −15.6033 + 27.0256i −0.583529 + 1.01070i
\(716\) −5.38777 + 3.11063i −0.201351 + 0.116250i
\(717\) 0 0
\(718\) 10.2821 17.8091i 0.383724 0.664630i
\(719\) −23.3158 + 40.3842i −0.869534 + 1.50608i −0.00706058 + 0.999975i \(0.502247\pi\)
−0.862474 + 0.506102i \(0.831086\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −39.9806 + 23.0828i −1.48792 + 0.859054i
\(723\) 0 0
\(724\) 1.35028i 0.0501826i
\(725\) 0.914958i 0.0339807i
\(726\) 0 0
\(727\) −3.72659 + 2.15155i −0.138212 + 0.0797965i −0.567511 0.823366i \(-0.692094\pi\)
0.429300 + 0.903162i \(0.358760\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −3.49875 + 6.06002i −0.129495 + 0.224291i
\(731\) 5.73369 9.93104i 0.212068 0.367313i
\(732\) 0 0
\(733\) −12.1337 + 7.00539i −0.448168 + 0.258750i −0.707056 0.707157i \(-0.749977\pi\)
0.258888 + 0.965907i \(0.416644\pi\)
\(734\) −2.82143 + 4.88685i −0.104141 + 0.180377i
\(735\) 0 0
\(736\) 11.0438 + 19.1285i 0.407081 + 0.705086i
\(737\) 44.3653 + 25.6143i 1.63422 + 0.943516i
\(738\) 0 0
\(739\) −18.9313 32.7901i −0.696401 1.20620i −0.969706 0.244274i \(-0.921450\pi\)
0.273305 0.961927i \(-0.411883\pi\)
\(740\) −15.4837 −0.569191
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0489 + 13.8847i 0.882269 + 0.509378i 0.871406 0.490563i \(-0.163209\pi\)
0.0108634 + 0.999941i \(0.496542\pi\)
\(744\) 0 0
\(745\) −27.6579 15.9683i −1.01331 0.585034i
\(746\) 24.5626 14.1812i 0.899300 0.519211i
\(747\) 0 0
\(748\) 6.87007i 0.251195i
\(749\) 0 0
\(750\) 0 0
\(751\) 8.67540 + 15.0262i 0.316570 + 0.548315i 0.979770 0.200127i \(-0.0641355\pi\)
−0.663200 + 0.748442i \(0.730802\pi\)
\(752\) 6.77054 0.246896
\(753\) 0 0
\(754\) 2.49434i 0.0908387i
\(755\) −3.67100 −0.133601
\(756\) 0 0
\(757\) 18.8111 0.683701 0.341850 0.939754i \(-0.388946\pi\)
0.341850 + 0.939754i \(0.388946\pi\)
\(758\) 0.403872i 0.0146693i
\(759\) 0 0
\(760\) 45.5628 1.65274
\(761\) −4.22520 7.31825i −0.153163 0.265286i 0.779225 0.626744i \(-0.215613\pi\)
−0.932389 + 0.361457i \(0.882279\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 5.94167i 0.214962i
\(765\) 0 0
\(766\) 21.0840 12.1728i 0.761794 0.439822i
\(767\) −28.7257 16.5848i −1.03723 0.598843i
\(768\) 0 0
\(769\) 19.8100 + 11.4373i 0.714366 + 0.412440i 0.812676 0.582716i \(-0.198010\pi\)
−0.0983092 + 0.995156i \(0.531343\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.61581 0.0581544
\(773\) 18.8374 + 32.6273i 0.677533 + 1.17352i 0.975722 + 0.219015i \(0.0702843\pi\)
−0.298189 + 0.954507i \(0.596382\pi\)
\(774\) 0 0
\(775\) −5.40363 3.11978i −0.194104 0.112066i
\(776\) 19.7175 + 34.1517i 0.707817 + 1.22598i
\(777\) 0 0
\(778\) −2.16888 + 3.75660i −0.0777579 + 0.134681i
\(779\) 12.8362 7.41099i 0.459905 0.265526i
\(780\) 0 0
\(781\) −29.6324 + 51.3249i −1.06033 + 1.83655i
\(782\) −3.43058 + 5.94194i −0.122677 + 0.212483i
\(783\) 0 0
\(784\) 0 0
\(785\) −15.5116 + 8.95561i −0.553632 + 0.319639i
\(786\) 0 0
\(787\) 23.4661i 0.836475i 0.908338 + 0.418237i \(0.137352\pi\)
−0.908338 + 0.418237i \(0.862648\pi\)
\(788\) 20.2624i 0.721818i
\(789\) 0 0
\(790\) −13.3716 + 7.72011i −0.475741 + 0.274669i
\(791\) 0 0
\(792\) 0 0
\(793\) −7.59650 + 13.1575i −0.269760 + 0.467237i
\(794\) −10.9256 + 18.9237i −0.387734 + 0.671575i
\(795\) 0 0
\(796\) −0.876386 + 0.505981i −0.0310627 + 0.0179340i
\(797\) 22.8856 39.6390i 0.810648 1.40408i −0.101763 0.994809i \(-0.532448\pi\)
0.912411 0.409275i \(-0.134218\pi\)
\(798\) 0 0
\(799\) −6.43503 11.1458i −0.227655 0.394310i
\(800\) 6.48352 + 3.74326i 0.229227 + 0.132344i
\(801\) 0 0
\(802\) −3.01448 5.22123i −0.106445 0.184368i
\(803\) 15.4912 0.546674
\(804\) 0 0
\(805\) 0 0
\(806\) 14.7313 + 8.50510i 0.518887 + 0.299579i
\(807\) 0 0
\(808\) 2.70984 + 1.56453i 0.0953317 + 0.0550398i
\(809\) −11.4669 + 6.62041i −0.403154 + 0.232761i −0.687844 0.725858i \(-0.741443\pi\)
0.284690 + 0.958620i \(0.408109\pi\)
\(810\) 0 0
\(811\) 56.0437i 1.96796i 0.178275 + 0.983981i \(0.442948\pi\)
−0.178275 + 0.983981i \(0.557052\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −15.9345 27.5994i −0.558505 0.967359i
\(815\) −2.08853 −0.0731579
\(816\) 0 0
\(817\) 57.4685i 2.01057i
\(818\) 0.868116 0.0303530
\(819\) 0 0
\(820\) −3.55636 −0.124193
\(821\) 56.3224i 1.96567i −0.184499 0.982833i \(-0.559066\pi\)
0.184499 0.982833i \(-0.440934\pi\)
\(822\) 0 0
\(823\) 17.0436 0.594103 0.297051 0.954862i \(-0.403997\pi\)
0.297051 + 0.954862i \(0.403997\pi\)
\(824\) 2.44253 + 4.23058i 0.0850895 + 0.147379i
\(825\) 0 0
\(826\) 0 0
\(827\) 45.7715i 1.59163i 0.605539 + 0.795816i \(0.292958\pi\)
−0.605539 + 0.795816i \(0.707042\pi\)
\(828\) 0 0
\(829\) −30.5567 + 17.6419i −1.06128 + 0.612730i −0.925786 0.378049i \(-0.876595\pi\)
−0.135493 + 0.990778i \(0.543262\pi\)
\(830\) 14.0188 + 8.09376i 0.486600 + 0.280938i
\(831\) 0 0
\(832\) −23.6704 13.6661i −0.820623 0.473787i
\(833\) 0 0
\(834\) 0 0
\(835\) 26.3680 0.912502
\(836\) −17.2146 29.8166i −0.595380 1.03123i
\(837\) 0 0
\(838\) 12.9109 + 7.45409i 0.445998 + 0.257497i
\(839\) 22.3195 + 38.6585i 0.770555 + 1.33464i 0.937259 + 0.348634i \(0.113354\pi\)
−0.166704 + 0.986007i \(0.553312\pi\)
\(840\) 0 0
\(841\) −14.3039 + 24.7751i −0.493239 + 0.854315i
\(842\) −22.6670 + 13.0868i −0.781157 + 0.451001i
\(843\) 0 0
\(844\) 12.4114 21.4971i 0.427216 0.739960i
\(845\) −3.25982 + 5.64618i −0.112141 + 0.194235i
\(846\) 0 0
\(847\) 0 0
\(848\) −6.18404 + 3.57036i −0.212361 + 0.122607i
\(849\) 0 0
\(850\) 2.32556i 0.0797661i
\(851\) 34.2336i 1.17351i
\(852\) 0 0
\(853\) 47.7652 27.5772i 1.63545 0.944227i 0.653077 0.757292i \(-0.273478\pi\)
0.982372 0.186935i \(-0.0598554\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 5.11994 8.86800i 0.174996 0.303102i
\(857\) −19.0771 + 33.0425i −0.651660 + 1.12871i 0.331059 + 0.943610i \(0.392594\pi\)
−0.982720 + 0.185099i \(0.940739\pi\)
\(858\) 0 0
\(859\) 35.0465 20.2341i 1.19577 0.690378i 0.236160 0.971714i \(-0.424111\pi\)
0.959609 + 0.281336i \(0.0907776\pi\)
\(860\) 6.89444 11.9415i 0.235099 0.407203i
\(861\) 0 0
\(862\) −2.30541 3.99309i −0.0785226 0.136005i
\(863\) 31.3519 + 18.1011i 1.06723 + 0.616167i 0.927424 0.374012i \(-0.122018\pi\)
0.139808 + 0.990179i \(0.455351\pi\)
\(864\) 0 0
\(865\) 6.69488 + 11.5959i 0.227633 + 0.394272i
\(866\) −8.81216 −0.299449
\(867\) 0 0
\(868\) 0 0
\(869\) 29.6024 + 17.0910i 1.00419 + 0.579771i
\(870\) 0 0
\(871\) 44.0365 + 25.4245i 1.49212 + 0.861475i
\(872\) 9.52645 5.50010i 0.322606 0.186257i
\(873\) 0 0
\(874\) 34.3846i 1.16307i
\(875\) 0 0
\(876\) 0 0
\(877\) 5.53439 + 9.58584i 0.186883 + 0.323691i 0.944209 0.329346i \(-0.106828\pi\)
−0.757326 + 0.653036i \(0.773495\pi\)
\(878\) −16.2101 −0.547064
\(879\) 0 0
\(880\) 6.55998i 0.221137i
\(881\) −8.87036 −0.298850 −0.149425 0.988773i \(-0.547742\pi\)
−0.149425 + 0.988773i \(0.547742\pi\)
\(882\) 0 0
\(883\) −14.1903 −0.477540 −0.238770 0.971076i \(-0.576744\pi\)
−0.238770 + 0.971076i \(0.576744\pi\)
\(884\) 6.81915i 0.229353i
\(885\) 0 0
\(886\) 1.04413 0.0350782
\(887\) −19.5180 33.8062i −0.655350 1.13510i −0.981806 0.189887i \(-0.939188\pi\)
0.326456 0.945213i \(-0.394146\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 18.1109i 0.607080i
\(891\) 0 0
\(892\) −2.78169 + 1.60601i −0.0931378 + 0.0537732i
\(893\) 55.8570 + 32.2490i 1.86918 + 1.07917i
\(894\) 0 0
\(895\) −9.77931 5.64609i −0.326886 0.188728i
\(896\) 0 0
\(897\) 0 0
\(898\) −15.6157 −0.521103
\(899\) −1.33711 2.31595i −0.0445952 0.0772411i
\(900\) 0 0
\(901\) 11.7552 + 6.78687i 0.391622 + 0.226103i
\(902\) −3.65992 6.33916i −0.121862 0.211071i
\(903\) 0 0
\(904\) 25.9605 44.9648i 0.863432 1.49551i
\(905\) −2.12252 + 1.22544i −0.0705550 + 0.0407350i
\(906\) 0 0
\(907\) −4.93487 + 8.54745i −0.163860 + 0.283813i −0.936250 0.351335i \(-0.885728\pi\)
0.772390 + 0.635148i \(0.219061\pi\)
\(908\) 11.2961 19.5654i 0.374873 0.649300i
\(909\) 0 0
\(910\) 0 0
\(911\) 46.6335 26.9239i 1.54504 0.892028i 0.546529 0.837440i \(-0.315949\pi\)
0.998509 0.0545881i \(-0.0173846\pi\)
\(912\) 0 0
\(913\) 35.8363i 1.18601i
\(914\) 32.1898i 1.06475i
\(915\) 0 0
\(916\) 11.5882 6.69046i 0.382885 0.221059i
\(917\) 0 0
\(918\) 0 0
\(919\) −11.0899 + 19.2084i −0.365824 + 0.633625i −0.988908 0.148530i \(-0.952546\pi\)
0.623084 + 0.782155i \(0.285879\pi\)
\(920\) −12.0853 + 20.9324i −0.398442 + 0.690122i
\(921\) 0 0
\(922\) −15.7047 + 9.06714i −0.517208 + 0.298610i
\(923\) −29.4128 + 50.9444i −0.968133 + 1.67686i
\(924\) 0 0
\(925\) 5.80167 + 10.0488i 0.190758 + 0.330402i
\(926\) −0.343310 0.198210i −0.0112819 0.00651359i
\(927\) 0 0
\(928\) 1.60433 + 2.77878i 0.0526647 + 0.0912180i
\(929\) −54.9907 −1.80419 −0.902093 0.431541i \(-0.857970\pi\)
−0.902093 + 0.431541i \(0.857970\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.725243 + 0.418719i 0.0237561 + 0.0137156i
\(933\) 0 0
\(934\) −12.7734 7.37475i −0.417960 0.241309i
\(935\) −10.7992 + 6.23491i −0.353171 + 0.203903i
\(936\) 0 0
\(937\) 29.3132i 0.957622i −0.877918 0.478811i \(-0.841068\pi\)
0.877918 0.478811i \(-0.158932\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −7.73777 13.4022i −0.252378 0.437132i
\(941\) −15.1752 −0.494696 −0.247348 0.968927i \(-0.579559\pi\)
−0.247348 + 0.968927i \(0.579559\pi\)
\(942\) 0 0
\(943\) 7.86293i 0.256052i
\(944\) 6.97265 0.226940
\(945\) 0 0
\(946\) 28.3808 0.922739
\(947\) 2.62670i 0.0853561i −0.999089 0.0426781i \(-0.986411\pi\)
0.999089 0.0426781i \(-0.0135890\pi\)
\(948\) 0 0
\(949\) 15.3764 0.499139
\(950\) −5.82725 10.0931i −0.189061 0.327463i
\(951\) 0 0
\(952\) 0 0
\(953\) 40.5520i 1.31361i −0.754061 0.656805i \(-0.771908\pi\)
0.754061 0.656805i \(-0.228092\pi\)
\(954\) 0 0
\(955\) 9.33981 5.39234i 0.302229 0.174492i
\(956\) −12.6476 7.30212i −0.409054 0.236167i
\(957\) 0 0
\(958\) 26.4214 + 15.2544i 0.853637 + 0.492847i
\(959\) 0 0
\(960\) 0 0
\(961\) 12.7631 0.411713
\(962\) −15.8164 27.3948i −0.509942 0.883245i
\(963\) 0 0
\(964\) −16.6039 9.58629i −0.534777 0.308754i
\(965\) 1.46643 + 2.53993i 0.0472059 + 0.0817631i
\(966\) 0 0
\(967\) 6.47468 11.2145i 0.208212 0.360633i −0.742939 0.669359i \(-0.766569\pi\)
0.951151 + 0.308725i \(0.0999023\pi\)
\(968\) −14.7457 + 8.51343i −0.473945 + 0.273632i
\(969\) 0 0
\(970\) −12.2159 + 21.1585i −0.392228 + 0.679359i
\(971\) −8.26077 + 14.3081i −0.265101 + 0.459168i −0.967590 0.252526i \(-0.918739\pi\)
0.702489 + 0.711694i \(0.252072\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 11.4728 6.62381i 0.367611 0.212240i
\(975\) 0 0
\(976\) 3.19375i 0.102229i
\(977\) 6.35928i 0.203451i 0.994812 + 0.101726i \(0.0324364\pi\)
−0.994812 + 0.101726i \(0.967564\pi\)
\(978\) 0 0
\(979\) −34.7227 + 20.0472i −1.10974 + 0.640711i
\(980\) 0 0
\(981\) 0 0
\(982\) −4.00740 + 6.94103i −0.127881 + 0.221497i
\(983\) 1.11487 1.93102i 0.0355590 0.0615899i −0.847698 0.530479i \(-0.822012\pi\)
0.883257 + 0.468889i \(0.155346\pi\)
\(984\) 0 0
\(985\) 31.8508 18.3891i 1.01485 0.585924i
\(986\) −0.498358 + 0.863181i −0.0158709 + 0.0274893i
\(987\) 0 0
\(988\) −17.0870 29.5956i −0.543610 0.941561i
\(989\) −26.4021 15.2433i −0.839538 0.484708i
\(990\) 0 0
\(991\) 24.7285 + 42.8310i 0.785527 + 1.36057i 0.928684 + 0.370872i \(0.120941\pi\)
−0.143157 + 0.989700i \(0.545726\pi\)
\(992\) 21.8815 0.694738
\(993\) 0 0
\(994\) 0 0
\(995\) −1.59072 0.918403i −0.0504293 0.0291153i
\(996\) 0 0
\(997\) −7.28219 4.20437i −0.230629 0.133154i 0.380233 0.924891i \(-0.375844\pi\)
−0.610862 + 0.791737i \(0.709177\pi\)
\(998\) −23.8195 + 13.7522i −0.753993 + 0.435318i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.i.d.1097.18 48
3.2 odd 2 441.2.i.d.68.9 48
7.2 even 3 1323.2.o.e.881.15 48
7.3 odd 6 1323.2.s.d.962.10 48
7.4 even 3 1323.2.s.d.962.9 48
7.5 odd 6 1323.2.o.e.881.16 48
7.6 odd 2 inner 1323.2.i.d.1097.8 48
9.2 odd 6 1323.2.s.d.656.10 48
9.7 even 3 441.2.s.d.362.15 48
21.2 odd 6 441.2.o.e.293.10 yes 48
21.5 even 6 441.2.o.e.293.9 yes 48
21.11 odd 6 441.2.s.d.374.16 48
21.17 even 6 441.2.s.d.374.15 48
21.20 even 2 441.2.i.d.68.10 48
63.2 odd 6 1323.2.o.e.440.16 48
63.11 odd 6 inner 1323.2.i.d.521.8 48
63.16 even 3 441.2.o.e.146.9 48
63.20 even 6 1323.2.s.d.656.9 48
63.25 even 3 441.2.i.d.227.16 48
63.34 odd 6 441.2.s.d.362.16 48
63.38 even 6 inner 1323.2.i.d.521.18 48
63.47 even 6 1323.2.o.e.440.15 48
63.52 odd 6 441.2.i.d.227.15 48
63.61 odd 6 441.2.o.e.146.10 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.9 48 3.2 odd 2
441.2.i.d.68.10 48 21.20 even 2
441.2.i.d.227.15 48 63.52 odd 6
441.2.i.d.227.16 48 63.25 even 3
441.2.o.e.146.9 48 63.16 even 3
441.2.o.e.146.10 yes 48 63.61 odd 6
441.2.o.e.293.9 yes 48 21.5 even 6
441.2.o.e.293.10 yes 48 21.2 odd 6
441.2.s.d.362.15 48 9.7 even 3
441.2.s.d.362.16 48 63.34 odd 6
441.2.s.d.374.15 48 21.17 even 6
441.2.s.d.374.16 48 21.11 odd 6
1323.2.i.d.521.8 48 63.11 odd 6 inner
1323.2.i.d.521.18 48 63.38 even 6 inner
1323.2.i.d.1097.8 48 7.6 odd 2 inner
1323.2.i.d.1097.18 48 1.1 even 1 trivial
1323.2.o.e.440.15 48 63.47 even 6
1323.2.o.e.440.16 48 63.2 odd 6
1323.2.o.e.881.15 48 7.2 even 3
1323.2.o.e.881.16 48 7.5 odd 6
1323.2.s.d.656.9 48 63.20 even 6
1323.2.s.d.656.10 48 9.2 odd 6
1323.2.s.d.962.9 48 7.4 even 3
1323.2.s.d.962.10 48 7.3 odd 6