Properties

Label 441.2.i.d.227.15
Level $441$
Weight $2$
Character 441.227
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(68,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 227.15
Character \(\chi\) \(=\) 441.227
Dual form 441.2.i.d.68.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.981621i q^{2} +(-1.73160 + 0.0395255i) q^{3} +1.03642 q^{4} +(-0.940599 + 1.62916i) q^{5} +(-0.0387990 - 1.69978i) q^{6} +2.98061i q^{8} +(2.99688 - 0.136885i) q^{9} +(-1.59922 - 0.923312i) q^{10} +(-3.54040 + 2.04405i) q^{11} +(-1.79466 + 0.0409650i) q^{12} +(3.51415 - 2.02890i) q^{13} +(1.56435 - 2.85824i) q^{15} -0.852996 q^{16} +(-0.810727 + 1.40422i) q^{17} +(0.134369 + 2.94180i) q^{18} +(-7.03722 + 4.06294i) q^{19} +(-0.974855 + 1.68850i) q^{20} +(-2.00648 - 3.47533i) q^{22} +(-3.73318 - 2.15535i) q^{23} +(-0.117810 - 5.16123i) q^{24} +(0.730548 + 1.26535i) q^{25} +(1.99161 + 3.44957i) q^{26} +(-5.18398 + 0.355482i) q^{27} +(-0.542317 - 0.313107i) q^{29} +(2.80571 + 1.53560i) q^{30} +4.27047i q^{31} +5.12391i q^{32} +(6.04976 - 3.67941i) q^{33} +(-1.37841 - 0.795827i) q^{34} +(3.10602 - 0.141870i) q^{36} +(-3.97076 - 6.87757i) q^{37} +(-3.98827 - 6.90789i) q^{38} +(-6.00491 + 3.65214i) q^{39} +(-4.85591 - 2.80356i) q^{40} +(0.912023 + 1.57967i) q^{41} +(-3.53614 + 6.12477i) q^{43} +(-3.66933 + 2.11849i) q^{44} +(-2.59585 + 5.01116i) q^{45} +(2.11574 - 3.66457i) q^{46} +7.93736 q^{47} +(1.47705 - 0.0337151i) q^{48} +(-1.24209 + 0.717122i) q^{50} +(1.34835 - 2.46359i) q^{51} +(3.64214 - 2.10279i) q^{52} +(-7.24978 - 4.18567i) q^{53} +(-0.348949 - 5.08870i) q^{54} -7.69052i q^{55} +(12.0251 - 7.31354i) q^{57} +(0.307352 - 0.532350i) q^{58} +8.17430 q^{59} +(1.62132 - 2.96233i) q^{60} -3.74415i q^{61} -4.19198 q^{62} -6.73573 q^{64} +7.63351i q^{65} +(3.61179 + 5.93857i) q^{66} +12.5312 q^{67} +(-0.840253 + 1.45536i) q^{68} +(6.54957 + 3.58466i) q^{69} +14.4969i q^{71} +(0.408000 + 8.93253i) q^{72} +(3.28167 + 1.89468i) q^{73} +(6.75117 - 3.89779i) q^{74} +(-1.31503 - 2.16220i) q^{75} +(-7.29351 + 4.21091i) q^{76} +(-3.58501 - 5.89455i) q^{78} +8.36133 q^{79} +(0.802327 - 1.38967i) q^{80} +(8.96253 - 0.820452i) q^{81} +(-1.55064 + 0.895261i) q^{82} +(4.38300 - 7.59159i) q^{83} +(-1.52514 - 2.64162i) q^{85} +(-6.01221 - 3.47115i) q^{86} +(0.951451 + 0.520740i) q^{87} +(-6.09252 - 10.5526i) q^{88} +(4.90379 + 8.49362i) q^{89} +(-4.91906 - 2.54814i) q^{90} +(-3.86914 - 2.23385i) q^{92} +(-0.168792 - 7.39474i) q^{93} +7.79148i q^{94} -15.2864i q^{95} +(-0.202525 - 8.87256i) q^{96} +(11.4579 + 6.61525i) q^{97} +(-10.3303 + 6.61038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 8 q^{9} + 24 q^{11} - 40 q^{15} + 48 q^{16} - 16 q^{18} + 48 q^{23} - 24 q^{25} - 24 q^{30} - 8 q^{36} - 56 q^{39} - 96 q^{44} + 48 q^{50} - 24 q^{51} - 48 q^{53} + 80 q^{57} + 168 q^{60}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.981621i 0.694111i 0.937845 + 0.347056i \(0.112818\pi\)
−0.937845 + 0.347056i \(0.887182\pi\)
\(3\) −1.73160 + 0.0395255i −0.999740 + 0.0228200i
\(4\) 1.03642 0.518210
\(5\) −0.940599 + 1.62916i −0.420648 + 0.728585i −0.996003 0.0893196i \(-0.971531\pi\)
0.575355 + 0.817904i \(0.304864\pi\)
\(6\) −0.0387990 1.69978i −0.0158396 0.693930i
\(7\) 0 0
\(8\) 2.98061i 1.05381i
\(9\) 2.99688 0.136885i 0.998958 0.0456282i
\(10\) −1.59922 0.923312i −0.505719 0.291977i
\(11\) −3.54040 + 2.04405i −1.06747 + 0.616304i −0.927489 0.373850i \(-0.878037\pi\)
−0.139980 + 0.990154i \(0.544704\pi\)
\(12\) −1.79466 + 0.0409650i −0.518075 + 0.0118256i
\(13\) 3.51415 2.02890i 0.974651 0.562715i 0.0739997 0.997258i \(-0.476424\pi\)
0.900651 + 0.434544i \(0.143090\pi\)
\(14\) 0 0
\(15\) 1.56435 2.85824i 0.403913 0.737994i
\(16\) −0.852996 −0.213249
\(17\) −0.810727 + 1.40422i −0.196630 + 0.340574i −0.947434 0.319952i \(-0.896333\pi\)
0.750803 + 0.660526i \(0.229667\pi\)
\(18\) 0.134369 + 2.94180i 0.0316710 + 0.693388i
\(19\) −7.03722 + 4.06294i −1.61445 + 0.932103i −0.626128 + 0.779720i \(0.715361\pi\)
−0.988322 + 0.152382i \(0.951305\pi\)
\(20\) −0.974855 + 1.68850i −0.217984 + 0.377560i
\(21\) 0 0
\(22\) −2.00648 3.47533i −0.427783 0.740943i
\(23\) −3.73318 2.15535i −0.778423 0.449423i 0.0574484 0.998348i \(-0.481704\pi\)
−0.835871 + 0.548926i \(0.815037\pi\)
\(24\) −0.117810 5.16123i −0.0240479 1.05353i
\(25\) 0.730548 + 1.26535i 0.146110 + 0.253069i
\(26\) 1.99161 + 3.44957i 0.390587 + 0.676516i
\(27\) −5.18398 + 0.355482i −0.997657 + 0.0684126i
\(28\) 0 0
\(29\) −0.542317 0.313107i −0.100706 0.0581425i 0.448801 0.893632i \(-0.351851\pi\)
−0.549507 + 0.835489i \(0.685184\pi\)
\(30\) 2.80571 + 1.53560i 0.512250 + 0.280360i
\(31\) 4.27047i 0.766999i 0.923541 + 0.383499i \(0.125281\pi\)
−0.923541 + 0.383499i \(0.874719\pi\)
\(32\) 5.12391i 0.905788i
\(33\) 6.04976 3.67941i 1.05313 0.640503i
\(34\) −1.37841 0.795827i −0.236396 0.136483i
\(35\) 0 0
\(36\) 3.10602 0.141870i 0.517670 0.0236450i
\(37\) −3.97076 6.87757i −0.652790 1.13066i −0.982443 0.186563i \(-0.940265\pi\)
0.329653 0.944102i \(-0.393068\pi\)
\(38\) −3.98827 6.90789i −0.646983 1.12061i
\(39\) −6.00491 + 3.65214i −0.961556 + 0.584810i
\(40\) −4.85591 2.80356i −0.767787 0.443282i
\(41\) 0.912023 + 1.57967i 0.142434 + 0.246703i 0.928413 0.371551i \(-0.121174\pi\)
−0.785979 + 0.618254i \(0.787840\pi\)
\(42\) 0 0
\(43\) −3.53614 + 6.12477i −0.539256 + 0.934019i 0.459688 + 0.888080i \(0.347961\pi\)
−0.998944 + 0.0459387i \(0.985372\pi\)
\(44\) −3.66933 + 2.11849i −0.553173 + 0.319375i
\(45\) −2.59585 + 5.01116i −0.386966 + 0.747019i
\(46\) 2.11574 3.66457i 0.311949 0.540312i
\(47\) 7.93736 1.15778 0.578891 0.815405i \(-0.303485\pi\)
0.578891 + 0.815405i \(0.303485\pi\)
\(48\) 1.47705 0.0337151i 0.213194 0.00486635i
\(49\) 0 0
\(50\) −1.24209 + 0.717122i −0.175658 + 0.101416i
\(51\) 1.34835 2.46359i 0.188807 0.344972i
\(52\) 3.64214 2.10279i 0.505073 0.291604i
\(53\) −7.24978 4.18567i −0.995835 0.574945i −0.0888214 0.996048i \(-0.528310\pi\)
−0.907013 + 0.421102i \(0.861643\pi\)
\(54\) −0.348949 5.08870i −0.0474859 0.692485i
\(55\) 7.69052i 1.03699i
\(56\) 0 0
\(57\) 12.0251 7.31354i 1.59276 0.968702i
\(58\) 0.307352 0.532350i 0.0403573 0.0699009i
\(59\) 8.17430 1.06420 0.532101 0.846681i \(-0.321402\pi\)
0.532101 + 0.846681i \(0.321402\pi\)
\(60\) 1.62132 2.96233i 0.209311 0.382436i
\(61\) 3.74415i 0.479390i −0.970848 0.239695i \(-0.922953\pi\)
0.970848 0.239695i \(-0.0770474\pi\)
\(62\) −4.19198 −0.532382
\(63\) 0 0
\(64\) −6.73573 −0.841966
\(65\) 7.63351i 0.946820i
\(66\) 3.61179 + 5.93857i 0.444580 + 0.730988i
\(67\) 12.5312 1.53093 0.765464 0.643479i \(-0.222510\pi\)
0.765464 + 0.643479i \(0.222510\pi\)
\(68\) −0.840253 + 1.45536i −0.101896 + 0.176489i
\(69\) 6.54957 + 3.58466i 0.788476 + 0.431542i
\(70\) 0 0
\(71\) 14.4969i 1.72047i 0.509898 + 0.860235i \(0.329683\pi\)
−0.509898 + 0.860235i \(0.670317\pi\)
\(72\) 0.408000 + 8.93253i 0.0480833 + 1.05271i
\(73\) 3.28167 + 1.89468i 0.384091 + 0.221755i 0.679597 0.733586i \(-0.262155\pi\)
−0.295506 + 0.955341i \(0.595488\pi\)
\(74\) 6.75117 3.89779i 0.784807 0.453109i
\(75\) −1.31503 2.16220i −0.151847 0.249669i
\(76\) −7.29351 + 4.21091i −0.836623 + 0.483025i
\(77\) 0 0
\(78\) −3.58501 5.89455i −0.405923 0.667426i
\(79\) 8.36133 0.940723 0.470361 0.882474i \(-0.344124\pi\)
0.470361 + 0.882474i \(0.344124\pi\)
\(80\) 0.802327 1.38967i 0.0897029 0.155370i
\(81\) 8.96253 0.820452i 0.995836 0.0911613i
\(82\) −1.55064 + 0.895261i −0.171239 + 0.0988651i
\(83\) 4.38300 7.59159i 0.481097 0.833285i −0.518668 0.854976i \(-0.673572\pi\)
0.999765 + 0.0216912i \(0.00690508\pi\)
\(84\) 0 0
\(85\) −1.52514 2.64162i −0.165424 0.286524i
\(86\) −6.01221 3.47115i −0.648313 0.374304i
\(87\) 0.951451 + 0.520740i 0.102006 + 0.0558292i
\(88\) −6.09252 10.5526i −0.649465 1.12491i
\(89\) 4.90379 + 8.49362i 0.519801 + 0.900322i 0.999735 + 0.0230174i \(0.00732730\pi\)
−0.479934 + 0.877305i \(0.659339\pi\)
\(90\) −4.91906 2.54814i −0.518514 0.268598i
\(91\) 0 0
\(92\) −3.86914 2.23385i −0.403386 0.232895i
\(93\) −0.168792 7.39474i −0.0175029 0.766799i
\(94\) 7.79148i 0.803630i
\(95\) 15.2864i 1.56835i
\(96\) −0.202525 8.87256i −0.0206701 0.905552i
\(97\) 11.4579 + 6.61525i 1.16338 + 0.671677i 0.952111 0.305752i \(-0.0989077\pi\)
0.211267 + 0.977428i \(0.432241\pi\)
\(98\) 0 0
\(99\) −10.3303 + 6.61038i −1.03824 + 0.664369i
\(100\) 0.757155 + 1.31143i 0.0757155 + 0.131143i
\(101\) −0.524900 0.909154i −0.0522295 0.0904642i 0.838729 0.544550i \(-0.183299\pi\)
−0.890958 + 0.454085i \(0.849966\pi\)
\(102\) 2.41832 + 1.32357i 0.239449 + 0.131053i
\(103\) 1.41937 + 0.819472i 0.139854 + 0.0807449i 0.568295 0.822825i \(-0.307603\pi\)
−0.428440 + 0.903570i \(0.640937\pi\)
\(104\) 6.04736 + 10.4743i 0.592992 + 1.02709i
\(105\) 0 0
\(106\) 4.10874 7.11654i 0.399076 0.691220i
\(107\) 2.97522 1.71775i 0.287626 0.166061i −0.349245 0.937031i \(-0.613562\pi\)
0.636871 + 0.770971i \(0.280229\pi\)
\(108\) −5.37278 + 0.368429i −0.516996 + 0.0354521i
\(109\) −1.84529 + 3.19614i −0.176747 + 0.306134i −0.940764 0.339061i \(-0.889891\pi\)
0.764018 + 0.645195i \(0.223224\pi\)
\(110\) 7.54918 0.719786
\(111\) 7.14761 + 11.7522i 0.678421 + 1.11547i
\(112\) 0 0
\(113\) 15.0858 8.70977i 1.41915 0.819346i 0.422925 0.906165i \(-0.361003\pi\)
0.996224 + 0.0868183i \(0.0276699\pi\)
\(114\) 7.17913 + 11.8041i 0.672387 + 1.10555i
\(115\) 7.02285 4.05465i 0.654885 0.378098i
\(116\) −0.562068 0.324510i −0.0521867 0.0301300i
\(117\) 10.2538 6.56138i 0.947960 0.606600i
\(118\) 8.02407i 0.738675i
\(119\) 0 0
\(120\) 8.51931 + 4.66271i 0.777703 + 0.425646i
\(121\) 2.85627 4.94720i 0.259661 0.449746i
\(122\) 3.67534 0.332750
\(123\) −1.64170 2.69931i −0.148027 0.243388i
\(124\) 4.42600i 0.397466i
\(125\) −12.1546 −1.08714
\(126\) 0 0
\(127\) −10.1288 −0.898783 −0.449391 0.893335i \(-0.648359\pi\)
−0.449391 + 0.893335i \(0.648359\pi\)
\(128\) 3.63588i 0.321369i
\(129\) 5.88109 10.7454i 0.517801 0.946082i
\(130\) −7.49322 −0.657199
\(131\) −2.48851 + 4.31022i −0.217422 + 0.376586i −0.954019 0.299746i \(-0.903098\pi\)
0.736597 + 0.676332i \(0.236431\pi\)
\(132\) 6.27008 3.81341i 0.545741 0.331915i
\(133\) 0 0
\(134\) 12.3009i 1.06263i
\(135\) 4.29690 8.77992i 0.369819 0.755655i
\(136\) −4.18544 2.41647i −0.358899 0.207210i
\(137\) −0.728035 + 0.420331i −0.0622003 + 0.0359113i −0.530778 0.847511i \(-0.678100\pi\)
0.468577 + 0.883422i \(0.344767\pi\)
\(138\) −3.51877 + 6.42920i −0.299538 + 0.547290i
\(139\) −5.74392 + 3.31626i −0.487193 + 0.281281i −0.723409 0.690419i \(-0.757426\pi\)
0.236216 + 0.971701i \(0.424093\pi\)
\(140\) 0 0
\(141\) −13.7443 + 0.313728i −1.15748 + 0.0264206i
\(142\) −14.2305 −1.19420
\(143\) −8.29433 + 14.3662i −0.693606 + 1.20136i
\(144\) −2.55632 + 0.116762i −0.213027 + 0.00973017i
\(145\) 1.02020 0.589015i 0.0847234 0.0489151i
\(146\) −1.85985 + 3.22136i −0.153923 + 0.266602i
\(147\) 0 0
\(148\) −4.11538 7.12804i −0.338282 0.585921i
\(149\) 14.7023 + 8.48838i 1.20446 + 0.695395i 0.961544 0.274652i \(-0.0885627\pi\)
0.242916 + 0.970047i \(0.421896\pi\)
\(150\) 2.12246 1.29086i 0.173298 0.105398i
\(151\) −0.975709 1.68998i −0.0794021 0.137528i 0.823590 0.567186i \(-0.191968\pi\)
−0.902992 + 0.429657i \(0.858634\pi\)
\(152\) −12.1101 20.9752i −0.982256 1.70132i
\(153\) −2.23743 + 4.31925i −0.180886 + 0.349191i
\(154\) 0 0
\(155\) −6.95730 4.01680i −0.558823 0.322637i
\(156\) −6.22361 + 3.78514i −0.498287 + 0.303054i
\(157\) 9.52118i 0.759873i −0.925013 0.379936i \(-0.875946\pi\)
0.925013 0.379936i \(-0.124054\pi\)
\(158\) 8.20766i 0.652966i
\(159\) 12.7192 + 6.96135i 1.00870 + 0.552071i
\(160\) −8.34769 4.81954i −0.659943 0.381018i
\(161\) 0 0
\(162\) 0.805373 + 8.79781i 0.0632761 + 0.691221i
\(163\) −0.555106 0.961472i −0.0434793 0.0753083i 0.843467 0.537181i \(-0.180511\pi\)
−0.886946 + 0.461873i \(0.847178\pi\)
\(164\) 0.945238 + 1.63720i 0.0738107 + 0.127844i
\(165\) 0.303971 + 13.3169i 0.0236641 + 1.03672i
\(166\) 7.45206 + 4.30245i 0.578392 + 0.333935i
\(167\) −7.00830 12.1387i −0.542319 0.939324i −0.998770 0.0495754i \(-0.984213\pi\)
0.456452 0.889748i \(-0.349120\pi\)
\(168\) 0 0
\(169\) 1.73285 3.00138i 0.133296 0.230875i
\(170\) 2.59307 1.49711i 0.198879 0.114823i
\(171\) −20.5335 + 13.1394i −1.57024 + 1.00480i
\(172\) −3.66492 + 6.34783i −0.279448 + 0.484018i
\(173\) −7.11768 −0.541147 −0.270574 0.962699i \(-0.587213\pi\)
−0.270574 + 0.962699i \(0.587213\pi\)
\(174\) −0.511170 + 0.933965i −0.0387517 + 0.0708037i
\(175\) 0 0
\(176\) 3.01994 1.74357i 0.227637 0.131426i
\(177\) −14.1546 + 0.323093i −1.06393 + 0.0242851i
\(178\) −8.33752 + 4.81367i −0.624924 + 0.360800i
\(179\) 5.19845 + 3.00133i 0.388550 + 0.224330i 0.681532 0.731788i \(-0.261314\pi\)
−0.292981 + 0.956118i \(0.594647\pi\)
\(180\) −2.69039 + 5.19366i −0.200530 + 0.387113i
\(181\) 1.30283i 0.0968385i −0.998827 0.0484192i \(-0.984582\pi\)
0.998827 0.0484192i \(-0.0154184\pi\)
\(182\) 0 0
\(183\) 0.147989 + 6.48337i 0.0109397 + 0.479265i
\(184\) 6.42428 11.1272i 0.473604 0.820307i
\(185\) 14.9396 1.09838
\(186\) 7.25884 0.165690i 0.532244 0.0121490i
\(187\) 6.62866i 0.484736i
\(188\) 8.22643 0.599974
\(189\) 0 0
\(190\) 15.0054 1.08861
\(191\) 5.73288i 0.414817i −0.978254 0.207408i \(-0.933497\pi\)
0.978254 0.207408i \(-0.0665029\pi\)
\(192\) 11.6636 0.266233i 0.841747 0.0192137i
\(193\) 1.55904 0.112222 0.0561109 0.998425i \(-0.482130\pi\)
0.0561109 + 0.998425i \(0.482130\pi\)
\(194\) −6.49367 + 11.2474i −0.466218 + 0.807514i
\(195\) −0.301718 13.2182i −0.0216065 0.946574i
\(196\) 0 0
\(197\) 19.5504i 1.39291i −0.717602 0.696454i \(-0.754760\pi\)
0.717602 0.696454i \(-0.245240\pi\)
\(198\) −6.48889 10.1405i −0.461146 0.720652i
\(199\) −0.845590 0.488202i −0.0599423 0.0346077i 0.469729 0.882810i \(-0.344352\pi\)
−0.529672 + 0.848203i \(0.677685\pi\)
\(200\) −3.77151 + 2.17748i −0.266686 + 0.153971i
\(201\) −21.6990 + 0.495301i −1.53053 + 0.0349358i
\(202\) 0.892445 0.515253i 0.0627922 0.0362531i
\(203\) 0 0
\(204\) 1.39746 2.55332i 0.0978417 0.178768i
\(205\) −3.43139 −0.239659
\(206\) −0.804411 + 1.39328i −0.0560460 + 0.0970745i
\(207\) −11.4829 5.94831i −0.798118 0.413436i
\(208\) −2.99756 + 1.73064i −0.207843 + 0.119998i
\(209\) 16.6097 28.7688i 1.14892 1.98998i
\(210\) 0 0
\(211\) 11.9752 + 20.7417i 0.824408 + 1.42792i 0.902371 + 0.430961i \(0.141825\pi\)
−0.0779625 + 0.996956i \(0.524841\pi\)
\(212\) −7.51382 4.33810i −0.516051 0.297942i
\(213\) −0.572998 25.1029i −0.0392612 1.72002i
\(214\) 1.68618 + 2.92054i 0.115265 + 0.199644i
\(215\) −6.65218 11.5219i −0.453675 0.785787i
\(216\) −1.05956 15.4514i −0.0720936 1.05134i
\(217\) 0 0
\(218\) −3.13740 1.81138i −0.212491 0.122682i
\(219\) −5.75744 3.15111i −0.389051 0.212932i
\(220\) 7.97060i 0.537378i
\(221\) 6.57953i 0.442587i
\(222\) −11.5363 + 7.01625i −0.774263 + 0.470900i
\(223\) −2.68394 1.54957i −0.179730 0.103767i 0.407436 0.913234i \(-0.366423\pi\)
−0.587166 + 0.809467i \(0.699756\pi\)
\(224\) 0 0
\(225\) 2.36257 + 3.69209i 0.157505 + 0.246139i
\(226\) 8.54970 + 14.8085i 0.568717 + 0.985047i
\(227\) −10.8991 18.8779i −0.723401 1.25297i −0.959629 0.281269i \(-0.909245\pi\)
0.236228 0.971698i \(-0.424089\pi\)
\(228\) 12.4630 7.57989i 0.825383 0.501991i
\(229\) 11.1810 + 6.45536i 0.738862 + 0.426582i 0.821655 0.569985i \(-0.193051\pi\)
−0.0827937 + 0.996567i \(0.526384\pi\)
\(230\) 3.98013 + 6.89378i 0.262442 + 0.454563i
\(231\) 0 0
\(232\) 0.933250 1.61644i 0.0612709 0.106124i
\(233\) −0.699758 + 0.404005i −0.0458427 + 0.0264673i −0.522746 0.852488i \(-0.675092\pi\)
0.476904 + 0.878956i \(0.341759\pi\)
\(234\) 6.44080 + 10.0653i 0.421048 + 0.657989i
\(235\) −7.46587 + 12.9313i −0.487020 + 0.843543i
\(236\) 8.47200 0.551480
\(237\) −14.4785 + 0.330485i −0.940478 + 0.0214673i
\(238\) 0 0
\(239\) 12.2032 7.04552i 0.789360 0.455737i −0.0503775 0.998730i \(-0.516042\pi\)
0.839737 + 0.542993i \(0.182709\pi\)
\(240\) −1.33438 + 2.43807i −0.0861340 + 0.157377i
\(241\) −16.0205 + 9.24943i −1.03197 + 0.595808i −0.917549 0.397624i \(-0.869835\pi\)
−0.114422 + 0.993432i \(0.536502\pi\)
\(242\) 4.85628 + 2.80377i 0.312173 + 0.180233i
\(243\) −15.4871 + 1.77494i −0.993497 + 0.113863i
\(244\) 3.88051i 0.248424i
\(245\) 0 0
\(246\) 2.64970 1.61152i 0.168939 0.102747i
\(247\) −16.4866 + 28.5556i −1.04902 + 1.81695i
\(248\) −12.7286 −0.808268
\(249\) −7.28955 + 13.3188i −0.461956 + 0.844046i
\(250\) 11.9312i 0.754596i
\(251\) −22.1733 −1.39957 −0.699783 0.714355i \(-0.746720\pi\)
−0.699783 + 0.714355i \(0.746720\pi\)
\(252\) 0 0
\(253\) 17.6226 1.10792
\(254\) 9.94262i 0.623855i
\(255\) 2.74534 + 4.51394i 0.171920 + 0.282674i
\(256\) −17.0405 −1.06503
\(257\) −2.02896 + 3.51427i −0.126563 + 0.219214i −0.922343 0.386372i \(-0.873728\pi\)
0.795780 + 0.605586i \(0.207061\pi\)
\(258\) 10.5479 + 5.77301i 0.656686 + 0.359412i
\(259\) 0 0
\(260\) 7.91152i 0.490652i
\(261\) −1.66812 0.864107i −0.103254 0.0534869i
\(262\) −4.23100 2.44277i −0.261392 0.150915i
\(263\) 8.62617 4.98032i 0.531913 0.307100i −0.209882 0.977727i \(-0.567308\pi\)
0.741795 + 0.670627i \(0.233975\pi\)
\(264\) 10.9669 + 18.0320i 0.674966 + 1.10979i
\(265\) 13.6383 7.87406i 0.837793 0.483700i
\(266\) 0 0
\(267\) −8.82712 14.5137i −0.540211 0.888226i
\(268\) 12.9876 0.793341
\(269\) −4.98399 + 8.63253i −0.303880 + 0.526335i −0.977011 0.213188i \(-0.931615\pi\)
0.673132 + 0.739523i \(0.264949\pi\)
\(270\) 8.61856 + 4.21793i 0.524509 + 0.256695i
\(271\) 16.4822 9.51601i 1.00122 0.578057i 0.0926133 0.995702i \(-0.470478\pi\)
0.908610 + 0.417646i \(0.137145\pi\)
\(272\) 0.691547 1.19780i 0.0419312 0.0726270i
\(273\) 0 0
\(274\) −0.412606 0.714655i −0.0249265 0.0431739i
\(275\) −5.17286 2.98655i −0.311935 0.180096i
\(276\) 6.78810 + 3.71521i 0.408596 + 0.223629i
\(277\) 7.81184 + 13.5305i 0.469368 + 0.812969i 0.999387 0.0350166i \(-0.0111484\pi\)
−0.530019 + 0.847986i \(0.677815\pi\)
\(278\) −3.25531 5.63836i −0.195240 0.338166i
\(279\) 0.584561 + 12.7981i 0.0349968 + 0.766200i
\(280\) 0 0
\(281\) −20.8780 12.0539i −1.24547 0.719075i −0.275271 0.961367i \(-0.588768\pi\)
−0.970203 + 0.242292i \(0.922101\pi\)
\(282\) −0.307962 13.4917i −0.0183389 0.803421i
\(283\) 3.01779i 0.179389i −0.995969 0.0896946i \(-0.971411\pi\)
0.995969 0.0896946i \(-0.0285891\pi\)
\(284\) 15.0249i 0.891564i
\(285\) 0.604202 + 26.4699i 0.0357898 + 1.56794i
\(286\) −14.1022 8.14189i −0.833879 0.481440i
\(287\) 0 0
\(288\) 0.701384 + 15.3557i 0.0413295 + 0.904844i
\(289\) 7.18544 + 12.4456i 0.422673 + 0.732091i
\(290\) 0.578190 + 1.00145i 0.0339525 + 0.0588074i
\(291\) −20.1021 11.0021i −1.17840 0.644954i
\(292\) 3.40119 + 1.96368i 0.199040 + 0.114916i
\(293\) 14.9237 + 25.8485i 0.871849 + 1.51009i 0.860082 + 0.510156i \(0.170412\pi\)
0.0117671 + 0.999931i \(0.496254\pi\)
\(294\) 0 0
\(295\) −7.68873 + 13.3173i −0.447655 + 0.775362i
\(296\) 20.4994 11.8353i 1.19150 0.687914i
\(297\) 17.6267 11.8549i 1.02281 0.687888i
\(298\) −8.33238 + 14.4321i −0.482682 + 0.836029i
\(299\) −17.4920 −1.01159
\(300\) −1.36292 2.24095i −0.0786884 0.129381i
\(301\) 0 0
\(302\) 1.65892 0.957777i 0.0954600 0.0551139i
\(303\) 0.944852 + 1.55354i 0.0542803 + 0.0892487i
\(304\) 6.00272 3.46567i 0.344280 0.198770i
\(305\) 6.09984 + 3.52175i 0.349276 + 0.201655i
\(306\) −4.23987 2.19631i −0.242377 0.125555i
\(307\) 2.68853i 0.153442i 0.997053 + 0.0767212i \(0.0244451\pi\)
−0.997053 + 0.0767212i \(0.975555\pi\)
\(308\) 0 0
\(309\) −2.49016 1.36290i −0.141661 0.0775324i
\(310\) 3.94297 6.82943i 0.223946 0.387886i
\(311\) −11.0753 −0.628020 −0.314010 0.949420i \(-0.601673\pi\)
−0.314010 + 0.949420i \(0.601673\pi\)
\(312\) −10.8856 17.8983i −0.616276 1.01329i
\(313\) 16.7397i 0.946186i 0.881013 + 0.473093i \(0.156863\pi\)
−0.881013 + 0.473093i \(0.843137\pi\)
\(314\) 9.34619 0.527436
\(315\) 0 0
\(316\) 8.66584 0.487492
\(317\) 2.94187i 0.165232i 0.996581 + 0.0826160i \(0.0263275\pi\)
−0.996581 + 0.0826160i \(0.973672\pi\)
\(318\) −6.83341 + 12.4854i −0.383198 + 0.700147i
\(319\) 2.56002 0.143334
\(320\) 6.33562 10.9736i 0.354172 0.613444i
\(321\) −5.08400 + 3.09205i −0.283761 + 0.172581i
\(322\) 0 0
\(323\) 13.1758i 0.733118i
\(324\) 9.28893 0.850332i 0.516052 0.0472407i
\(325\) 5.13452 + 2.96442i 0.284812 + 0.164436i
\(326\) 0.943801 0.544904i 0.0522723 0.0301794i
\(327\) 3.06898 5.60737i 0.169715 0.310088i
\(328\) −4.70839 + 2.71839i −0.259977 + 0.150098i
\(329\) 0 0
\(330\) −13.0722 + 0.298385i −0.719598 + 0.0164255i
\(331\) 4.88153 0.268313 0.134157 0.990960i \(-0.457167\pi\)
0.134157 + 0.990960i \(0.457167\pi\)
\(332\) 4.54263 7.86807i 0.249309 0.431816i
\(333\) −12.8413 20.0677i −0.703700 1.09970i
\(334\) 11.9156 6.87950i 0.651995 0.376429i
\(335\) −11.7868 + 20.4154i −0.643982 + 1.11541i
\(336\) 0 0
\(337\) 6.51421 + 11.2830i 0.354852 + 0.614621i 0.987093 0.160151i \(-0.0511980\pi\)
−0.632241 + 0.774772i \(0.717865\pi\)
\(338\) 2.94622 + 1.70100i 0.160253 + 0.0925221i
\(339\) −25.7783 + 15.6781i −1.40008 + 0.851518i
\(340\) −1.58068 2.73782i −0.0857245 0.148479i
\(341\) −8.72904 15.1191i −0.472704 0.818748i
\(342\) −12.8979 20.1561i −0.697440 1.08992i
\(343\) 0 0
\(344\) −18.2556 10.5399i −0.984275 0.568272i
\(345\) −12.0005 + 7.29861i −0.646086 + 0.392944i
\(346\) 6.98687i 0.375617i
\(347\) 2.15180i 0.115515i −0.998331 0.0577573i \(-0.981605\pi\)
0.998331 0.0577573i \(-0.0183949\pi\)
\(348\) 0.986102 + 0.539705i 0.0528606 + 0.0289312i
\(349\) 25.2919 + 14.6023i 1.35384 + 0.781642i 0.988785 0.149343i \(-0.0477159\pi\)
0.365058 + 0.930985i \(0.381049\pi\)
\(350\) 0 0
\(351\) −17.4961 + 11.7670i −0.933870 + 0.628075i
\(352\) −10.4735 18.1407i −0.558240 0.966901i
\(353\) 5.41764 + 9.38362i 0.288352 + 0.499440i 0.973416 0.229042i \(-0.0735595\pi\)
−0.685065 + 0.728482i \(0.740226\pi\)
\(354\) −0.317155 13.8945i −0.0168566 0.738483i
\(355\) −23.6179 13.6358i −1.25351 0.723713i
\(356\) 5.08239 + 8.80295i 0.269366 + 0.466556i
\(357\) 0 0
\(358\) −2.94617 + 5.10291i −0.155710 + 0.269697i
\(359\) 18.1425 10.4746i 0.957527 0.552829i 0.0621161 0.998069i \(-0.480215\pi\)
0.895411 + 0.445240i \(0.146882\pi\)
\(360\) −14.9363 7.73723i −0.787213 0.407788i
\(361\) 23.5150 40.7292i 1.23763 2.14364i
\(362\) 1.27888 0.0672167
\(363\) −4.75037 + 8.67947i −0.249330 + 0.455554i
\(364\) 0 0
\(365\) −6.17348 + 3.56426i −0.323135 + 0.186562i
\(366\) −6.36422 + 0.145270i −0.332663 + 0.00759336i
\(367\) 4.97835 2.87425i 0.259868 0.150035i −0.364407 0.931240i \(-0.618728\pi\)
0.624274 + 0.781205i \(0.285395\pi\)
\(368\) 3.18439 + 1.83851i 0.165998 + 0.0958389i
\(369\) 2.94945 + 4.60923i 0.153542 + 0.239947i
\(370\) 14.6650i 0.762398i
\(371\) 0 0
\(372\) −0.174940 7.66405i −0.00907019 0.397363i
\(373\) −14.4467 + 25.0224i −0.748023 + 1.29561i 0.200747 + 0.979643i \(0.435663\pi\)
−0.948769 + 0.315970i \(0.897670\pi\)
\(374\) 6.50684 0.336461
\(375\) 21.0469 0.480416i 1.08686 0.0248086i
\(376\) 23.6582i 1.22008i
\(377\) −2.54104 −0.130870
\(378\) 0 0
\(379\) −0.411434 −0.0211339 −0.0105670 0.999944i \(-0.503364\pi\)
−0.0105670 + 0.999944i \(0.503364\pi\)
\(380\) 15.8431i 0.812734i
\(381\) 17.5390 0.400344i 0.898549 0.0205103i
\(382\) 5.62752 0.287929
\(383\) 12.4007 21.4787i 0.633648 1.09751i −0.353152 0.935566i \(-0.614890\pi\)
0.986800 0.161944i \(-0.0517765\pi\)
\(384\) −0.143710 6.29589i −0.00733366 0.321286i
\(385\) 0 0
\(386\) 1.53038i 0.0778944i
\(387\) −9.75898 + 18.8392i −0.496077 + 0.957652i
\(388\) 11.8752 + 6.85617i 0.602874 + 0.348069i
\(389\) −3.82694 + 2.20948i −0.194033 + 0.112025i −0.593869 0.804561i \(-0.702400\pi\)
0.399836 + 0.916587i \(0.369067\pi\)
\(390\) 12.9753 0.296173i 0.657028 0.0149973i
\(391\) 6.05319 3.49481i 0.306123 0.176740i
\(392\) 0 0
\(393\) 4.13873 7.56193i 0.208772 0.381449i
\(394\) 19.1911 0.966833
\(395\) −7.86465 + 13.6220i −0.395714 + 0.685396i
\(396\) −10.7066 + 6.85113i −0.538024 + 0.344282i
\(397\) 19.2780 11.1301i 0.967533 0.558605i 0.0690495 0.997613i \(-0.478003\pi\)
0.898483 + 0.439008i \(0.144670\pi\)
\(398\) 0.479229 0.830049i 0.0240216 0.0416066i
\(399\) 0 0
\(400\) −0.623155 1.07934i −0.0311578 0.0539668i
\(401\) 5.31899 + 3.07092i 0.265617 + 0.153354i 0.626894 0.779104i \(-0.284326\pi\)
−0.361277 + 0.932459i \(0.617659\pi\)
\(402\) −0.486198 21.3002i −0.0242493 1.06236i
\(403\) 8.66434 + 15.0071i 0.431602 + 0.747556i
\(404\) −0.544017 0.942265i −0.0270658 0.0468794i
\(405\) −7.09349 + 15.3731i −0.352478 + 0.763898i
\(406\) 0 0
\(407\) 28.1162 + 16.2329i 1.39367 + 0.804633i
\(408\) 7.34302 + 4.01892i 0.363534 + 0.198966i
\(409\) 0.884369i 0.0437293i 0.999761 + 0.0218646i \(0.00696028\pi\)
−0.999761 + 0.0218646i \(0.993040\pi\)
\(410\) 3.36833i 0.166350i
\(411\) 1.24405 0.756622i 0.0613646 0.0373214i
\(412\) 1.47106 + 0.849316i 0.0724739 + 0.0418428i
\(413\) 0 0
\(414\) 5.83899 11.2719i 0.286971 0.553983i
\(415\) 8.24530 + 14.2813i 0.404746 + 0.701040i
\(416\) 10.3959 + 18.0062i 0.509700 + 0.882827i
\(417\) 9.81510 5.96946i 0.480648 0.292326i
\(418\) 28.2401 + 16.3044i 1.38127 + 0.797476i
\(419\) −7.59365 13.1526i −0.370974 0.642546i 0.618742 0.785595i \(-0.287643\pi\)
−0.989716 + 0.143049i \(0.954309\pi\)
\(420\) 0 0
\(421\) 13.3318 23.0914i 0.649753 1.12541i −0.333428 0.942775i \(-0.608206\pi\)
0.983182 0.182630i \(-0.0584611\pi\)
\(422\) −20.3605 + 11.7551i −0.991133 + 0.572231i
\(423\) 23.7873 1.08650i 1.15658 0.0528275i
\(424\) 12.4759 21.6088i 0.605881 1.04942i
\(425\) −2.36910 −0.114918
\(426\) 24.6415 0.562467i 1.19389 0.0272516i
\(427\) 0 0
\(428\) 3.08358 1.78031i 0.149050 0.0860543i
\(429\) 13.7946 25.2043i 0.666011 1.21688i
\(430\) 11.3102 6.52992i 0.545424 0.314901i
\(431\) 4.06785 + 2.34857i 0.195941 + 0.113127i 0.594761 0.803903i \(-0.297247\pi\)
−0.398820 + 0.917029i \(0.630580\pi\)
\(432\) 4.42191 0.303225i 0.212749 0.0145889i
\(433\) 8.97714i 0.431414i −0.976458 0.215707i \(-0.930794\pi\)
0.976458 0.215707i \(-0.0692056\pi\)
\(434\) 0 0
\(435\) −1.74331 + 1.06026i −0.0835851 + 0.0508357i
\(436\) −1.91250 + 3.31254i −0.0915919 + 0.158642i
\(437\) 35.0283 1.67563
\(438\) 3.09320 5.65162i 0.147799 0.270045i
\(439\) 16.5136i 0.788151i −0.919078 0.394075i \(-0.871065\pi\)
0.919078 0.394075i \(-0.128935\pi\)
\(440\) 22.9225 1.09279
\(441\) 0 0
\(442\) −6.45861 −0.307205
\(443\) 1.06368i 0.0505368i −0.999681 0.0252684i \(-0.991956\pi\)
0.999681 0.0252684i \(-0.00804404\pi\)
\(444\) 7.40792 + 12.1803i 0.351565 + 0.578049i
\(445\) −18.4500 −0.874614
\(446\) 1.52110 2.63461i 0.0720260 0.124753i
\(447\) −25.7940 14.1174i −1.22002 0.667728i
\(448\) 0 0
\(449\) 15.9081i 0.750749i 0.926873 + 0.375374i \(0.122486\pi\)
−0.926873 + 0.375374i \(0.877514\pi\)
\(450\) −3.62423 + 2.31915i −0.170848 + 0.109326i
\(451\) −6.45785 3.72844i −0.304088 0.175565i
\(452\) 15.6352 9.02697i 0.735417 0.424593i
\(453\) 1.75634 + 2.88780i 0.0825198 + 0.135681i
\(454\) 18.5309 10.6988i 0.869698 0.502121i
\(455\) 0 0
\(456\) 21.7988 + 35.8421i 1.02082 + 1.67846i
\(457\) −32.7925 −1.53397 −0.766985 0.641666i \(-0.778244\pi\)
−0.766985 + 0.641666i \(0.778244\pi\)
\(458\) −6.33672 + 10.9755i −0.296095 + 0.512852i
\(459\) 3.70362 7.56765i 0.172870 0.353228i
\(460\) 7.27862 4.20231i 0.339368 0.195934i
\(461\) −9.23690 + 15.9988i −0.430205 + 0.745138i −0.996891 0.0787967i \(-0.974892\pi\)
0.566685 + 0.823934i \(0.308226\pi\)
\(462\) 0 0
\(463\) −0.201921 0.349738i −0.00938408 0.0162537i 0.861295 0.508105i \(-0.169654\pi\)
−0.870679 + 0.491851i \(0.836320\pi\)
\(464\) 0.462594 + 0.267079i 0.0214754 + 0.0123988i
\(465\) 12.2060 + 6.68049i 0.566041 + 0.309801i
\(466\) −0.396580 0.686897i −0.0183712 0.0318199i
\(467\) 7.51283 + 13.0126i 0.347652 + 0.602151i 0.985832 0.167736i \(-0.0536457\pi\)
−0.638180 + 0.769887i \(0.720312\pi\)
\(468\) 10.6272 6.80035i 0.491242 0.314346i
\(469\) 0 0
\(470\) −12.6936 7.32866i −0.585512 0.338046i
\(471\) 0.376329 + 16.4869i 0.0173403 + 0.759675i
\(472\) 24.3644i 1.12146i
\(473\) 28.9122i 1.32938i
\(474\) −0.324412 14.2124i −0.0149007 0.652796i
\(475\) −10.2821 5.93635i −0.471773 0.272379i
\(476\) 0 0
\(477\) −22.2997 11.5515i −1.02103 0.528908i
\(478\) 6.91604 + 11.9789i 0.316332 + 0.547903i
\(479\) −15.5400 26.9161i −0.710041 1.22983i −0.964841 0.262833i \(-0.915343\pi\)
0.254800 0.966994i \(-0.417990\pi\)
\(480\) 14.6454 + 8.01557i 0.668466 + 0.365859i
\(481\) −27.9077 16.1125i −1.27248 0.734669i
\(482\) −9.07944 15.7261i −0.413557 0.716302i
\(483\) 0 0
\(484\) 2.96029 5.12738i 0.134559 0.233063i
\(485\) −21.5547 + 12.4446i −0.978747 + 0.565080i
\(486\) −1.74232 15.2024i −0.0790333 0.689597i
\(487\) −6.74782 + 11.6876i −0.305773 + 0.529614i −0.977433 0.211245i \(-0.932248\pi\)
0.671660 + 0.740859i \(0.265582\pi\)
\(488\) 11.1599 0.505184
\(489\) 0.999224 + 1.64294i 0.0451865 + 0.0742965i
\(490\) 0 0
\(491\) −7.07098 + 4.08243i −0.319109 + 0.184238i −0.650995 0.759082i \(-0.725648\pi\)
0.331886 + 0.943319i \(0.392315\pi\)
\(492\) −1.70149 2.79762i −0.0767089 0.126126i
\(493\) 0.879342 0.507688i 0.0396036 0.0228651i
\(494\) −28.0308 16.1836i −1.26116 0.728134i
\(495\) −1.05271 23.0475i −0.0473159 1.03591i
\(496\) 3.64269i 0.163562i
\(497\) 0 0
\(498\) −13.0740 7.15558i −0.585862 0.320649i
\(499\) 14.0097 24.2655i 0.627159 1.08627i −0.360960 0.932581i \(-0.617551\pi\)
0.988119 0.153690i \(-0.0491158\pi\)
\(500\) −12.5973 −0.563367
\(501\) 12.6154 + 20.7424i 0.563613 + 0.926703i
\(502\) 21.7658i 0.971455i
\(503\) −5.89656 −0.262915 −0.131457 0.991322i \(-0.541966\pi\)
−0.131457 + 0.991322i \(0.541966\pi\)
\(504\) 0 0
\(505\) 1.97488 0.0878811
\(506\) 17.2987i 0.769022i
\(507\) −2.88196 + 5.26567i −0.127993 + 0.233857i
\(508\) −10.4977 −0.465758
\(509\) −7.01957 + 12.1582i −0.311137 + 0.538905i −0.978609 0.205730i \(-0.934043\pi\)
0.667472 + 0.744635i \(0.267376\pi\)
\(510\) −4.43098 + 2.69488i −0.196207 + 0.119331i
\(511\) 0 0
\(512\) 9.45558i 0.417882i
\(513\) 35.0365 23.5638i 1.54690 1.04037i
\(514\) −3.44968 1.99168i −0.152159 0.0878490i
\(515\) −2.67011 + 1.54159i −0.117659 + 0.0679305i
\(516\) 6.09528 11.1368i 0.268330 0.490269i
\(517\) −28.1014 + 16.2243i −1.23590 + 0.713546i
\(518\) 0 0
\(519\) 12.3250 0.281330i 0.541007 0.0123490i
\(520\) −22.7526 −0.997765
\(521\) 19.2229 33.2950i 0.842170 1.45868i −0.0458870 0.998947i \(-0.514611\pi\)
0.888057 0.459734i \(-0.152055\pi\)
\(522\) 0.848226 1.63746i 0.0371258 0.0716696i
\(523\) −9.08734 + 5.24658i −0.397362 + 0.229417i −0.685345 0.728219i \(-0.740349\pi\)
0.287983 + 0.957635i \(0.407015\pi\)
\(524\) −2.57914 + 4.46720i −0.112670 + 0.195150i
\(525\) 0 0
\(526\) 4.88879 + 8.46764i 0.213161 + 0.369207i
\(527\) −5.99668 3.46219i −0.261220 0.150815i
\(528\) −5.16042 + 3.13852i −0.224578 + 0.136587i
\(529\) −2.20889 3.82591i −0.0960388 0.166344i
\(530\) 7.72935 + 13.3876i 0.335741 + 0.581521i
\(531\) 24.4974 1.11894i 1.06309 0.0485576i
\(532\) 0 0
\(533\) 6.40998 + 3.70080i 0.277647 + 0.160300i
\(534\) 14.2470 8.66489i 0.616527 0.374967i
\(535\) 6.46284i 0.279413i
\(536\) 37.3506i 1.61330i
\(537\) −9.12026 4.99163i −0.393568 0.215405i
\(538\) −8.47388 4.89240i −0.365335 0.210926i
\(539\) 0 0
\(540\) 4.45339 9.09968i 0.191644 0.391588i
\(541\) −22.5783 39.1067i −0.970715 1.68133i −0.693405 0.720548i \(-0.743890\pi\)
−0.277311 0.960780i \(-0.589443\pi\)
\(542\) 9.34112 + 16.1793i 0.401236 + 0.694960i
\(543\) 0.0514949 + 2.25598i 0.00220986 + 0.0968133i
\(544\) −7.19510 4.15409i −0.308487 0.178105i
\(545\) −3.47136 6.01257i −0.148697 0.257550i
\(546\) 0 0
\(547\) −4.05733 + 7.02751i −0.173479 + 0.300475i −0.939634 0.342181i \(-0.888834\pi\)
0.766155 + 0.642656i \(0.222168\pi\)
\(548\) −0.754550 + 0.435640i −0.0322328 + 0.0186096i
\(549\) −0.512517 11.2208i −0.0218737 0.478890i
\(550\) 2.93166 5.07779i 0.125007 0.216518i
\(551\) 5.08854 0.216779
\(552\) −10.6845 + 19.5217i −0.454762 + 0.830901i
\(553\) 0 0
\(554\) −13.2818 + 7.66827i −0.564291 + 0.325794i
\(555\) −25.8694 + 0.590494i −1.09809 + 0.0250651i
\(556\) −5.95311 + 3.43703i −0.252468 + 0.145763i
\(557\) 14.0925 + 8.13633i 0.597120 + 0.344747i 0.767908 0.640561i \(-0.221298\pi\)
−0.170788 + 0.985308i \(0.554631\pi\)
\(558\) −12.5629 + 0.573818i −0.531828 + 0.0242916i
\(559\) 28.6978i 1.21379i
\(560\) 0 0
\(561\) 0.262001 + 11.4782i 0.0110617 + 0.484610i
\(562\) 11.8324 20.4942i 0.499118 0.864498i
\(563\) −10.2719 −0.432908 −0.216454 0.976293i \(-0.569449\pi\)
−0.216454 + 0.976293i \(0.569449\pi\)
\(564\) −14.2449 + 0.325154i −0.599818 + 0.0136914i
\(565\) 32.7696i 1.37863i
\(566\) 2.96233 0.124516
\(567\) 0 0
\(568\) −43.2098 −1.81304
\(569\) 20.6157i 0.864256i 0.901812 + 0.432128i \(0.142237\pi\)
−0.901812 + 0.432128i \(0.857763\pi\)
\(570\) −25.9834 + 0.593097i −1.08833 + 0.0248421i
\(571\) 4.25655 0.178131 0.0890656 0.996026i \(-0.471612\pi\)
0.0890656 + 0.996026i \(0.471612\pi\)
\(572\) −8.59640 + 14.8894i −0.359434 + 0.622557i
\(573\) 0.226595 + 9.92706i 0.00946614 + 0.414709i
\(574\) 0 0
\(575\) 6.29836i 0.262660i
\(576\) −20.1861 + 0.922018i −0.841090 + 0.0384174i
\(577\) −14.6609 8.46446i −0.610340 0.352380i 0.162758 0.986666i \(-0.447961\pi\)
−0.773099 + 0.634286i \(0.781294\pi\)
\(578\) −12.2168 + 7.05338i −0.508153 + 0.293382i
\(579\) −2.69963 + 0.0616216i −0.112193 + 0.00256091i
\(580\) 1.05736 0.610467i 0.0439045 0.0253483i
\(581\) 0 0
\(582\) 10.7999 19.7326i 0.447669 0.817943i
\(583\) 34.2228 1.41736
\(584\) −5.64730 + 9.78141i −0.233687 + 0.404758i
\(585\) 1.04491 + 22.8767i 0.0432017 + 0.945834i
\(586\) −25.3735 + 14.6494i −1.04817 + 0.605160i
\(587\) 12.0558 20.8812i 0.497594 0.861858i −0.502402 0.864634i \(-0.667550\pi\)
0.999996 + 0.00277589i \(0.000883594\pi\)
\(588\) 0 0
\(589\) −17.3507 30.0522i −0.714922 1.23828i
\(590\) −13.0725 7.54743i −0.538187 0.310723i
\(591\) 0.772738 + 33.8534i 0.0317862 + 1.39254i
\(592\) 3.38705 + 5.86654i 0.139207 + 0.241113i
\(593\) 19.2908 + 33.4126i 0.792178 + 1.37209i 0.924616 + 0.380902i \(0.124386\pi\)
−0.132437 + 0.991191i \(0.542280\pi\)
\(594\) 11.6370 + 17.3028i 0.477471 + 0.709941i
\(595\) 0 0
\(596\) 15.2378 + 8.79752i 0.624163 + 0.360360i
\(597\) 1.48352 + 0.811947i 0.0607164 + 0.0332308i
\(598\) 17.1705i 0.702154i
\(599\) 33.8236i 1.38199i −0.722857 0.690997i \(-0.757172\pi\)
0.722857 0.690997i \(-0.242828\pi\)
\(600\) 6.44468 3.91960i 0.263103 0.160017i
\(601\) −27.4855 15.8688i −1.12116 0.647300i −0.179461 0.983765i \(-0.557435\pi\)
−0.941696 + 0.336465i \(0.890769\pi\)
\(602\) 0 0
\(603\) 37.5544 1.71533i 1.52933 0.0698534i
\(604\) −1.01124 1.75153i −0.0411469 0.0712686i
\(605\) 5.37320 + 9.30666i 0.218452 + 0.378370i
\(606\) −1.52499 + 0.927487i −0.0619486 + 0.0376766i
\(607\) 0.169355 + 0.0977772i 0.00687391 + 0.00396865i 0.503433 0.864034i \(-0.332070\pi\)
−0.496559 + 0.868003i \(0.665403\pi\)
\(608\) −20.8181 36.0581i −0.844287 1.46235i
\(609\) 0 0
\(610\) −3.45702 + 5.98774i −0.139971 + 0.242436i
\(611\) 27.8931 16.1041i 1.12843 0.651502i
\(612\) −2.31892 + 4.47656i −0.0937367 + 0.180954i
\(613\) −1.46664 + 2.54029i −0.0592370 + 0.102602i −0.894123 0.447821i \(-0.852200\pi\)
0.834886 + 0.550423i \(0.185533\pi\)
\(614\) −2.63912 −0.106506
\(615\) 5.94180 0.135627i 0.239596 0.00546902i
\(616\) 0 0
\(617\) −7.86982 + 4.54365i −0.316827 + 0.182920i −0.649977 0.759953i \(-0.725222\pi\)
0.333150 + 0.942874i \(0.391888\pi\)
\(618\) 1.33785 2.44440i 0.0538161 0.0983282i
\(619\) −24.8586 + 14.3521i −0.999152 + 0.576861i −0.907997 0.418976i \(-0.862389\pi\)
−0.0911550 + 0.995837i \(0.529056\pi\)
\(620\) −7.21068 4.16309i −0.289588 0.167194i
\(621\) 20.1189 + 9.84623i 0.807345 + 0.395116i
\(622\) 10.8717i 0.435916i
\(623\) 0 0
\(624\) 5.12217 3.11526i 0.205051 0.124710i
\(625\) 7.77986 13.4751i 0.311194 0.539004i
\(626\) −16.4321 −0.656758
\(627\) −27.6243 + 50.4726i −1.10321 + 2.01568i
\(628\) 9.86793i 0.393773i
\(629\) 12.8768 0.513433
\(630\) 0 0
\(631\) −20.7691 −0.826805 −0.413403 0.910548i \(-0.635660\pi\)
−0.413403 + 0.910548i \(0.635660\pi\)
\(632\) 24.9219i 0.991340i
\(633\) −21.5561 35.4430i −0.856779 1.40873i
\(634\) −2.88781 −0.114689
\(635\) 9.52711 16.5014i 0.378072 0.654839i
\(636\) 13.1824 + 7.21487i 0.522716 + 0.286088i
\(637\) 0 0
\(638\) 2.51297i 0.0994895i
\(639\) 1.98441 + 43.4455i 0.0785019 + 1.71868i
\(640\) −5.92345 3.41990i −0.234145 0.135184i
\(641\) −39.7733 + 22.9632i −1.57095 + 0.906990i −0.574900 + 0.818224i \(0.694959\pi\)
−0.996052 + 0.0887664i \(0.971708\pi\)
\(642\) −3.03522 4.99057i −0.119791 0.196962i
\(643\) 9.15428 5.28523i 0.361010 0.208429i −0.308514 0.951220i \(-0.599832\pi\)
0.669524 + 0.742791i \(0.266498\pi\)
\(644\) 0 0
\(645\) 11.9743 + 19.6884i 0.471488 + 0.775230i
\(646\) 12.9336 0.508866
\(647\) 19.2562 33.3526i 0.757038 1.31123i −0.187317 0.982299i \(-0.559979\pi\)
0.944355 0.328928i \(-0.106687\pi\)
\(648\) 2.44545 + 26.7138i 0.0960664 + 1.04942i
\(649\) −28.9402 + 16.7087i −1.13600 + 0.655872i
\(650\) −2.90993 + 5.04015i −0.114137 + 0.197691i
\(651\) 0 0
\(652\) −0.575323 0.996488i −0.0225314 0.0390255i
\(653\) 11.0867 + 6.40089i 0.433855 + 0.250486i 0.700988 0.713173i \(-0.252743\pi\)
−0.267133 + 0.963660i \(0.586076\pi\)
\(654\) 5.50431 + 3.01257i 0.215236 + 0.117801i
\(655\) −4.68137 8.10837i −0.182916 0.316820i
\(656\) −0.777952 1.34745i −0.0303739 0.0526092i
\(657\) 10.0941 + 5.22890i 0.393809 + 0.203999i
\(658\) 0 0
\(659\) 41.5777 + 24.0049i 1.61964 + 0.935097i 0.987014 + 0.160636i \(0.0513546\pi\)
0.632622 + 0.774461i \(0.281979\pi\)
\(660\) 0.315042 + 13.8019i 0.0122630 + 0.537238i
\(661\) 10.8312i 0.421285i −0.977563 0.210643i \(-0.932444\pi\)
0.977563 0.210643i \(-0.0675557\pi\)
\(662\) 4.79182i 0.186239i
\(663\) −0.260059 11.3931i −0.0100998 0.442472i
\(664\) 22.6276 + 13.0640i 0.878121 + 0.506983i
\(665\) 0 0
\(666\) 19.6989 12.6053i 0.763315 0.488446i
\(667\) 1.34971 + 2.33777i 0.0522611 + 0.0905188i
\(668\) −7.26354 12.5808i −0.281035 0.486767i
\(669\) 4.70876 + 2.57716i 0.182051 + 0.0996387i
\(670\) −20.0402 11.5702i −0.774219 0.446995i
\(671\) 7.65323 + 13.2558i 0.295450 + 0.511734i
\(672\) 0 0
\(673\) −6.19553 + 10.7310i −0.238820 + 0.413649i −0.960376 0.278707i \(-0.910094\pi\)
0.721556 + 0.692356i \(0.243427\pi\)
\(674\) −11.0756 + 6.39449i −0.426616 + 0.246307i
\(675\) −4.23696 6.29983i −0.163081 0.242481i
\(676\) 1.79595 3.11068i 0.0690752 0.119642i
\(677\) −28.9895 −1.11416 −0.557078 0.830460i \(-0.688078\pi\)
−0.557078 + 0.830460i \(0.688078\pi\)
\(678\) −15.3900 25.3045i −0.591048 0.971813i
\(679\) 0 0
\(680\) 7.87364 4.54585i 0.301940 0.174325i
\(681\) 19.6191 + 32.2581i 0.751805 + 1.23613i
\(682\) 14.8413 8.56862i 0.568302 0.328109i
\(683\) −0.132048 0.0762380i −0.00505268 0.00291717i 0.497472 0.867480i \(-0.334262\pi\)
−0.502524 + 0.864563i \(0.667595\pi\)
\(684\) −21.2813 + 13.6179i −0.813712 + 0.520695i
\(685\) 1.58145i 0.0604242i
\(686\) 0 0
\(687\) −19.6162 10.7362i −0.748404 0.409610i
\(688\) 3.01631 5.22441i 0.114996 0.199179i
\(689\) −33.9691 −1.29412
\(690\) −7.16447 11.7800i −0.272747 0.448455i
\(691\) 43.2353i 1.64475i 0.568948 + 0.822373i \(0.307350\pi\)
−0.568948 + 0.822373i \(0.692650\pi\)
\(692\) −7.37691 −0.280428
\(693\) 0 0
\(694\) 2.11225 0.0801799
\(695\) 12.4771i 0.473282i
\(696\) −1.55213 + 2.83591i −0.0588332 + 0.107495i
\(697\) −2.95761 −0.112027
\(698\) −14.3339 + 24.8271i −0.542546 + 0.939718i
\(699\) 1.19573 0.727234i 0.0452267 0.0275065i
\(700\) 0 0
\(701\) 11.5821i 0.437451i −0.975786 0.218726i \(-0.929810\pi\)
0.975786 0.218726i \(-0.0701900\pi\)
\(702\) −11.5507 17.1745i −0.435954 0.648210i
\(703\) 55.8863 + 32.2660i 2.10779 + 1.21693i
\(704\) 23.8472 13.7682i 0.898774 0.518907i
\(705\) 12.4168 22.6869i 0.467643 0.854437i
\(706\) −9.21116 + 5.31807i −0.346667 + 0.200148i
\(707\) 0 0
\(708\) −14.6701 + 0.334860i −0.551337 + 0.0125848i
\(709\) −37.8948 −1.42317 −0.711584 0.702601i \(-0.752022\pi\)
−0.711584 + 0.702601i \(0.752022\pi\)
\(710\) 13.3852 23.1838i 0.502337 0.870073i
\(711\) 25.0579 1.14454i 0.939743 0.0429235i
\(712\) −25.3162 + 14.6163i −0.948765 + 0.547770i
\(713\) 9.20437 15.9424i 0.344707 0.597049i
\(714\) 0 0
\(715\) −15.6033 27.0256i −0.583529 1.01070i
\(716\) 5.38777 + 3.11063i 0.201351 + 0.116250i
\(717\) −20.8526 + 12.6824i −0.778754 + 0.473631i
\(718\) 10.2821 + 17.8091i 0.383724 + 0.664630i
\(719\) 23.3158 + 40.3842i 0.869534 + 1.50608i 0.862474 + 0.506102i \(0.168914\pi\)
0.00706058 + 0.999975i \(0.497753\pi\)
\(720\) 2.21425 4.27450i 0.0825202 0.159301i
\(721\) 0 0
\(722\) 39.9806 + 23.0828i 1.48792 + 0.859054i
\(723\) 27.3755 16.6495i 1.01811 0.619203i
\(724\) 1.35028i 0.0501826i
\(725\) 0.914958i 0.0339807i
\(726\) −8.51995 4.66307i −0.316205 0.173063i
\(727\) −3.72659 2.15155i −0.138212 0.0797965i 0.429300 0.903162i \(-0.358760\pi\)
−0.567511 + 0.823366i \(0.692094\pi\)
\(728\) 0 0
\(729\) 26.7473 3.68562i 0.990639 0.136505i
\(730\) −3.49875 6.06002i −0.129495 0.224291i
\(731\) −5.73369 9.93104i −0.212068 0.367313i
\(732\) 0.153379 + 6.71949i 0.00566905 + 0.248360i
\(733\) −12.1337 7.00539i −0.448168 0.258750i 0.258888 0.965907i \(-0.416644\pi\)
−0.707056 + 0.707157i \(0.749977\pi\)
\(734\) 2.82143 + 4.88685i 0.104141 + 0.180377i
\(735\) 0 0
\(736\) 11.0438 19.1285i 0.407081 0.705086i
\(737\) −44.3653 + 25.6143i −1.63422 + 0.943516i
\(738\) −4.52452 + 2.89525i −0.166550 + 0.106575i
\(739\) −18.9313 + 32.7901i −0.696401 + 1.20620i 0.273305 + 0.961927i \(0.411883\pi\)
−0.969706 + 0.244274i \(0.921450\pi\)
\(740\) 15.4837 0.569191
\(741\) 27.4195 50.0985i 1.00728 1.84041i
\(742\) 0 0
\(743\) −24.0489 + 13.8847i −0.882269 + 0.509378i −0.871406 0.490563i \(-0.836791\pi\)
−0.0108634 + 0.999941i \(0.503458\pi\)
\(744\) 22.0409 0.503105i 0.808058 0.0184447i
\(745\) −27.6579 + 15.9683i −1.01331 + 0.585034i
\(746\) −24.5626 14.1812i −0.899300 0.519211i
\(747\) 12.0961 23.3510i 0.442575 0.854369i
\(748\) 6.87007i 0.251195i
\(749\) 0 0
\(750\) 0.471587 + 20.6601i 0.0172199 + 0.754400i
\(751\) 8.67540 15.0262i 0.316570 0.548315i −0.663200 0.748442i \(-0.730802\pi\)
0.979770 + 0.200127i \(0.0641355\pi\)
\(752\) −6.77054 −0.246896
\(753\) 38.3953 0.876410i 1.39920 0.0319382i
\(754\) 2.49434i 0.0908387i
\(755\) 3.67100 0.133601
\(756\) 0 0
\(757\) 18.8111 0.683701 0.341850 0.939754i \(-0.388946\pi\)
0.341850 + 0.939754i \(0.388946\pi\)
\(758\) 0.403872i 0.0146693i
\(759\) −30.5153 + 0.696541i −1.10763 + 0.0252828i
\(760\) 45.5628 1.65274
\(761\) 4.22520 7.31825i 0.153163 0.265286i −0.779225 0.626744i \(-0.784387\pi\)
0.932389 + 0.361457i \(0.117721\pi\)
\(762\) 0.392986 + 17.2166i 0.0142364 + 0.623693i
\(763\) 0 0
\(764\) 5.94167i 0.214962i
\(765\) −4.93224 7.70783i −0.178326 0.278677i
\(766\) 21.0840 + 12.1728i 0.761794 + 0.439822i
\(767\) 28.7257 16.5848i 1.03723 0.598843i
\(768\) 29.5074 0.673534i 1.06476 0.0243041i
\(769\) 19.8100 11.4373i 0.714366 0.412440i −0.0983092 0.995156i \(-0.531343\pi\)
0.812676 + 0.582716i \(0.198010\pi\)
\(770\) 0 0
\(771\) 3.37445 6.16550i 0.121528 0.222045i
\(772\) 1.61581 0.0581544
\(773\) −18.8374 + 32.6273i −0.677533 + 1.17352i 0.298189 + 0.954507i \(0.403618\pi\)
−0.975722 + 0.219015i \(0.929716\pi\)
\(774\) −18.4930 9.57963i −0.664717 0.344333i
\(775\) −5.40363 + 3.11978i −0.194104 + 0.112066i
\(776\) −19.7175 + 34.1517i −0.707817 + 1.22598i
\(777\) 0 0
\(778\) −2.16888 3.75660i −0.0777579 0.134681i
\(779\) −12.8362 7.41099i −0.459905 0.265526i
\(780\) −0.312706 13.6996i −0.0111967 0.490524i
\(781\) −29.6324 51.3249i −1.06033 1.83655i
\(782\) 3.43058 + 5.94194i 0.122677 + 0.212483i
\(783\) 2.92266 + 1.43035i 0.104447 + 0.0511167i
\(784\) 0 0
\(785\) 15.5116 + 8.95561i 0.553632 + 0.319639i
\(786\) 7.42296 + 4.06267i 0.264768 + 0.144911i
\(787\) 23.4661i 0.836475i −0.908338 0.418237i \(-0.862648\pi\)
0.908338 0.418237i \(-0.137352\pi\)
\(788\) 20.2624i 0.721818i
\(789\) −14.7402 + 8.96488i −0.524766 + 0.319158i
\(790\) −13.3716 7.72011i −0.475741 0.274669i
\(791\) 0 0
\(792\) −19.7030 30.7907i −0.700116 1.09410i
\(793\) −7.59650 13.1575i −0.269760 0.467237i
\(794\) 10.9256 + 18.9237i 0.387734 + 0.671575i
\(795\) −23.3048 + 14.1738i −0.826536 + 0.502692i
\(796\) −0.876386 0.505981i −0.0310627 0.0179340i
\(797\) −22.8856 39.6390i −0.810648 1.40408i −0.912411 0.409275i \(-0.865782\pi\)
0.101763 0.994809i \(-0.467552\pi\)
\(798\) 0 0
\(799\) −6.43503 + 11.1458i −0.227655 + 0.394310i
\(800\) −6.48352 + 3.74326i −0.229227 + 0.132344i
\(801\) 15.8587 + 24.7831i 0.560340 + 0.875667i
\(802\) −3.01448 + 5.22123i −0.106445 + 0.184368i
\(803\) −15.4912 −0.546674
\(804\) −22.4893 + 0.513339i −0.793135 + 0.0181041i
\(805\) 0 0
\(806\) −14.7313 + 8.50510i −0.518887 + 0.299579i
\(807\) 8.28908 15.1451i 0.291789 0.533132i
\(808\) 2.70984 1.56453i 0.0953317 0.0550398i
\(809\) 11.4669 + 6.62041i 0.403154 + 0.232761i 0.687844 0.725858i \(-0.258557\pi\)
−0.284690 + 0.958620i \(0.591891\pi\)
\(810\) −15.0906 6.96312i −0.530230 0.244659i
\(811\) 56.0437i 1.96796i −0.178275 0.983981i \(-0.557052\pi\)
0.178275 0.983981i \(-0.442948\pi\)
\(812\) 0 0
\(813\) −28.1645 + 17.1294i −0.987771 + 0.600754i
\(814\) −15.9345 + 27.5994i −0.558505 + 0.967359i
\(815\) 2.08853 0.0731579
\(816\) −1.15014 + 2.10144i −0.0402629 + 0.0735650i
\(817\) 57.4685i 2.01057i
\(818\) −0.868116 −0.0303530
\(819\) 0 0
\(820\) −3.55636 −0.124193
\(821\) 56.3224i 1.96567i −0.184499 0.982833i \(-0.559066\pi\)
0.184499 0.982833i \(-0.440934\pi\)
\(822\) 0.742716 + 1.22119i 0.0259052 + 0.0425938i
\(823\) 17.0436 0.594103 0.297051 0.954862i \(-0.403997\pi\)
0.297051 + 0.954862i \(0.403997\pi\)
\(824\) −2.44253 + 4.23058i −0.0850895 + 0.147379i
\(825\) 9.07537 + 4.96705i 0.315964 + 0.172931i
\(826\) 0 0
\(827\) 45.7715i 1.59163i 0.605539 + 0.795816i \(0.292958\pi\)
−0.605539 + 0.795816i \(0.707042\pi\)
\(828\) −11.9011 6.16495i −0.413593 0.214247i
\(829\) −30.5567 17.6419i −1.06128 0.612730i −0.135493 0.990778i \(-0.543262\pi\)
−0.925786 + 0.378049i \(0.876595\pi\)
\(830\) −14.0188 + 8.09376i −0.486600 + 0.280938i
\(831\) −14.0618 23.1207i −0.487798 0.802047i
\(832\) −23.6704 + 13.6661i −0.820623 + 0.473787i
\(833\) 0 0
\(834\) 5.85975 + 9.63472i 0.202907 + 0.333623i
\(835\) 26.3680 0.912502
\(836\) 17.2146 29.8166i 0.595380 1.03123i
\(837\) −1.51808 22.1380i −0.0524724 0.765202i
\(838\) 12.9109 7.45409i 0.445998 0.257497i
\(839\) −22.3195 + 38.6585i −0.770555 + 1.33464i 0.166704 + 0.986007i \(0.446688\pi\)
−0.937259 + 0.348634i \(0.886646\pi\)
\(840\) 0 0
\(841\) −14.3039 24.7751i −0.493239 0.854315i
\(842\) 22.6670 + 13.0868i 0.781157 + 0.451001i
\(843\) 36.6287 + 20.0473i 1.26156 + 0.690466i
\(844\) 12.4114 + 21.4971i 0.427216 + 0.739960i
\(845\) 3.25982 + 5.64618i 0.112141 + 0.194235i
\(846\) 1.06653 + 23.3501i 0.0366682 + 0.802793i
\(847\) 0 0
\(848\) 6.18404 + 3.57036i 0.212361 + 0.122607i
\(849\) 0.119280 + 5.22561i 0.00409367 + 0.179342i
\(850\) 2.32556i 0.0797661i
\(851\) 34.2336i 1.17351i
\(852\) −0.593866 26.0171i −0.0203455 0.891332i
\(853\) 47.7652 + 27.5772i 1.63545 + 0.944227i 0.982372 + 0.186935i \(0.0598554\pi\)
0.653077 + 0.757292i \(0.273478\pi\)
\(854\) 0 0
\(855\) −2.09247 45.8114i −0.0715610 1.56672i
\(856\) 5.11994 + 8.86800i 0.174996 + 0.303102i
\(857\) 19.0771 + 33.0425i 0.651660 + 1.12871i 0.982720 + 0.185099i \(0.0592606\pi\)
−0.331059 + 0.943610i \(0.607406\pi\)
\(858\) 24.7411 + 13.5411i 0.844648 + 0.462286i
\(859\) 35.0465 + 20.2341i 1.19577 + 0.690378i 0.959609 0.281336i \(-0.0907776\pi\)
0.236160 + 0.971714i \(0.424111\pi\)
\(860\) −6.89444 11.9415i −0.235099 0.407203i
\(861\) 0 0
\(862\) −2.30541 + 3.99309i −0.0785226 + 0.136005i
\(863\) −31.3519 + 18.1011i −1.06723 + 0.616167i −0.927424 0.374012i \(-0.877982\pi\)
−0.139808 + 0.990179i \(0.544649\pi\)
\(864\) −1.82146 26.5622i −0.0619673 0.903666i
\(865\) 6.69488 11.5959i 0.227633 0.394272i
\(866\) 8.81216 0.299449
\(867\) −12.9342 21.2667i −0.439269 0.722255i
\(868\) 0 0
\(869\) −29.6024 + 17.0910i −1.00419 + 0.579771i
\(870\) −1.04078 1.71127i −0.0352856 0.0580173i
\(871\) 44.0365 25.4245i 1.49212 0.861475i
\(872\) −9.52645 5.50010i −0.322606 0.186257i
\(873\) 35.2436 + 18.2567i 1.19281 + 0.617894i
\(874\) 34.3846i 1.16307i
\(875\) 0 0
\(876\) −5.96712 3.26587i −0.201610 0.110344i
\(877\) 5.53439 9.58584i 0.186883 0.323691i −0.757326 0.653036i \(-0.773495\pi\)
0.944209 + 0.329346i \(0.106828\pi\)
\(878\) 16.2101 0.547064
\(879\) −26.8635 44.1694i −0.906082 1.48980i
\(880\) 6.55998i 0.221137i
\(881\) 8.87036 0.298850 0.149425 0.988773i \(-0.452258\pi\)
0.149425 + 0.988773i \(0.452258\pi\)
\(882\) 0 0
\(883\) −14.1903 −0.477540 −0.238770 0.971076i \(-0.576744\pi\)
−0.238770 + 0.971076i \(0.576744\pi\)
\(884\) 6.81915i 0.229353i
\(885\) 12.7874 23.3641i 0.429845 0.785375i
\(886\) 1.04413 0.0350782
\(887\) 19.5180 33.8062i 0.655350 1.13510i −0.326456 0.945213i \(-0.605854\pi\)
0.981806 0.189887i \(-0.0608123\pi\)
\(888\) −35.0289 + 21.3043i −1.17549 + 0.714925i
\(889\) 0 0
\(890\) 18.1109i 0.607080i
\(891\) −30.0538 + 21.2246i −1.00684 + 0.711050i
\(892\) −2.78169 1.60601i −0.0931378 0.0537732i
\(893\) −55.8570 + 32.2490i −1.86918 + 1.07917i
\(894\) 13.8579 25.3200i 0.463478 0.846826i
\(895\) −9.77931 + 5.64609i −0.326886 + 0.188728i
\(896\) 0 0
\(897\) 30.2891 0.691378i 1.01132 0.0230844i
\(898\) −15.6157 −0.521103
\(899\) 1.33711 2.31595i 0.0445952 0.0772411i
\(900\) 2.44861 + 3.82655i 0.0816204 + 0.127552i
\(901\) 11.7552 6.78687i 0.391622 0.226103i
\(902\) 3.65992 6.33916i 0.121862 0.211071i
\(903\) 0 0
\(904\) 25.9605 + 44.9648i 0.863432 + 1.49551i
\(905\) 2.12252 + 1.22544i 0.0705550 + 0.0407350i
\(906\) −2.83473 + 1.72406i −0.0941775 + 0.0572779i
\(907\) −4.93487 8.54745i −0.163860 0.283813i 0.772390 0.635148i \(-0.219061\pi\)
−0.936250 + 0.351335i \(0.885728\pi\)
\(908\) −11.2961 19.5654i −0.374873 0.649300i
\(909\) −1.69751 2.65277i −0.0563028 0.0879868i
\(910\) 0 0
\(911\) −46.6335 26.9239i −1.54504 0.892028i −0.998509 0.0545881i \(-0.982615\pi\)
−0.546529 0.837440i \(-0.684051\pi\)
\(912\) −10.2573 + 6.23842i −0.339654 + 0.206575i
\(913\) 35.8363i 1.18601i
\(914\) 32.1898i 1.06475i
\(915\) −10.7017 5.85715i −0.353787 0.193632i
\(916\) 11.5882 + 6.69046i 0.382885 + 0.221059i
\(917\) 0 0
\(918\) 7.42857 + 3.63555i 0.245179 + 0.119991i
\(919\) −11.0899 19.2084i −0.365824 0.633625i 0.623084 0.782155i \(-0.285879\pi\)
−0.988908 + 0.148530i \(0.952546\pi\)
\(920\) 12.0853 + 20.9324i 0.398442 + 0.690122i
\(921\) −0.106265 4.65545i −0.00350156 0.153402i
\(922\) −15.7047 9.06714i −0.517208 0.298610i
\(923\) 29.4128 + 50.9444i 0.968133 + 1.67686i
\(924\) 0 0
\(925\) 5.80167 10.0488i 0.190758 0.330402i
\(926\) 0.343310 0.198210i 0.0112819 0.00651359i
\(927\) 4.36584 + 2.26157i 0.143393 + 0.0742796i
\(928\) 1.60433 2.77878i 0.0526647 0.0912180i
\(929\) 54.9907 1.80419 0.902093 0.431541i \(-0.142030\pi\)
0.902093 + 0.431541i \(0.142030\pi\)
\(930\) −6.55772 + 11.9817i −0.215036 + 0.392895i
\(931\) 0 0
\(932\) −0.725243 + 0.418719i −0.0237561 + 0.0137156i
\(933\) 19.1779 0.437754i 0.627856 0.0143314i
\(934\) −12.7734 + 7.37475i −0.417960 + 0.241309i
\(935\) 10.7992 + 6.23491i 0.353171 + 0.203903i
\(936\) 19.5570 + 30.5625i 0.639239 + 0.998966i
\(937\) 29.3132i 0.957622i 0.877918 + 0.478811i \(0.158932\pi\)
−0.877918 + 0.478811i \(0.841068\pi\)
\(938\) 0 0
\(939\) −0.661646 28.9865i −0.0215920 0.945940i
\(940\) −7.73777 + 13.4022i −0.252378 + 0.437132i
\(941\) 15.1752 0.494696 0.247348 0.968927i \(-0.420441\pi\)
0.247348 + 0.968927i \(0.420441\pi\)
\(942\) −16.1839 + 0.369413i −0.527299 + 0.0120361i
\(943\) 7.86293i 0.256052i
\(944\) −6.97265 −0.226940
\(945\) 0 0
\(946\) 28.3808 0.922739
\(947\) 2.62670i 0.0853561i −0.999089 0.0426781i \(-0.986411\pi\)
0.999089 0.0426781i \(-0.0135890\pi\)
\(948\) −15.0058 + 0.342521i −0.487365 + 0.0111246i
\(949\) 15.3764 0.499139
\(950\) 5.82725 10.0931i 0.189061 0.327463i
\(951\) −0.116279 5.09415i −0.00377060 0.165189i
\(952\) 0 0
\(953\) 40.5520i 1.31361i −0.754061 0.656805i \(-0.771908\pi\)
0.754061 0.656805i \(-0.228092\pi\)
\(954\) 11.3392 21.8898i 0.367121 0.708709i
\(955\) 9.33981 + 5.39234i 0.302229 + 0.174492i
\(956\) 12.6476 7.30212i 0.409054 0.236167i
\(957\) −4.43293 + 0.101186i −0.143296 + 0.00327088i
\(958\) 26.4214 15.2544i 0.853637 0.492847i
\(959\) 0 0
\(960\) −10.5370 + 19.2523i −0.340081 + 0.621366i
\(961\) 12.7631 0.411713
\(962\) 15.8164 27.3948i 0.509942 0.883245i
\(963\) 8.68124 5.55513i 0.279749 0.179012i
\(964\) −16.6039 + 9.58629i −0.534777 + 0.308754i
\(965\) −1.46643 + 2.53993i −0.0472059 + 0.0817631i
\(966\) 0 0
\(967\) 6.47468 + 11.2145i 0.208212 + 0.360633i 0.951151 0.308725i \(-0.0999023\pi\)
−0.742939 + 0.669359i \(0.766569\pi\)
\(968\) 14.7457 + 8.51343i 0.473945 + 0.273632i
\(969\) 0.520778 + 22.8151i 0.0167298 + 0.732927i
\(970\) −12.2159 21.1585i −0.392228 0.679359i
\(971\) 8.26077 + 14.3081i 0.265101 + 0.459168i 0.967590 0.252526i \(-0.0812614\pi\)
−0.702489 + 0.711694i \(0.747928\pi\)
\(972\) −16.0511 + 1.83958i −0.514839 + 0.0590047i
\(973\) 0 0
\(974\) −11.4728 6.62381i −0.367611 0.212240i
\(975\) −9.00810 4.93024i −0.288490 0.157894i
\(976\) 3.19375i 0.102229i
\(977\) 6.35928i 0.203451i 0.994812 + 0.101726i \(0.0324364\pi\)
−0.994812 + 0.101726i \(0.967564\pi\)
\(978\) −1.61275 + 0.980860i −0.0515700 + 0.0313644i
\(979\) −34.7227 20.0472i −1.10974 0.640711i
\(980\) 0 0
\(981\) −5.09261 + 9.83102i −0.162594 + 0.313880i
\(982\) −4.00740 6.94103i −0.127881 0.221497i
\(983\) −1.11487 1.93102i −0.0355590 0.0615899i 0.847698 0.530479i \(-0.177988\pi\)
−0.883257 + 0.468889i \(0.844654\pi\)
\(984\) 8.04560 4.89326i 0.256484 0.155992i
\(985\) 31.8508 + 18.3891i 1.01485 + 0.585924i
\(986\) 0.498358 + 0.863181i 0.0158709 + 0.0274893i
\(987\) 0 0
\(988\) −17.0870 + 29.5956i −0.543610 + 0.941561i
\(989\) 26.4021 15.2433i 0.839538 0.484708i
\(990\) 22.6239 1.03337i 0.719036 0.0328425i
\(991\) 24.7285 42.8310i 0.785527 1.36057i −0.143157 0.989700i \(-0.545726\pi\)
0.928684 0.370872i \(-0.120941\pi\)
\(992\) −21.8815 −0.694738
\(993\) −8.45286 + 0.192945i −0.268243 + 0.00612292i
\(994\) 0 0
\(995\) 1.59072 0.918403i 0.0504293 0.0291153i
\(996\) −7.55503 + 13.8039i −0.239390 + 0.437393i
\(997\) −7.28219 + 4.20437i −0.230629 + 0.133154i −0.610862 0.791737i \(-0.709177\pi\)
0.380233 + 0.924891i \(0.375844\pi\)
\(998\) 23.8195 + 13.7522i 0.753993 + 0.435318i
\(999\) 23.0292 + 34.2416i 0.728612 + 1.08336i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.i.d.227.15 48
3.2 odd 2 1323.2.i.d.521.18 48
7.2 even 3 441.2.s.d.362.16 48
7.3 odd 6 441.2.o.e.146.9 48
7.4 even 3 441.2.o.e.146.10 yes 48
7.5 odd 6 441.2.s.d.362.15 48
7.6 odd 2 inner 441.2.i.d.227.16 48
9.4 even 3 1323.2.s.d.962.10 48
9.5 odd 6 441.2.s.d.374.15 48
21.2 odd 6 1323.2.s.d.656.9 48
21.5 even 6 1323.2.s.d.656.10 48
21.11 odd 6 1323.2.o.e.440.15 48
21.17 even 6 1323.2.o.e.440.16 48
21.20 even 2 1323.2.i.d.521.8 48
63.4 even 3 1323.2.o.e.881.16 48
63.5 even 6 inner 441.2.i.d.68.9 48
63.13 odd 6 1323.2.s.d.962.9 48
63.23 odd 6 inner 441.2.i.d.68.10 48
63.31 odd 6 1323.2.o.e.881.15 48
63.32 odd 6 441.2.o.e.293.9 yes 48
63.40 odd 6 1323.2.i.d.1097.18 48
63.41 even 6 441.2.s.d.374.16 48
63.58 even 3 1323.2.i.d.1097.8 48
63.59 even 6 441.2.o.e.293.10 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.9 48 63.5 even 6 inner
441.2.i.d.68.10 48 63.23 odd 6 inner
441.2.i.d.227.15 48 1.1 even 1 trivial
441.2.i.d.227.16 48 7.6 odd 2 inner
441.2.o.e.146.9 48 7.3 odd 6
441.2.o.e.146.10 yes 48 7.4 even 3
441.2.o.e.293.9 yes 48 63.32 odd 6
441.2.o.e.293.10 yes 48 63.59 even 6
441.2.s.d.362.15 48 7.5 odd 6
441.2.s.d.362.16 48 7.2 even 3
441.2.s.d.374.15 48 9.5 odd 6
441.2.s.d.374.16 48 63.41 even 6
1323.2.i.d.521.8 48 21.20 even 2
1323.2.i.d.521.18 48 3.2 odd 2
1323.2.i.d.1097.8 48 63.58 even 3
1323.2.i.d.1097.18 48 63.40 odd 6
1323.2.o.e.440.15 48 21.11 odd 6
1323.2.o.e.440.16 48 21.17 even 6
1323.2.o.e.881.15 48 63.31 odd 6
1323.2.o.e.881.16 48 63.4 even 3
1323.2.s.d.656.9 48 21.2 odd 6
1323.2.s.d.656.10 48 21.5 even 6
1323.2.s.d.962.9 48 63.13 odd 6
1323.2.s.d.962.10 48 9.4 even 3