Properties

Label 441.2.s.d.374.15
Level $441$
Weight $2$
Character 441.374
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(362,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.362"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.15
Character \(\chi\) \(=\) 441.374
Dual form 441.2.s.d.362.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.850109 + 0.490811i) q^{2} +(-0.831570 - 1.51937i) q^{3} +(-0.518210 - 0.897565i) q^{4} -1.88120 q^{5} +(0.0387990 - 1.69978i) q^{6} -2.98061i q^{8} +(-1.61698 + 2.52693i) q^{9} +(-1.59922 - 0.923312i) q^{10} +4.08810i q^{11} +(-0.932808 + 1.53374i) q^{12} +(-3.51415 - 2.02890i) q^{13} +(1.56435 + 2.85824i) q^{15} +(0.426498 - 0.738716i) q^{16} +(0.810727 - 1.40422i) q^{17} +(-2.61486 + 1.35453i) q^{18} +(-7.03722 + 4.06294i) q^{19} +(0.974855 + 1.68850i) q^{20} +(-2.00648 + 3.47533i) q^{22} -4.31071i q^{23} +(-4.52866 + 2.47859i) q^{24} -1.46110 q^{25} +(-1.99161 - 3.44957i) q^{26} +(5.18398 + 0.355482i) q^{27} +(-0.542317 + 0.313107i) q^{29} +(-0.0729886 + 3.19761i) q^{30} +(3.69833 - 2.13523i) q^{31} +(-4.43744 + 2.56195i) q^{32} +(6.21134 - 3.39954i) q^{33} +(1.37841 - 0.795827i) q^{34} +(3.10602 + 0.141870i) q^{36} +(-3.97076 - 6.87757i) q^{37} -7.97654 q^{38} +(-0.160386 + 7.02647i) q^{39} +5.60712i q^{40} +(-0.912023 + 1.57967i) q^{41} +(-3.53614 - 6.12477i) q^{43} +(3.66933 - 2.11849i) q^{44} +(3.04186 - 4.75365i) q^{45} +(2.11574 - 3.66457i) q^{46} +(3.96868 - 6.87396i) q^{47} +(-1.47705 - 0.0337151i) q^{48} +(-1.24209 - 0.717122i) q^{50} +(-2.80771 - 0.0640887i) q^{51} +4.20558i q^{52} +(7.24978 + 4.18567i) q^{53} +(4.23247 + 2.84655i) q^{54} -7.69052i q^{55} +(12.0251 + 7.31354i) q^{57} -0.614704 q^{58} +(4.08715 + 7.07915i) q^{59} +(1.75480 - 2.88527i) q^{60} +(3.24253 + 1.87208i) q^{61} +4.19198 q^{62} -6.73573 q^{64} +(6.61081 + 3.81676i) q^{65} +(6.94885 + 0.158614i) q^{66} +(-6.26559 - 10.8523i) q^{67} -1.68051 q^{68} +(-6.54957 + 3.58466i) q^{69} -14.4969i q^{71} +(7.53180 + 4.81960i) q^{72} +(3.28167 + 1.89468i) q^{73} -7.79557i q^{74} +(1.21500 + 2.21995i) q^{75} +(7.29351 + 4.21091i) q^{76} +(-3.58501 + 5.89455i) q^{78} +(-4.18066 + 7.24112i) q^{79} +(-0.802327 + 1.38967i) q^{80} +(-3.77073 - 8.17200i) q^{81} +(-1.55064 + 0.895261i) q^{82} +(-4.38300 - 7.59159i) q^{83} +(-1.52514 + 2.64162i) q^{85} -6.94230i q^{86} +(0.926700 + 0.563611i) q^{87} +12.1850 q^{88} +(-4.90379 - 8.49362i) q^{89} +(4.91906 - 2.54814i) q^{90} +(-3.86914 + 2.23385i) q^{92} +(-6.31964 - 3.84355i) q^{93} +(6.74762 - 3.89574i) q^{94} +(13.2384 - 7.64320i) q^{95} +(7.58260 + 4.61167i) q^{96} +(-11.4579 + 6.61525i) q^{97} +(-10.3303 - 6.61038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} - 8 q^{9} - 40 q^{15} - 24 q^{16} + 32 q^{18} + 48 q^{25} + 48 q^{30} - 120 q^{32} - 8 q^{36} - 32 q^{39} + 96 q^{44} + 48 q^{50} + 48 q^{53} + 80 q^{57} - 72 q^{60} - 48 q^{64} - 120 q^{65}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.850109 + 0.490811i 0.601118 + 0.347056i 0.769481 0.638669i \(-0.220515\pi\)
−0.168363 + 0.985725i \(0.553848\pi\)
\(3\) −0.831570 1.51937i −0.480107 0.877210i
\(4\) −0.518210 0.897565i −0.259105 0.448783i
\(5\) −1.88120 −0.841297 −0.420648 0.907224i \(-0.638197\pi\)
−0.420648 + 0.907224i \(0.638197\pi\)
\(6\) 0.0387990 1.69978i 0.0158396 0.693930i
\(7\) 0 0
\(8\) 2.98061i 1.05381i
\(9\) −1.61698 + 2.52693i −0.538994 + 0.842309i
\(10\) −1.59922 0.923312i −0.505719 0.291977i
\(11\) 4.08810i 1.23261i 0.787508 + 0.616304i \(0.211371\pi\)
−0.787508 + 0.616304i \(0.788629\pi\)
\(12\) −0.932808 + 1.53374i −0.269279 + 0.442753i
\(13\) −3.51415 2.02890i −0.974651 0.562715i −0.0739997 0.997258i \(-0.523576\pi\)
−0.900651 + 0.434544i \(0.856910\pi\)
\(14\) 0 0
\(15\) 1.56435 + 2.85824i 0.403913 + 0.737994i
\(16\) 0.426498 0.738716i 0.106625 0.184679i
\(17\) 0.810727 1.40422i 0.196630 0.340574i −0.750803 0.660526i \(-0.770333\pi\)
0.947434 + 0.319952i \(0.103667\pi\)
\(18\) −2.61486 + 1.35453i −0.616327 + 0.319266i
\(19\) −7.03722 + 4.06294i −1.61445 + 0.932103i −0.626128 + 0.779720i \(0.715361\pi\)
−0.988322 + 0.152382i \(0.951305\pi\)
\(20\) 0.974855 + 1.68850i 0.217984 + 0.377560i
\(21\) 0 0
\(22\) −2.00648 + 3.47533i −0.427783 + 0.740943i
\(23\) 4.31071i 0.898845i −0.893319 0.449423i \(-0.851630\pi\)
0.893319 0.449423i \(-0.148370\pi\)
\(24\) −4.52866 + 2.47859i −0.924409 + 0.505940i
\(25\) −1.46110 −0.292219
\(26\) −1.99161 3.44957i −0.390587 0.676516i
\(27\) 5.18398 + 0.355482i 0.997657 + 0.0684126i
\(28\) 0 0
\(29\) −0.542317 + 0.313107i −0.100706 + 0.0581425i −0.549507 0.835489i \(-0.685184\pi\)
0.448801 + 0.893632i \(0.351851\pi\)
\(30\) −0.0729886 + 3.19761i −0.0133258 + 0.583802i
\(31\) 3.69833 2.13523i 0.664240 0.383499i −0.129650 0.991560i \(-0.541385\pi\)
0.793891 + 0.608060i \(0.208052\pi\)
\(32\) −4.43744 + 2.56195i −0.784435 + 0.452894i
\(33\) 6.21134 3.39954i 1.08126 0.591784i
\(34\) 1.37841 0.795827i 0.236396 0.136483i
\(35\) 0 0
\(36\) 3.10602 + 0.141870i 0.517670 + 0.0236450i
\(37\) −3.97076 6.87757i −0.652790 1.13066i −0.982443 0.186563i \(-0.940265\pi\)
0.329653 0.944102i \(-0.393068\pi\)
\(38\) −7.97654 −1.29397
\(39\) −0.160386 + 7.02647i −0.0256823 + 1.12514i
\(40\) 5.60712i 0.886564i
\(41\) −0.912023 + 1.57967i −0.142434 + 0.246703i −0.928413 0.371551i \(-0.878826\pi\)
0.785979 + 0.618254i \(0.212160\pi\)
\(42\) 0 0
\(43\) −3.53614 6.12477i −0.539256 0.934019i −0.998944 0.0459387i \(-0.985372\pi\)
0.459688 0.888080i \(-0.347961\pi\)
\(44\) 3.66933 2.11849i 0.553173 0.319375i
\(45\) 3.04186 4.75365i 0.453454 0.708632i
\(46\) 2.11574 3.66457i 0.311949 0.540312i
\(47\) 3.96868 6.87396i 0.578891 1.00267i −0.416715 0.909037i \(-0.636819\pi\)
0.995607 0.0936324i \(-0.0298478\pi\)
\(48\) −1.47705 0.0337151i −0.213194 0.00486635i
\(49\) 0 0
\(50\) −1.24209 0.717122i −0.175658 0.101416i
\(51\) −2.80771 0.0640887i −0.393158 0.00897422i
\(52\) 4.20558i 0.583208i
\(53\) 7.24978 + 4.18567i 0.995835 + 0.574945i 0.907013 0.421102i \(-0.138357\pi\)
0.0888214 + 0.996048i \(0.471690\pi\)
\(54\) 4.23247 + 2.84655i 0.575967 + 0.387366i
\(55\) 7.69052i 1.03699i
\(56\) 0 0
\(57\) 12.0251 + 7.31354i 1.59276 + 0.968702i
\(58\) −0.614704 −0.0807147
\(59\) 4.08715 + 7.07915i 0.532101 + 0.921627i 0.999298 + 0.0374731i \(0.0119308\pi\)
−0.467196 + 0.884154i \(0.654736\pi\)
\(60\) 1.75480 2.88527i 0.226543 0.372487i
\(61\) 3.24253 + 1.87208i 0.415164 + 0.239695i 0.693006 0.720932i \(-0.256286\pi\)
−0.277842 + 0.960627i \(0.589619\pi\)
\(62\) 4.19198 0.532382
\(63\) 0 0
\(64\) −6.73573 −0.841966
\(65\) 6.61081 + 3.81676i 0.819971 + 0.473410i
\(66\) 6.94885 + 0.158614i 0.855344 + 0.0195241i
\(67\) −6.26559 10.8523i −0.765464 1.32582i −0.940001 0.341171i \(-0.889176\pi\)
0.174537 0.984651i \(-0.444157\pi\)
\(68\) −1.68051 −0.203791
\(69\) −6.54957 + 3.58466i −0.788476 + 0.431542i
\(70\) 0 0
\(71\) 14.4969i 1.72047i −0.509898 0.860235i \(-0.670317\pi\)
0.509898 0.860235i \(-0.329683\pi\)
\(72\) 7.53180 + 4.81960i 0.887631 + 0.567996i
\(73\) 3.28167 + 1.89468i 0.384091 + 0.221755i 0.679597 0.733586i \(-0.262155\pi\)
−0.295506 + 0.955341i \(0.595488\pi\)
\(74\) 7.79557i 0.906217i
\(75\) 1.21500 + 2.21995i 0.140297 + 0.256338i
\(76\) 7.29351 + 4.21091i 0.836623 + 0.483025i
\(77\) 0 0
\(78\) −3.58501 + 5.89455i −0.405923 + 0.667426i
\(79\) −4.18066 + 7.24112i −0.470361 + 0.814690i −0.999426 0.0338919i \(-0.989210\pi\)
0.529064 + 0.848582i \(0.322543\pi\)
\(80\) −0.802327 + 1.38967i −0.0897029 + 0.155370i
\(81\) −3.77073 8.17200i −0.418970 0.908000i
\(82\) −1.55064 + 0.895261i −0.171239 + 0.0988651i
\(83\) −4.38300 7.59159i −0.481097 0.833285i 0.518668 0.854976i \(-0.326428\pi\)
−0.999765 + 0.0216912i \(0.993095\pi\)
\(84\) 0 0
\(85\) −1.52514 + 2.64162i −0.165424 + 0.286524i
\(86\) 6.94230i 0.748608i
\(87\) 0.926700 + 0.563611i 0.0993526 + 0.0604254i
\(88\) 12.1850 1.29893
\(89\) −4.90379 8.49362i −0.519801 0.900322i −0.999735 0.0230174i \(-0.992673\pi\)
0.479934 0.877305i \(-0.340661\pi\)
\(90\) 4.91906 2.54814i 0.518514 0.268598i
\(91\) 0 0
\(92\) −3.86914 + 2.23385i −0.403386 + 0.232895i
\(93\) −6.31964 3.84355i −0.655316 0.398558i
\(94\) 6.74762 3.89574i 0.695964 0.401815i
\(95\) 13.2384 7.64320i 1.35823 0.784175i
\(96\) 7.58260 + 4.61167i 0.773896 + 0.470677i
\(97\) −11.4579 + 6.61525i −1.16338 + 0.671677i −0.952111 0.305752i \(-0.901092\pi\)
−0.211267 + 0.977428i \(0.567759\pi\)
\(98\) 0 0
\(99\) −10.3303 6.61038i −1.03824 0.664369i
\(100\) 0.757155 + 1.31143i 0.0757155 + 0.131143i
\(101\) −1.04980 −0.104459 −0.0522295 0.998635i \(-0.516633\pi\)
−0.0522295 + 0.998635i \(0.516633\pi\)
\(102\) −2.35540 1.43254i −0.233220 0.141842i
\(103\) 1.63894i 0.161490i −0.996735 0.0807449i \(-0.974270\pi\)
0.996735 0.0807449i \(-0.0257299\pi\)
\(104\) −6.04736 + 10.4743i −0.592992 + 1.02709i
\(105\) 0 0
\(106\) 4.10874 + 7.11654i 0.399076 + 0.691220i
\(107\) −2.97522 + 1.71775i −0.287626 + 0.166061i −0.636871 0.770971i \(-0.719771\pi\)
0.349245 + 0.937031i \(0.386438\pi\)
\(108\) −2.36732 4.83717i −0.227795 0.465457i
\(109\) −1.84529 + 3.19614i −0.176747 + 0.306134i −0.940764 0.339061i \(-0.889891\pi\)
0.764018 + 0.645195i \(0.223224\pi\)
\(110\) 3.77459 6.53778i 0.359893 0.623353i
\(111\) −7.14761 + 11.7522i −0.678421 + 1.11547i
\(112\) 0 0
\(113\) 15.0858 + 8.70977i 1.41915 + 0.819346i 0.996224 0.0868183i \(-0.0276699\pi\)
0.422925 + 0.906165i \(0.361003\pi\)
\(114\) 6.63305 + 12.1193i 0.621242 + 1.13508i
\(115\) 8.10929i 0.756196i
\(116\) 0.562068 + 0.324510i 0.0521867 + 0.0301300i
\(117\) 10.8092 5.59932i 0.999311 0.517657i
\(118\) 8.02407i 0.738675i
\(119\) 0 0
\(120\) 8.51931 4.66271i 0.777703 0.425646i
\(121\) −5.71254 −0.519321
\(122\) 1.83767 + 3.18294i 0.166375 + 0.288170i
\(123\) 3.15852 + 0.0720963i 0.284794 + 0.00650070i
\(124\) −3.83303 2.21300i −0.344216 0.198733i
\(125\) 12.1546 1.08714
\(126\) 0 0
\(127\) −10.1288 −0.898783 −0.449391 0.893335i \(-0.648359\pi\)
−0.449391 + 0.893335i \(0.648359\pi\)
\(128\) 3.14876 + 1.81794i 0.278314 + 0.160685i
\(129\) −6.36526 + 10.4659i −0.560430 + 0.921470i
\(130\) 3.74661 + 6.48932i 0.328599 + 0.569151i
\(131\) −4.97701 −0.434844 −0.217422 0.976078i \(-0.569765\pi\)
−0.217422 + 0.976078i \(0.569765\pi\)
\(132\) −6.27008 3.81341i −0.545741 0.331915i
\(133\) 0 0
\(134\) 12.3009i 1.06263i
\(135\) −9.75209 0.668732i −0.839326 0.0575553i
\(136\) −4.18544 2.41647i −0.358899 0.207210i
\(137\) 0.840663i 0.0718227i 0.999355 + 0.0359113i \(0.0114334\pi\)
−0.999355 + 0.0359113i \(0.988567\pi\)
\(138\) −7.32724 0.167251i −0.623736 0.0142374i
\(139\) 5.74392 + 3.31626i 0.487193 + 0.281281i 0.723409 0.690419i \(-0.242574\pi\)
−0.236216 + 0.971701i \(0.575907\pi\)
\(140\) 0 0
\(141\) −13.7443 0.313728i −1.15748 0.0264206i
\(142\) 7.11525 12.3240i 0.597098 1.03420i
\(143\) 8.29433 14.3662i 0.693606 1.20136i
\(144\) 1.17704 + 2.27222i 0.0980869 + 0.189352i
\(145\) 1.02020 0.589015i 0.0847234 0.0489151i
\(146\) 1.85985 + 3.22136i 0.153923 + 0.266602i
\(147\) 0 0
\(148\) −4.11538 + 7.12804i −0.338282 + 0.585921i
\(149\) 16.9768i 1.39079i 0.718628 + 0.695395i \(0.244771\pi\)
−0.718628 + 0.695395i \(0.755229\pi\)
\(150\) −0.0566892 + 2.48354i −0.00462865 + 0.202780i
\(151\) 1.95142 0.158804 0.0794021 0.996843i \(-0.474699\pi\)
0.0794021 + 0.996843i \(0.474699\pi\)
\(152\) 12.1101 + 20.9752i 0.982256 + 1.70132i
\(153\) 2.23743 + 4.31925i 0.180886 + 0.349191i
\(154\) 0 0
\(155\) −6.95730 + 4.01680i −0.558823 + 0.322637i
\(156\) 6.38983 3.49723i 0.511596 0.280003i
\(157\) −8.24558 + 4.76059i −0.658069 + 0.379936i −0.791541 0.611116i \(-0.790721\pi\)
0.133472 + 0.991053i \(0.457387\pi\)
\(158\) −7.10804 + 4.10383i −0.565485 + 0.326483i
\(159\) 0.330881 14.4958i 0.0262405 1.14959i
\(160\) 8.34769 4.81954i 0.659943 0.381018i
\(161\) 0 0
\(162\) 0.805373 8.79781i 0.0632761 0.691221i
\(163\) −0.555106 0.961472i −0.0434793 0.0753083i 0.843467 0.537181i \(-0.180511\pi\)
−0.886946 + 0.461873i \(0.847178\pi\)
\(164\) 1.89048 0.147621
\(165\) −11.6848 + 6.39520i −0.909657 + 0.497866i
\(166\) 8.60490i 0.667870i
\(167\) 7.00830 12.1387i 0.542319 0.939324i −0.456452 0.889748i \(-0.650880\pi\)
0.998770 0.0495754i \(-0.0157868\pi\)
\(168\) 0 0
\(169\) 1.73285 + 3.00138i 0.133296 + 0.230875i
\(170\) −2.59307 + 1.49711i −0.198879 + 0.114823i
\(171\) 1.11231 24.3523i 0.0850603 1.86226i
\(172\) −3.66492 + 6.34783i −0.279448 + 0.484018i
\(173\) −3.55884 + 6.16410i −0.270574 + 0.468647i −0.969009 0.247026i \(-0.920547\pi\)
0.698435 + 0.715673i \(0.253880\pi\)
\(174\) 0.511170 + 0.933965i 0.0387517 + 0.0708037i
\(175\) 0 0
\(176\) 3.01994 + 1.74357i 0.227637 + 0.131426i
\(177\) 7.35711 12.0967i 0.552994 0.909244i
\(178\) 9.62734i 0.721600i
\(179\) −5.19845 3.00133i −0.388550 0.224330i 0.292981 0.956118i \(-0.405353\pi\)
−0.681532 + 0.731788i \(0.738686\pi\)
\(180\) −5.84304 0.266885i −0.435514 0.0198924i
\(181\) 1.30283i 0.0968385i −0.998827 0.0484192i \(-0.984582\pi\)
0.998827 0.0484192i \(-0.0154184\pi\)
\(182\) 0 0
\(183\) 0.147989 6.48337i 0.0109397 0.479265i
\(184\) −12.8486 −0.947209
\(185\) 7.46979 + 12.9381i 0.549190 + 0.951225i
\(186\) −3.48593 6.36918i −0.255601 0.467011i
\(187\) 5.74059 + 3.31433i 0.419794 + 0.242368i
\(188\) −8.22643 −0.599974
\(189\) 0 0
\(190\) 15.0054 1.08861
\(191\) −4.96482 2.86644i −0.359242 0.207408i 0.309506 0.950897i \(-0.399836\pi\)
−0.668748 + 0.743489i \(0.733170\pi\)
\(192\) 5.60123 + 10.2341i 0.404234 + 0.738581i
\(193\) −0.779518 1.35016i −0.0561109 0.0971869i 0.836606 0.547806i \(-0.184537\pi\)
−0.892716 + 0.450619i \(0.851203\pi\)
\(194\) −12.9873 −0.932437
\(195\) 0.301718 13.2182i 0.0216065 0.946574i
\(196\) 0 0
\(197\) 19.5504i 1.39291i 0.717602 + 0.696454i \(0.245240\pi\)
−0.717602 + 0.696454i \(0.754760\pi\)
\(198\) −5.53746 10.6898i −0.393530 0.759690i
\(199\) −0.845590 0.488202i −0.0599423 0.0346077i 0.469729 0.882810i \(-0.344352\pi\)
−0.529672 + 0.848203i \(0.677685\pi\)
\(200\) 4.35497i 0.307943i
\(201\) −11.2784 + 18.5442i −0.795520 + 1.30801i
\(202\) −0.892445 0.515253i −0.0627922 0.0362531i
\(203\) 0 0
\(204\) 1.39746 + 2.55332i 0.0978417 + 0.178768i
\(205\) 1.71570 2.97167i 0.119829 0.207551i
\(206\) 0.804411 1.39328i 0.0560460 0.0970745i
\(207\) 10.8929 + 6.97034i 0.757106 + 0.484472i
\(208\) −2.99756 + 1.73064i −0.207843 + 0.119998i
\(209\) −16.6097 28.7688i −1.14892 1.98998i
\(210\) 0 0
\(211\) 11.9752 20.7417i 0.824408 1.42792i −0.0779625 0.996956i \(-0.524841\pi\)
0.902371 0.430961i \(-0.141825\pi\)
\(212\) 8.67621i 0.595884i
\(213\) −22.0262 + 12.0552i −1.50921 + 0.826009i
\(214\) −3.37235 −0.230529
\(215\) 6.65218 + 11.5219i 0.453675 + 0.785787i
\(216\) 1.05956 15.4514i 0.0720936 1.05134i
\(217\) 0 0
\(218\) −3.13740 + 1.81138i −0.212491 + 0.122682i
\(219\) 0.149776 6.56164i 0.0101209 0.443395i
\(220\) −6.90274 + 3.98530i −0.465383 + 0.268689i
\(221\) −5.69804 + 3.28976i −0.383292 + 0.221293i
\(222\) −11.8444 + 6.48256i −0.794943 + 0.435081i
\(223\) 2.68394 1.54957i 0.179730 0.103767i −0.407436 0.913234i \(-0.633577\pi\)
0.587166 + 0.809467i \(0.300244\pi\)
\(224\) 0 0
\(225\) 2.36257 3.69209i 0.157505 0.246139i
\(226\) 8.54970 + 14.8085i 0.568717 + 0.985047i
\(227\) −21.7983 −1.44680 −0.723401 0.690428i \(-0.757422\pi\)
−0.723401 + 0.690428i \(0.757422\pi\)
\(228\) 0.332876 14.5832i 0.0220453 0.965798i
\(229\) 12.9107i 0.853164i −0.904449 0.426582i \(-0.859718\pi\)
0.904449 0.426582i \(-0.140282\pi\)
\(230\) −3.98013 + 6.89378i −0.262442 + 0.454563i
\(231\) 0 0
\(232\) 0.933250 + 1.61644i 0.0612709 + 0.106124i
\(233\) 0.699758 0.404005i 0.0458427 0.0264673i −0.476904 0.878956i \(-0.658241\pi\)
0.522746 + 0.852488i \(0.324908\pi\)
\(234\) 11.9372 + 0.545241i 0.780360 + 0.0356435i
\(235\) −7.46587 + 12.9313i −0.487020 + 0.843543i
\(236\) 4.23600 7.33697i 0.275740 0.477596i
\(237\) 14.4785 + 0.330485i 0.940478 + 0.0214673i
\(238\) 0 0
\(239\) 12.2032 + 7.04552i 0.789360 + 0.455737i 0.839737 0.542993i \(-0.182709\pi\)
−0.0503775 + 0.998730i \(0.516042\pi\)
\(240\) 2.77862 + 0.0634247i 0.179359 + 0.00409405i
\(241\) 18.4989i 1.19162i −0.803127 0.595808i \(-0.796832\pi\)
0.803127 0.595808i \(-0.203168\pi\)
\(242\) −4.85628 2.80377i −0.312173 0.180233i
\(243\) −9.28068 + 12.5247i −0.595356 + 0.803462i
\(244\) 3.88051i 0.248424i
\(245\) 0 0
\(246\) 2.64970 + 1.61152i 0.168939 + 0.102747i
\(247\) 32.9732 2.09803
\(248\) −6.36431 11.0233i −0.404134 0.699981i
\(249\) −7.88967 + 12.9723i −0.499988 + 0.822089i
\(250\) 10.3327 + 5.96561i 0.653499 + 0.377298i
\(251\) 22.1733 1.39957 0.699783 0.714355i \(-0.253280\pi\)
0.699783 + 0.714355i \(0.253280\pi\)
\(252\) 0 0
\(253\) 17.6226 1.10792
\(254\) −8.61056 4.97131i −0.540274 0.311928i
\(255\) 5.28186 + 0.120564i 0.330763 + 0.00754998i
\(256\) 8.52026 + 14.7575i 0.532516 + 0.922345i
\(257\) −4.05793 −0.253127 −0.126563 0.991959i \(-0.540395\pi\)
−0.126563 + 0.991959i \(0.540395\pi\)
\(258\) −10.5479 + 5.77301i −0.656686 + 0.359412i
\(259\) 0 0
\(260\) 7.91152i 0.490652i
\(261\) 0.0857189 1.87668i 0.00530587 0.116164i
\(262\) −4.23100 2.44277i −0.261392 0.150915i
\(263\) 9.96065i 0.614200i −0.951677 0.307100i \(-0.900641\pi\)
0.951677 0.307100i \(-0.0993586\pi\)
\(264\) −10.1327 18.5136i −0.623625 1.13943i
\(265\) −13.6383 7.87406i −0.837793 0.483700i
\(266\) 0 0
\(267\) −8.82712 + 14.5137i −0.540211 + 0.888226i
\(268\) −6.49378 + 11.2476i −0.396671 + 0.687054i
\(269\) 4.98399 8.63253i 0.303880 0.526335i −0.673132 0.739523i \(-0.735051\pi\)
0.977011 + 0.213188i \(0.0683846\pi\)
\(270\) −7.96212 5.35492i −0.484559 0.325890i
\(271\) 16.4822 9.51601i 1.00122 0.578057i 0.0926133 0.995702i \(-0.470478\pi\)
0.908610 + 0.417646i \(0.137145\pi\)
\(272\) −0.691547 1.19780i −0.0419312 0.0726270i
\(273\) 0 0
\(274\) −0.412606 + 0.714655i −0.0249265 + 0.0431739i
\(275\) 5.97311i 0.360192i
\(276\) 6.61151 + 4.02107i 0.397966 + 0.242040i
\(277\) −15.6237 −0.938736 −0.469368 0.883003i \(-0.655518\pi\)
−0.469368 + 0.883003i \(0.655518\pi\)
\(278\) 3.25531 + 5.63836i 0.195240 + 0.338166i
\(279\) −0.584561 + 12.7981i −0.0349968 + 0.766200i
\(280\) 0 0
\(281\) −20.8780 + 12.0539i −1.24547 + 0.719075i −0.970203 0.242292i \(-0.922101\pi\)
−0.275271 + 0.961367i \(0.588768\pi\)
\(282\) −11.5302 7.01257i −0.686613 0.417592i
\(283\) −2.61349 + 1.50890i −0.155356 + 0.0896946i −0.575662 0.817687i \(-0.695256\pi\)
0.420307 + 0.907382i \(0.361922\pi\)
\(284\) −13.0119 + 7.51245i −0.772117 + 0.445782i
\(285\) −22.6215 13.7582i −1.33998 0.814966i
\(286\) 14.1022 8.14189i 0.833879 0.481440i
\(287\) 0 0
\(288\) 0.701384 15.3557i 0.0413295 0.904844i
\(289\) 7.18544 + 12.4456i 0.422673 + 0.732091i
\(290\) 1.15638 0.0679050
\(291\) 19.5791 + 11.9078i 1.14775 + 0.698050i
\(292\) 3.92736i 0.229831i
\(293\) −14.9237 + 25.8485i −0.871849 + 1.51009i −0.0117671 + 0.999931i \(0.503746\pi\)
−0.860082 + 0.510156i \(0.829588\pi\)
\(294\) 0 0
\(295\) −7.68873 13.3173i −0.447655 0.775362i
\(296\) −20.4994 + 11.8353i −1.19150 + 0.687914i
\(297\) −1.45325 + 21.1926i −0.0843259 + 1.22972i
\(298\) −8.33238 + 14.4321i −0.482682 + 0.836029i
\(299\) −8.74598 + 15.1485i −0.505793 + 0.876060i
\(300\) 1.36292 2.24095i 0.0786884 0.129381i
\(301\) 0 0
\(302\) 1.65892 + 0.957777i 0.0954600 + 0.0551139i
\(303\) 0.872982 + 1.59504i 0.0501515 + 0.0916325i
\(304\) 6.93135i 0.397540i
\(305\) −6.09984 3.52175i −0.349276 0.201655i
\(306\) −0.217873 + 4.76999i −0.0124550 + 0.272682i
\(307\) 2.68853i 0.153442i 0.997053 + 0.0767212i \(0.0244451\pi\)
−0.997053 + 0.0767212i \(0.975555\pi\)
\(308\) 0 0
\(309\) −2.49016 + 1.36290i −0.141661 + 0.0775324i
\(310\) −7.88595 −0.447892
\(311\) −5.53763 9.59145i −0.314010 0.543881i 0.665217 0.746650i \(-0.268339\pi\)
−0.979227 + 0.202769i \(0.935006\pi\)
\(312\) 20.9432 + 0.478049i 1.18568 + 0.0270642i
\(313\) −14.4970 8.36987i −0.819421 0.473093i 0.0307957 0.999526i \(-0.490196\pi\)
−0.850217 + 0.526433i \(0.823529\pi\)
\(314\) −9.34619 −0.527436
\(315\) 0 0
\(316\) 8.66584 0.487492
\(317\) 2.54774 + 1.47094i 0.143095 + 0.0826160i 0.569838 0.821757i \(-0.307006\pi\)
−0.426743 + 0.904373i \(0.640339\pi\)
\(318\) 7.39598 12.1606i 0.414746 0.681933i
\(319\) −1.28001 2.21704i −0.0716668 0.124131i
\(320\) 12.6712 0.708344
\(321\) 5.08400 + 3.09205i 0.283761 + 0.172581i
\(322\) 0 0
\(323\) 13.1758i 0.733118i
\(324\) −5.38088 + 7.61929i −0.298938 + 0.423294i
\(325\) 5.13452 + 2.96442i 0.284812 + 0.164436i
\(326\) 1.08981i 0.0603589i
\(327\) 6.39061 + 0.145872i 0.353402 + 0.00806674i
\(328\) 4.70839 + 2.71839i 0.259977 + 0.150098i
\(329\) 0 0
\(330\) −13.0722 0.298385i −0.719598 0.0164255i
\(331\) −2.44077 + 4.22753i −0.134157 + 0.232366i −0.925275 0.379297i \(-0.876166\pi\)
0.791118 + 0.611663i \(0.209499\pi\)
\(332\) −4.54263 + 7.86807i −0.249309 + 0.431816i
\(333\) 23.7998 + 1.08707i 1.30422 + 0.0595712i
\(334\) 11.9156 6.87950i 0.651995 0.376429i
\(335\) 11.7868 + 20.4154i 0.643982 + 1.11541i
\(336\) 0 0
\(337\) 6.51421 11.2830i 0.354852 0.614621i −0.632241 0.774772i \(-0.717865\pi\)
0.987093 + 0.160151i \(0.0511980\pi\)
\(338\) 3.40200i 0.185044i
\(339\) 0.688515 30.1637i 0.0373950 1.63827i
\(340\) 3.16136 0.171449
\(341\) 8.72904 + 15.1191i 0.472704 + 0.818748i
\(342\) 12.8979 20.1561i 0.697440 1.08992i
\(343\) 0 0
\(344\) −18.2556 + 10.5399i −0.984275 + 0.568272i
\(345\) 12.3210 6.74344i 0.663342 0.363055i
\(346\) −6.05081 + 3.49344i −0.325293 + 0.187808i
\(347\) 1.86351 1.07590i 0.100039 0.0577573i −0.449146 0.893458i \(-0.648272\pi\)
0.549185 + 0.835701i \(0.314938\pi\)
\(348\) 0.0256528 1.12384i 0.00137513 0.0602443i
\(349\) −25.2919 + 14.6023i −1.35384 + 0.781642i −0.988785 0.149343i \(-0.952284\pi\)
−0.365058 + 0.930985i \(0.618951\pi\)
\(350\) 0 0
\(351\) −17.4961 11.7670i −0.933870 0.628075i
\(352\) −10.4735 18.1407i −0.558240 0.966901i
\(353\) 10.8353 0.576703 0.288352 0.957525i \(-0.406893\pi\)
0.288352 + 0.957525i \(0.406893\pi\)
\(354\) 12.1915 6.67257i 0.647973 0.354643i
\(355\) 27.2716i 1.44743i
\(356\) −5.08239 + 8.80295i −0.269366 + 0.466556i
\(357\) 0 0
\(358\) −2.94617 5.10291i −0.155710 0.269697i
\(359\) −18.1425 + 10.4746i −0.957527 + 0.552829i −0.895411 0.445240i \(-0.853118\pi\)
−0.0621161 + 0.998069i \(0.519785\pi\)
\(360\) −14.1688 9.06662i −0.746761 0.477853i
\(361\) 23.5150 40.7292i 1.23763 2.14364i
\(362\) 0.639442 1.10755i 0.0336083 0.0582113i
\(363\) 4.75037 + 8.67947i 0.249330 + 0.455554i
\(364\) 0 0
\(365\) −6.17348 3.56426i −0.323135 0.186562i
\(366\) 3.30792 5.43894i 0.172908 0.284298i
\(367\) 5.74850i 0.300069i 0.988681 + 0.150035i \(0.0479385\pi\)
−0.988681 + 0.150035i \(0.952061\pi\)
\(368\) −3.18439 1.83851i −0.165998 0.0958389i
\(369\) −2.51699 4.85892i −0.131029 0.252945i
\(370\) 14.6650i 0.762398i
\(371\) 0 0
\(372\) −0.174940 + 7.66405i −0.00907019 + 0.397363i
\(373\) 28.8934 1.49605 0.748023 0.663673i \(-0.231003\pi\)
0.748023 + 0.663673i \(0.231003\pi\)
\(374\) 3.25342 + 5.63509i 0.168230 + 0.291383i
\(375\) −10.1074 18.4674i −0.521944 0.953650i
\(376\) −20.4886 11.8291i −1.05662 0.610039i
\(377\) 2.54104 0.130870
\(378\) 0 0
\(379\) −0.411434 −0.0211339 −0.0105670 0.999944i \(-0.503364\pi\)
−0.0105670 + 0.999944i \(0.503364\pi\)
\(380\) −13.7205 7.92156i −0.703849 0.406367i
\(381\) 8.42278 + 15.3894i 0.431512 + 0.788421i
\(382\) −2.81376 4.87358i −0.143965 0.249354i
\(383\) 24.8015 1.26730 0.633648 0.773622i \(-0.281557\pi\)
0.633648 + 0.773622i \(0.281557\pi\)
\(384\) 0.143710 6.29589i 0.00733366 0.321286i
\(385\) 0 0
\(386\) 1.53038i 0.0778944i
\(387\) 21.1947 + 0.968086i 1.07739 + 0.0492106i
\(388\) 11.8752 + 6.85617i 0.602874 + 0.348069i
\(389\) 4.41896i 0.224050i 0.993705 + 0.112025i \(0.0357337\pi\)
−0.993705 + 0.112025i \(0.964266\pi\)
\(390\) 6.74412 11.0888i 0.341502 0.561504i
\(391\) −6.05319 3.49481i −0.306123 0.176740i
\(392\) 0 0
\(393\) 4.13873 + 7.56193i 0.208772 + 0.381449i
\(394\) −9.59554 + 16.6200i −0.483416 + 0.837302i
\(395\) 7.86465 13.6220i 0.395714 0.685396i
\(396\) −0.579977 + 12.6977i −0.0291450 + 0.638084i
\(397\) 19.2780 11.1301i 0.967533 0.558605i 0.0690495 0.997613i \(-0.478003\pi\)
0.898483 + 0.439008i \(0.144670\pi\)
\(398\) −0.479229 0.830049i −0.0240216 0.0416066i
\(399\) 0 0
\(400\) −0.623155 + 1.07934i −0.0311578 + 0.0539668i
\(401\) 6.14184i 0.306709i 0.988171 + 0.153354i \(0.0490076\pi\)
−0.988171 + 0.153354i \(0.950992\pi\)
\(402\) −18.6896 + 10.2290i −0.932153 + 0.510178i
\(403\) −17.3287 −0.863203
\(404\) 0.544017 + 0.942265i 0.0270658 + 0.0468794i
\(405\) 7.09349 + 15.3731i 0.352478 + 0.763898i
\(406\) 0 0
\(407\) 28.1162 16.2329i 1.39367 0.804633i
\(408\) −0.191024 + 8.36870i −0.00945709 + 0.414312i
\(409\) 0.765886 0.442185i 0.0378706 0.0218646i −0.480945 0.876751i \(-0.659706\pi\)
0.518816 + 0.854886i \(0.326373\pi\)
\(410\) 2.91706 1.68416i 0.144063 0.0831749i
\(411\) 1.27728 0.699070i 0.0630036 0.0344826i
\(412\) −1.47106 + 0.849316i −0.0724739 + 0.0418428i
\(413\) 0 0
\(414\) 5.83899 + 11.2719i 0.286971 + 0.553983i
\(415\) 8.24530 + 14.2813i 0.404746 + 0.701040i
\(416\) 20.7918 1.01940
\(417\) 0.262153 11.4849i 0.0128377 0.562416i
\(418\) 32.6089i 1.59495i
\(419\) 7.59365 13.1526i 0.370974 0.642546i −0.618742 0.785595i \(-0.712357\pi\)
0.989716 + 0.143049i \(0.0456905\pi\)
\(420\) 0 0
\(421\) 13.3318 + 23.0914i 0.649753 + 1.12541i 0.983182 + 0.182630i \(0.0584611\pi\)
−0.333428 + 0.942775i \(0.608206\pi\)
\(422\) 20.3605 11.7551i 0.991133 0.572231i
\(423\) 10.9527 + 21.1436i 0.532539 + 1.02804i
\(424\) 12.4759 21.6088i 0.605881 1.04942i
\(425\) −1.18455 + 2.05170i −0.0574592 + 0.0995222i
\(426\) −24.6415 0.562467i −1.19389 0.0272516i
\(427\) 0 0
\(428\) 3.08358 + 1.78031i 0.149050 + 0.0860543i
\(429\) −28.7249 0.655674i −1.38685 0.0316562i
\(430\) 13.0598i 0.629801i
\(431\) −4.06785 2.34857i −0.195941 0.113127i 0.398820 0.917029i \(-0.369420\pi\)
−0.594761 + 0.803903i \(0.702753\pi\)
\(432\) 2.47356 3.67788i 0.119009 0.176952i
\(433\) 8.97714i 0.431414i −0.976458 0.215707i \(-0.930794\pi\)
0.976458 0.215707i \(-0.0692056\pi\)
\(434\) 0 0
\(435\) −1.74331 1.06026i −0.0835851 0.0508357i
\(436\) 3.82499 0.183184
\(437\) 17.5142 + 30.3354i 0.837816 + 1.45114i
\(438\) 3.34785 5.50460i 0.159966 0.263020i
\(439\) 14.3012 + 8.25679i 0.682558 + 0.394075i 0.800818 0.598907i \(-0.204398\pi\)
−0.118260 + 0.992983i \(0.537732\pi\)
\(440\) −22.9225 −1.09279
\(441\) 0 0
\(442\) −6.45861 −0.307205
\(443\) −0.921171 0.531838i −0.0437661 0.0252684i 0.477957 0.878383i \(-0.341377\pi\)
−0.521723 + 0.853115i \(0.674711\pi\)
\(444\) 14.2524 + 0.325324i 0.676388 + 0.0154392i
\(445\) 9.22500 + 15.9782i 0.437307 + 0.757438i
\(446\) 3.04219 0.144052
\(447\) 25.7940 14.1174i 1.22002 0.667728i
\(448\) 0 0
\(449\) 15.9081i 0.750749i −0.926873 0.375374i \(-0.877514\pi\)
0.926873 0.375374i \(-0.122486\pi\)
\(450\) 3.82056 1.97910i 0.180103 0.0932958i
\(451\) −6.45785 3.72844i −0.304088 0.175565i
\(452\) 18.0539i 0.849186i
\(453\) −1.62274 2.96493i −0.0762430 0.139305i
\(454\) −18.5309 10.6988i −0.869698 0.502121i
\(455\) 0 0
\(456\) 21.7988 35.8421i 1.02082 1.67846i
\(457\) 16.3963 28.3992i 0.766985 1.32846i −0.172206 0.985061i \(-0.555090\pi\)
0.939191 0.343395i \(-0.111577\pi\)
\(458\) 6.33672 10.9755i 0.296095 0.512852i
\(459\) 4.70197 6.99125i 0.219469 0.326324i
\(460\) 7.27862 4.20231i 0.339368 0.195934i
\(461\) 9.23690 + 15.9988i 0.430205 + 0.745138i 0.996891 0.0787967i \(-0.0251078\pi\)
−0.566685 + 0.823934i \(0.691774\pi\)
\(462\) 0 0
\(463\) −0.201921 + 0.349738i −0.00938408 + 0.0162537i −0.870679 0.491851i \(-0.836320\pi\)
0.861295 + 0.508105i \(0.169654\pi\)
\(464\) 0.534158i 0.0247976i
\(465\) 11.8885 + 7.23048i 0.551315 + 0.335305i
\(466\) 0.793161 0.0367425
\(467\) −7.51283 13.0126i −0.347652 0.602151i 0.638180 0.769887i \(-0.279688\pi\)
−0.985832 + 0.167736i \(0.946354\pi\)
\(468\) −10.6272 6.80035i −0.491242 0.314346i
\(469\) 0 0
\(470\) −12.6936 + 7.32866i −0.585512 + 0.338046i
\(471\) 14.0899 + 8.56935i 0.649228 + 0.394855i
\(472\) 21.1002 12.1822i 0.971216 0.560732i
\(473\) 25.0387 14.4561i 1.15128 0.664691i
\(474\) 12.1461 + 7.38714i 0.557888 + 0.339303i
\(475\) 10.2821 5.93635i 0.471773 0.272379i
\(476\) 0 0
\(477\) −22.2997 + 11.5515i −1.02103 + 0.528908i
\(478\) 6.91604 + 11.9789i 0.316332 + 0.547903i
\(479\) −31.0800 −1.42008 −0.710041 0.704160i \(-0.751324\pi\)
−0.710041 + 0.704160i \(0.751324\pi\)
\(480\) −14.2644 8.67546i −0.651076 0.395979i
\(481\) 32.2251i 1.46934i
\(482\) 9.07944 15.7261i 0.413557 0.716302i
\(483\) 0 0
\(484\) 2.96029 + 5.12738i 0.134559 + 0.233063i
\(485\) 21.5547 12.4446i 0.978747 0.565080i
\(486\) −14.0369 + 6.09233i −0.636725 + 0.276354i
\(487\) −6.74782 + 11.6876i −0.305773 + 0.529614i −0.977433 0.211245i \(-0.932248\pi\)
0.671660 + 0.740859i \(0.265582\pi\)
\(488\) 5.57994 9.66474i 0.252592 0.437502i
\(489\) −0.999224 + 1.64294i −0.0451865 + 0.0742965i
\(490\) 0 0
\(491\) −7.07098 4.08243i −0.319109 0.184238i 0.331886 0.943319i \(-0.392315\pi\)
−0.650995 + 0.759082i \(0.725648\pi\)
\(492\) −1.57206 2.87234i −0.0708741 0.129495i
\(493\) 1.01538i 0.0457303i
\(494\) 28.0308 + 16.1836i 1.26116 + 0.728134i
\(495\) 19.4334 + 12.4354i 0.873466 + 0.558931i
\(496\) 3.64269i 0.163562i
\(497\) 0 0
\(498\) −13.0740 + 7.15558i −0.585862 + 0.320649i
\(499\) −28.0194 −1.25432 −0.627159 0.778891i \(-0.715782\pi\)
−0.627159 + 0.778891i \(0.715782\pi\)
\(500\) −6.29863 10.9095i −0.281683 0.487890i
\(501\) −24.2711 0.554013i −1.08435 0.0247515i
\(502\) 18.8497 + 10.8829i 0.841305 + 0.485727i
\(503\) 5.89656 0.262915 0.131457 0.991322i \(-0.458034\pi\)
0.131457 + 0.991322i \(0.458034\pi\)
\(504\) 0 0
\(505\) 1.97488 0.0878811
\(506\) 14.9811 + 8.64936i 0.665992 + 0.384511i
\(507\) 3.11923 5.12869i 0.138530 0.227773i
\(508\) 5.24883 + 9.09123i 0.232879 + 0.403358i
\(509\) −14.0391 −0.622274 −0.311137 0.950365i \(-0.600710\pi\)
−0.311137 + 0.950365i \(0.600710\pi\)
\(510\) 4.43098 + 2.69488i 0.196207 + 0.119331i
\(511\) 0 0
\(512\) 9.45558i 0.417882i
\(513\) −37.9251 + 18.5606i −1.67443 + 0.819470i
\(514\) −3.44968 1.99168i −0.152159 0.0878490i
\(515\) 3.08318i 0.135861i
\(516\) 12.6924 + 0.289716i 0.558750 + 0.0127540i
\(517\) 28.1014 + 16.2243i 1.23590 + 0.713546i
\(518\) 0 0
\(519\) 12.3250 + 0.281330i 0.541007 + 0.0123490i
\(520\) 11.3763 19.7043i 0.498883 0.864090i
\(521\) −19.2229 + 33.2950i −0.842170 + 1.45868i 0.0458870 + 0.998947i \(0.485389\pi\)
−0.888057 + 0.459734i \(0.847945\pi\)
\(522\) 0.993967 1.55331i 0.0435047 0.0679867i
\(523\) −9.08734 + 5.24658i −0.397362 + 0.229417i −0.685345 0.728219i \(-0.740349\pi\)
0.287983 + 0.957635i \(0.407015\pi\)
\(524\) 2.57914 + 4.46720i 0.112670 + 0.195150i
\(525\) 0 0
\(526\) 4.88879 8.46764i 0.213161 0.369207i
\(527\) 6.92437i 0.301630i
\(528\) 0.137830 6.03832i 0.00599830 0.262784i
\(529\) 4.41779 0.192078
\(530\) −7.72935 13.3876i −0.335741 0.581521i
\(531\) −24.4974 1.11894i −1.06309 0.0485576i
\(532\) 0 0
\(533\) 6.40998 3.70080i 0.277647 0.160300i
\(534\) −14.6275 + 8.00580i −0.632994 + 0.346445i
\(535\) 5.59698 3.23142i 0.241979 0.139706i
\(536\) −32.3466 + 18.6753i −1.39716 + 0.806650i
\(537\) −0.237258 + 10.3942i −0.0102384 + 0.448543i
\(538\) 8.47388 4.89240i 0.365335 0.210926i
\(539\) 0 0
\(540\) 4.45339 + 9.09968i 0.191644 + 0.391588i
\(541\) −22.5783 39.1067i −0.970715 1.68133i −0.693405 0.720548i \(-0.743890\pi\)
−0.277311 0.960780i \(-0.589443\pi\)
\(542\) 18.6822 0.802471
\(543\) −1.97948 + 1.08339i −0.0849477 + 0.0464928i
\(544\) 8.30819i 0.356211i
\(545\) 3.47136 6.01257i 0.148697 0.257550i
\(546\) 0 0
\(547\) −4.05733 7.02751i −0.173479 0.300475i 0.766155 0.642656i \(-0.222168\pi\)
−0.939634 + 0.342181i \(0.888834\pi\)
\(548\) 0.754550 0.435640i 0.0322328 0.0186096i
\(549\) −9.97372 + 5.16653i −0.425668 + 0.220502i
\(550\) 2.93166 5.07779i 0.125007 0.216518i
\(551\) 2.54427 4.40680i 0.108389 0.187736i
\(552\) 10.6845 + 19.5217i 0.454762 + 0.830901i
\(553\) 0 0
\(554\) −13.2818 7.66827i −0.564291 0.325794i
\(555\) 13.4461 22.1083i 0.570754 0.938445i
\(556\) 6.87406i 0.291525i
\(557\) −14.0925 8.13633i −0.597120 0.344747i 0.170788 0.985308i \(-0.445369\pi\)
−0.767908 + 0.640561i \(0.778702\pi\)
\(558\) −6.77837 + 10.5928i −0.286951 + 0.448431i
\(559\) 28.6978i 1.21379i
\(560\) 0 0
\(561\) 0.262001 11.4782i 0.0110617 0.484610i
\(562\) −23.6647 −0.998236
\(563\) −5.13594 8.89572i −0.216454 0.374910i 0.737267 0.675601i \(-0.236116\pi\)
−0.953721 + 0.300692i \(0.902783\pi\)
\(564\) 6.84085 + 12.4990i 0.288052 + 0.526303i
\(565\) −28.3793 16.3848i −1.19393 0.689314i
\(566\) −2.96233 −0.124516
\(567\) 0 0
\(568\) −43.2098 −1.81304
\(569\) 17.8537 + 10.3079i 0.748468 + 0.432128i 0.825140 0.564928i \(-0.191096\pi\)
−0.0766722 + 0.997056i \(0.524429\pi\)
\(570\) −12.4781 22.7989i −0.522649 0.954939i
\(571\) −2.12828 3.68628i −0.0890656 0.154266i 0.818051 0.575146i \(-0.195055\pi\)
−0.907116 + 0.420880i \(0.861721\pi\)
\(572\) −17.1928 −0.718867
\(573\) −0.226595 + 9.92706i −0.00946614 + 0.414709i
\(574\) 0 0
\(575\) 6.29836i 0.262660i
\(576\) 10.8916 17.0207i 0.453815 0.709196i
\(577\) −14.6609 8.46446i −0.610340 0.352380i 0.162758 0.986666i \(-0.447961\pi\)
−0.773099 + 0.634286i \(0.781294\pi\)
\(578\) 14.1068i 0.586764i
\(579\) −1.40318 + 2.30713i −0.0583141 + 0.0958812i
\(580\) −1.05736 0.610467i −0.0439045 0.0253483i
\(581\) 0 0
\(582\) 10.7999 + 19.7326i 0.447669 + 0.817943i
\(583\) −17.1114 + 29.6378i −0.708682 + 1.22747i
\(584\) 5.64730 9.78141i 0.233687 0.404758i
\(585\) −20.3342 + 10.5334i −0.840717 + 0.435503i
\(586\) −25.3735 + 14.6494i −1.04817 + 0.605160i
\(587\) −12.0558 20.8812i −0.497594 0.861858i 0.502402 0.864634i \(-0.332450\pi\)
−0.999996 + 0.00277589i \(0.999116\pi\)
\(588\) 0 0
\(589\) −17.3507 + 30.0522i −0.714922 + 1.23828i
\(590\) 15.0949i 0.621445i
\(591\) 29.7043 16.2575i 1.22187 0.668745i
\(592\) −6.77409 −0.278414
\(593\) −19.2908 33.4126i −0.792178 1.37209i −0.924616 0.380902i \(-0.875614\pi\)
0.132437 0.991191i \(-0.457720\pi\)
\(594\) −11.6370 + 17.3028i −0.477471 + 0.709941i
\(595\) 0 0
\(596\) 15.2378 8.79752i 0.624163 0.360360i
\(597\) −0.0385928 + 1.69074i −0.00157950 + 0.0691974i
\(598\) −14.8701 + 8.58525i −0.608083 + 0.351077i
\(599\) 29.2921 16.9118i 1.19684 0.690997i 0.236992 0.971511i \(-0.423838\pi\)
0.959850 + 0.280514i \(0.0905050\pi\)
\(600\) 6.61681 3.62146i 0.270130 0.147845i
\(601\) 27.4855 15.8688i 1.12116 0.647300i 0.179461 0.983765i \(-0.442565\pi\)
0.941696 + 0.336465i \(0.109231\pi\)
\(602\) 0 0
\(603\) 37.5544 + 1.71533i 1.52933 + 0.0698534i
\(604\) −1.01124 1.75153i −0.0411469 0.0712686i
\(605\) 10.7464 0.436904
\(606\) −0.0407312 + 1.78442i −0.00165459 + 0.0724873i
\(607\) 0.195554i 0.00793731i −0.999992 0.00396865i \(-0.998737\pi\)
0.999992 0.00396865i \(-0.00126327\pi\)
\(608\) 20.8181 36.0581i 0.844287 1.46235i
\(609\) 0 0
\(610\) −3.45702 5.98774i −0.139971 0.242436i
\(611\) −27.8931 + 16.1041i −1.12843 + 0.651502i
\(612\) 2.71735 4.24652i 0.109842 0.171655i
\(613\) −1.46664 + 2.54029i −0.0592370 + 0.102602i −0.894123 0.447821i \(-0.852200\pi\)
0.834886 + 0.550423i \(0.185533\pi\)
\(614\) −1.31956 + 2.28554i −0.0532530 + 0.0922370i
\(615\) −5.94180 0.135627i −0.239596 0.00546902i
\(616\) 0 0
\(617\) −7.86982 4.54365i −0.316827 0.182920i 0.333150 0.942874i \(-0.391888\pi\)
−0.649977 + 0.759953i \(0.725222\pi\)
\(618\) −2.78584 0.0635894i −0.112063 0.00255794i
\(619\) 28.7043i 1.15372i −0.816842 0.576861i \(-0.804277\pi\)
0.816842 0.576861i \(-0.195723\pi\)
\(620\) 7.21068 + 4.16309i 0.289588 + 0.167194i
\(621\) 1.53238 22.3466i 0.0614923 0.896739i
\(622\) 10.8717i 0.435916i
\(623\) 0 0
\(624\) 5.12217 + 3.11526i 0.205051 + 0.124710i
\(625\) −15.5597 −0.622388
\(626\) −8.21604 14.2306i −0.328379 0.568769i
\(627\) −29.8985 + 49.1596i −1.19403 + 1.96325i
\(628\) 8.54588 + 4.93397i 0.341018 + 0.196887i
\(629\) −12.8768 −0.513433
\(630\) 0 0
\(631\) −20.7691 −0.826805 −0.413403 0.910548i \(-0.635660\pi\)
−0.413403 + 0.910548i \(0.635660\pi\)
\(632\) 21.5830 + 12.4609i 0.858525 + 0.495670i
\(633\) −41.4726 0.946652i −1.64839 0.0376260i
\(634\) 1.44390 + 2.50091i 0.0573447 + 0.0993240i
\(635\) 19.0542 0.756143
\(636\) −13.1824 + 7.21487i −0.522716 + 0.286088i
\(637\) 0 0
\(638\) 2.51297i 0.0994895i
\(639\) 36.6327 + 23.4413i 1.44917 + 0.927323i
\(640\) −5.92345 3.41990i −0.234145 0.135184i
\(641\) 45.9263i 1.81398i 0.421152 + 0.906990i \(0.361626\pi\)
−0.421152 + 0.906990i \(0.638374\pi\)
\(642\) 2.80435 + 5.12386i 0.110679 + 0.202223i
\(643\) −9.15428 5.28523i −0.361010 0.208429i 0.308514 0.951220i \(-0.400168\pi\)
−0.669524 + 0.742791i \(0.733502\pi\)
\(644\) 0 0
\(645\) 11.9743 19.6884i 0.471488 0.775230i
\(646\) −6.46680 + 11.2008i −0.254433 + 0.440691i
\(647\) −19.2562 + 33.3526i −0.757038 + 1.31123i 0.187317 + 0.982299i \(0.440021\pi\)
−0.944355 + 0.328928i \(0.893313\pi\)
\(648\) −24.3576 + 11.2391i −0.956856 + 0.441513i
\(649\) −28.9402 + 16.7087i −1.13600 + 0.655872i
\(650\) 2.90993 + 5.04015i 0.114137 + 0.197691i
\(651\) 0 0
\(652\) −0.575323 + 0.996488i −0.0225314 + 0.0390255i
\(653\) 12.8018i 0.500973i 0.968120 + 0.250486i \(0.0805905\pi\)
−0.968120 + 0.250486i \(0.919409\pi\)
\(654\) 5.36112 + 3.26059i 0.209636 + 0.127499i
\(655\) 9.36274 0.365833
\(656\) 0.777952 + 1.34745i 0.0303739 + 0.0526092i
\(657\) −10.0941 + 5.22890i −0.393809 + 0.203999i
\(658\) 0 0
\(659\) 41.5777 24.0049i 1.61964 0.935097i 0.632622 0.774461i \(-0.281979\pi\)
0.987014 0.160636i \(-0.0513546\pi\)
\(660\) 11.7953 + 7.17378i 0.459130 + 0.279239i
\(661\) −9.38011 + 5.41561i −0.364844 + 0.210643i −0.671204 0.741273i \(-0.734222\pi\)
0.306360 + 0.951916i \(0.400889\pi\)
\(662\) −4.14983 + 2.39591i −0.161288 + 0.0931196i
\(663\) 9.73669 + 5.92177i 0.378142 + 0.229983i
\(664\) −22.6276 + 13.0640i −0.878121 + 0.506983i
\(665\) 0 0
\(666\) 19.6989 + 12.6053i 0.763315 + 0.488446i
\(667\) 1.34971 + 2.33777i 0.0522611 + 0.0905188i
\(668\) −14.5271 −0.562070
\(669\) −4.58627 2.78933i −0.177315 0.107842i
\(670\) 23.1404i 0.893991i
\(671\) −7.65323 + 13.2558i −0.295450 + 0.511734i
\(672\) 0 0
\(673\) −6.19553 10.7310i −0.238820 0.413649i 0.721556 0.692356i \(-0.243427\pi\)
−0.960376 + 0.278707i \(0.910094\pi\)
\(674\) 11.0756 6.39449i 0.426616 0.246307i
\(675\) −7.57430 0.519394i −0.291535 0.0199915i
\(676\) 1.79595 3.11068i 0.0690752 0.119642i
\(677\) −14.4947 + 25.1056i −0.557078 + 0.964888i 0.440660 + 0.897674i \(0.354744\pi\)
−0.997739 + 0.0672139i \(0.978589\pi\)
\(678\) 15.3900 25.3045i 0.591048 0.971813i
\(679\) 0 0
\(680\) 7.87364 + 4.54585i 0.301940 + 0.174325i
\(681\) 18.1268 + 33.1197i 0.694620 + 1.26915i
\(682\) 17.1372i 0.656219i
\(683\) 0.132048 + 0.0762380i 0.00505268 + 0.00291717i 0.502524 0.864563i \(-0.332405\pi\)
−0.497472 + 0.867480i \(0.665738\pi\)
\(684\) −22.4342 + 11.6212i −0.857792 + 0.444348i
\(685\) 1.58145i 0.0604242i
\(686\) 0 0
\(687\) −19.6162 + 10.7362i −0.748404 + 0.409610i
\(688\) −6.03263 −0.229992
\(689\) −16.9846 29.4181i −0.647060 1.12074i
\(690\) 13.7840 + 0.314633i 0.524747 + 0.0119779i
\(691\) −37.4428 21.6176i −1.42439 0.822373i −0.427722 0.903910i \(-0.640684\pi\)
−0.996670 + 0.0815369i \(0.974017\pi\)
\(692\) 7.37691 0.280428
\(693\) 0 0
\(694\) 2.11225 0.0801799
\(695\) −10.8055 6.23853i −0.409874 0.236641i
\(696\) 1.67991 2.76213i 0.0636767 0.104698i
\(697\) 1.47880 + 2.56136i 0.0560137 + 0.0970186i
\(698\) −28.6678 −1.08509
\(699\) −1.19573 0.727234i −0.0452267 0.0275065i
\(700\) 0 0
\(701\) 11.5821i 0.437451i 0.975786 + 0.218726i \(0.0701900\pi\)
−0.975786 + 0.218726i \(0.929810\pi\)
\(702\) −9.09820 18.5905i −0.343389 0.701652i
\(703\) 55.8863 + 32.2660i 2.10779 + 1.21693i
\(704\) 27.5363i 1.03781i
\(705\) 25.8558 + 0.590184i 0.973786 + 0.0222276i
\(706\) 9.21116 + 5.31807i 0.346667 + 0.200148i
\(707\) 0 0
\(708\) −14.6701 0.334860i −0.551337 0.0125848i
\(709\) 18.9474 32.8178i 0.711584 1.23250i −0.252678 0.967550i \(-0.581311\pi\)
0.964262 0.264949i \(-0.0853552\pi\)
\(710\) −13.3852 + 23.1838i −0.502337 + 0.870073i
\(711\) −11.5377 22.2730i −0.432699 0.835303i
\(712\) −25.3162 + 14.6163i −0.948765 + 0.547770i
\(713\) −9.20437 15.9424i −0.344707 0.597049i
\(714\) 0 0
\(715\) −15.6033 + 27.0256i −0.583529 + 1.01070i
\(716\) 6.22127i 0.232500i
\(717\) 0.556955 24.4000i 0.0207999 0.911237i
\(718\) −20.5642 −0.767449
\(719\) −23.3158 40.3842i −0.869534 1.50608i −0.862474 0.506102i \(-0.831086\pi\)
−0.00706058 0.999975i \(-0.502247\pi\)
\(720\) −2.21425 4.27450i −0.0825202 0.159301i
\(721\) 0 0
\(722\) 39.9806 23.0828i 1.48792 0.859054i
\(723\) −28.1067 + 15.3831i −1.04530 + 0.572104i
\(724\) −1.16937 + 0.675138i −0.0434594 + 0.0250913i
\(725\) 0.792377 0.457479i 0.0294282 0.0169904i
\(726\) −0.221641 + 9.71003i −0.00822587 + 0.360373i
\(727\) 3.72659 2.15155i 0.138212 0.0797965i −0.429300 0.903162i \(-0.641240\pi\)
0.567511 + 0.823366i \(0.307906\pi\)
\(728\) 0 0
\(729\) 26.7473 + 3.68562i 0.990639 + 0.136505i
\(730\) −3.49875 6.06002i −0.129495 0.224291i
\(731\) −11.4674 −0.424136
\(732\) −5.89594 + 3.22692i −0.217920 + 0.119270i
\(733\) 14.0108i 0.517500i 0.965944 + 0.258750i \(0.0833105\pi\)
−0.965944 + 0.258750i \(0.916689\pi\)
\(734\) −2.82143 + 4.88685i −0.104141 + 0.180377i
\(735\) 0 0
\(736\) 11.0438 + 19.1285i 0.407081 + 0.705086i
\(737\) 44.3653 25.6143i 1.63422 0.943516i
\(738\) 0.245095 5.36597i 0.00902207 0.197524i
\(739\) −18.9313 + 32.7901i −0.696401 + 1.20620i 0.273305 + 0.961927i \(0.411883\pi\)
−0.969706 + 0.244274i \(0.921450\pi\)
\(740\) 7.74184 13.4093i 0.284596 0.492934i
\(741\) −27.4195 50.0985i −1.00728 1.84041i
\(742\) 0 0
\(743\) −24.0489 13.8847i −0.882269 0.509378i −0.0108634 0.999941i \(-0.503458\pi\)
−0.871406 + 0.490563i \(0.836791\pi\)
\(744\) −11.4561 + 18.8364i −0.420002 + 0.690576i
\(745\) 31.9366i 1.17007i
\(746\) 24.5626 + 14.1812i 0.899300 + 0.519211i
\(747\) 26.2706 + 1.19993i 0.961192 + 0.0439032i
\(748\) 6.87007i 0.251195i
\(749\) 0 0
\(750\) 0.471587 20.6601i 0.0172199 0.754400i
\(751\) −17.3508 −0.633140 −0.316570 0.948569i \(-0.602531\pi\)
−0.316570 + 0.948569i \(0.602531\pi\)
\(752\) −3.38527 5.86346i −0.123448 0.213818i
\(753\) −18.4387 33.6895i −0.671942 1.22771i
\(754\) 2.16017 + 1.24717i 0.0786686 + 0.0454193i
\(755\) −3.67100 −0.133601
\(756\) 0 0
\(757\) 18.8111 0.683701 0.341850 0.939754i \(-0.388946\pi\)
0.341850 + 0.939754i \(0.388946\pi\)
\(758\) −0.349764 0.201936i −0.0127040 0.00733465i
\(759\) −14.6544 26.7753i −0.531922 0.971881i
\(760\) −22.7814 39.4586i −0.826369 1.43131i
\(761\) 8.45039 0.306326 0.153163 0.988201i \(-0.451054\pi\)
0.153163 + 0.988201i \(0.451054\pi\)
\(762\) −0.392986 + 17.2166i −0.0142364 + 0.623693i
\(763\) 0 0
\(764\) 5.94167i 0.214962i
\(765\) −4.20905 8.12536i −0.152179 0.293773i
\(766\) 21.0840 + 12.1728i 0.761794 + 0.439822i
\(767\) 33.1696i 1.19769i
\(768\) 15.3370 25.2174i 0.553426 0.909953i
\(769\) −19.8100 11.4373i −0.714366 0.412440i 0.0983092 0.995156i \(-0.468657\pi\)
−0.812676 + 0.582716i \(0.801990\pi\)
\(770\) 0 0
\(771\) 3.37445 + 6.16550i 0.121528 + 0.222045i
\(772\) −0.807907 + 1.39934i −0.0290772 + 0.0503632i
\(773\) 18.8374 32.6273i 0.677533 1.17352i −0.298189 0.954507i \(-0.596382\pi\)
0.975722 0.219015i \(-0.0702843\pi\)
\(774\) 17.5427 + 11.2256i 0.630559 + 0.403495i
\(775\) −5.40363 + 3.11978i −0.194104 + 0.112066i
\(776\) 19.7175 + 34.1517i 0.707817 + 1.22598i
\(777\) 0 0
\(778\) −2.16888 + 3.75660i −0.0777579 + 0.134681i
\(779\) 14.8220i 0.531053i
\(780\) −12.0205 + 6.57898i −0.430404 + 0.235565i
\(781\) 59.2649 2.12066
\(782\) −3.43058 5.94194i −0.122677 0.212483i
\(783\) −2.92266 + 1.43035i −0.104447 + 0.0511167i
\(784\) 0 0
\(785\) 15.5116 8.95561i 0.553632 0.319639i
\(786\) −0.193103 + 8.45980i −0.00688777 + 0.301751i
\(787\) −20.3222 + 11.7330i −0.724408 + 0.418237i −0.816373 0.577525i \(-0.804019\pi\)
0.0919648 + 0.995762i \(0.470685\pi\)
\(788\) 17.5478 10.1312i 0.625113 0.360909i
\(789\) −15.1339 + 8.28297i −0.538782 + 0.294882i
\(790\) 13.3716 7.72011i 0.475741 0.274669i
\(791\) 0 0
\(792\) −19.7030 + 30.7907i −0.700116 + 1.09410i
\(793\) −7.59650 13.1575i −0.269760 0.467237i
\(794\) 21.8511 0.775468
\(795\) −0.622452 + 27.2694i −0.0220761 + 0.967148i
\(796\) 1.01196i 0.0358681i
\(797\) 22.8856 39.6390i 0.810648 1.40408i −0.101763 0.994809i \(-0.532448\pi\)
0.912411 0.409275i \(-0.134218\pi\)
\(798\) 0 0
\(799\) −6.43503 11.1458i −0.227655 0.394310i
\(800\) 6.48352 3.74326i 0.229227 0.132344i
\(801\) 29.3921 + 1.34251i 1.03852 + 0.0474352i
\(802\) −3.01448 + 5.22123i −0.106445 + 0.184368i
\(803\) −7.74562 + 13.4158i −0.273337 + 0.473433i
\(804\) 22.4893 + 0.513339i 0.793135 + 0.0181041i
\(805\) 0 0
\(806\) −14.7313 8.50510i −0.518887 0.299579i
\(807\) −17.2606 0.393989i −0.607601 0.0138691i
\(808\) 3.12905i 0.110080i
\(809\) −11.4669 6.62041i −0.403154 0.232761i 0.284690 0.958620i \(-0.408109\pi\)
−0.687844 + 0.725858i \(0.741443\pi\)
\(810\) −1.51507 + 16.5504i −0.0532340 + 0.581522i
\(811\) 56.0437i 1.96796i −0.178275 0.983981i \(-0.557052\pi\)
0.178275 0.983981i \(-0.442948\pi\)
\(812\) 0 0
\(813\) −28.1645 17.1294i −0.987771 0.600754i
\(814\) 31.8691 1.11701
\(815\) 1.04426 + 1.80872i 0.0365790 + 0.0633566i
\(816\) −1.24483 + 2.04677i −0.0435776 + 0.0716512i
\(817\) 49.7692 + 28.7343i 1.74120 + 1.00528i
\(818\) 0.868116 0.0303530
\(819\) 0 0
\(820\) −3.55636 −0.124193
\(821\) −48.7766 28.1612i −1.70232 0.982833i −0.943407 0.331636i \(-0.892399\pi\)
−0.758909 0.651197i \(-0.774267\pi\)
\(822\) 1.42894 + 0.0326169i 0.0498399 + 0.00113765i
\(823\) −8.52180 14.7602i −0.297051 0.514508i 0.678409 0.734685i \(-0.262670\pi\)
−0.975460 + 0.220177i \(0.929337\pi\)
\(824\) −4.88506 −0.170179
\(825\) −9.07537 + 4.96705i −0.315964 + 0.172931i
\(826\) 0 0
\(827\) 45.7715i 1.59163i −0.605539 0.795816i \(-0.707042\pi\)
0.605539 0.795816i \(-0.292958\pi\)
\(828\) 0.611559 13.3891i 0.0212532 0.465305i
\(829\) −30.5567 17.6419i −1.06128 0.612730i −0.135493 0.990778i \(-0.543262\pi\)
−0.925786 + 0.378049i \(0.876595\pi\)
\(830\) 16.1875i 0.561877i
\(831\) 12.9922 + 23.7382i 0.450694 + 0.823469i
\(832\) 23.6704 + 13.6661i 0.820623 + 0.473787i
\(833\) 0 0
\(834\) 5.85975 9.63472i 0.202907 0.333623i
\(835\) −13.1840 + 22.8354i −0.456251 + 0.790250i
\(836\) −17.2146 + 29.8166i −0.595380 + 1.03123i
\(837\) 19.9311 9.75432i 0.688920 0.337159i
\(838\) 12.9109 7.45409i 0.445998 0.257497i
\(839\) 22.3195 + 38.6585i 0.770555 + 1.33464i 0.937259 + 0.348634i \(0.113354\pi\)
−0.166704 + 0.986007i \(0.553312\pi\)
\(840\) 0 0
\(841\) −14.3039 + 24.7751i −0.493239 + 0.854315i
\(842\) 26.1736i 0.902002i
\(843\) 35.6758 + 21.6977i 1.22874 + 0.747309i
\(844\) −24.8227 −0.854433
\(845\) −3.25982 5.64618i −0.112141 0.194235i
\(846\) −1.06653 + 23.3501i −0.0366682 + 0.802793i
\(847\) 0 0
\(848\) 6.18404 3.57036i 0.212361 0.122607i
\(849\) 4.46587 + 2.71610i 0.153268 + 0.0932164i
\(850\) −2.01400 + 1.16278i −0.0690795 + 0.0398831i
\(851\) −29.6472 + 17.1168i −1.01629 + 0.586757i
\(852\) 22.2345 + 13.5229i 0.761743 + 0.463286i
\(853\) −47.7652 + 27.5772i −1.63545 + 0.944227i −0.653077 + 0.757292i \(0.726522\pi\)
−0.982372 + 0.186935i \(0.940145\pi\)
\(854\) 0 0
\(855\) −2.09247 + 45.8114i −0.0715610 + 1.56672i
\(856\) 5.11994 + 8.86800i 0.174996 + 0.303102i
\(857\) 38.1541 1.30332 0.651660 0.758511i \(-0.274073\pi\)
0.651660 + 0.758511i \(0.274073\pi\)
\(858\) −24.0975 14.6559i −0.822675 0.500344i
\(859\) 40.4682i 1.38076i −0.723449 0.690378i \(-0.757444\pi\)
0.723449 0.690378i \(-0.242556\pi\)
\(860\) 6.89444 11.9415i 0.235099 0.407203i
\(861\) 0 0
\(862\) −2.30541 3.99309i −0.0785226 0.136005i
\(863\) 31.3519 18.1011i 1.06723 0.616167i 0.139808 0.990179i \(-0.455351\pi\)
0.927424 + 0.374012i \(0.122018\pi\)
\(864\) −23.9143 + 11.7037i −0.813581 + 0.398168i
\(865\) 6.69488 11.5959i 0.227633 0.394272i
\(866\) 4.40608 7.63155i 0.149725 0.259331i
\(867\) 12.9342 21.2667i 0.439269 0.722255i
\(868\) 0 0
\(869\) −29.6024 17.0910i −1.00419 0.579771i
\(870\) −0.961611 1.75697i −0.0326017 0.0595669i
\(871\) 50.8489i 1.72295i
\(872\) 9.52645 + 5.50010i 0.322606 + 0.186257i
\(873\) 1.81105 39.6502i 0.0612948 1.34195i
\(874\) 34.3846i 1.16307i
\(875\) 0 0
\(876\) −5.96712 + 3.26587i −0.201610 + 0.110344i
\(877\) −11.0688 −0.373766 −0.186883 0.982382i \(-0.559839\pi\)
−0.186883 + 0.982382i \(0.559839\pi\)
\(878\) 8.10505 + 14.0384i 0.273532 + 0.473771i
\(879\) 51.6836 + 1.17973i 1.74324 + 0.0397912i
\(880\) −5.68111 3.27999i −0.191510 0.110568i
\(881\) −8.87036 −0.298850 −0.149425 0.988773i \(-0.547742\pi\)
−0.149425 + 0.988773i \(0.547742\pi\)
\(882\) 0 0
\(883\) −14.1903 −0.477540 −0.238770 0.971076i \(-0.576744\pi\)
−0.238770 + 0.971076i \(0.576744\pi\)
\(884\) 5.90556 + 3.40958i 0.198625 + 0.114676i
\(885\) −13.8402 + 22.7563i −0.465233 + 0.764944i
\(886\) −0.522064 0.904241i −0.0175391 0.0303786i
\(887\) 39.0360 1.31070 0.655350 0.755325i \(-0.272521\pi\)
0.655350 + 0.755325i \(0.272521\pi\)
\(888\) 35.0289 + 21.3043i 1.17549 + 0.714925i
\(889\) 0 0
\(890\) 18.1109i 0.607080i
\(891\) 33.4079 15.4151i 1.11921 0.516426i
\(892\) −2.78169 1.60601i −0.0931378 0.0537732i
\(893\) 64.4981i 2.15835i
\(894\) 28.8567 + 0.658682i 0.965112 + 0.0220296i
\(895\) 9.77931 + 5.64609i 0.326886 + 0.188728i
\(896\) 0 0
\(897\) 30.2891 + 0.691378i 1.01132 + 0.0230844i
\(898\) 7.80786 13.5236i 0.260552 0.451288i
\(899\) −1.33711 + 2.31595i −0.0445952 + 0.0772411i
\(900\) −4.53820 0.207286i −0.151273 0.00690952i
\(901\) 11.7552 6.78687i 0.391622 0.226103i
\(902\) −3.65992 6.33916i −0.121862 0.211071i
\(903\) 0 0
\(904\) 25.9605 44.9648i 0.863432 1.49551i
\(905\) 2.45088i 0.0814699i
\(906\) 0.0757132 3.31697i 0.00251540 0.110199i
\(907\) 9.86974 0.327719 0.163860 0.986484i \(-0.447606\pi\)
0.163860 + 0.986484i \(0.447606\pi\)
\(908\) 11.2961 + 19.5654i 0.374873 + 0.649300i
\(909\) 1.69751 2.65277i 0.0563028 0.0879868i
\(910\) 0 0
\(911\) −46.6335 + 26.9239i −1.54504 + 0.892028i −0.546529 + 0.837440i \(0.684051\pi\)
−0.998509 + 0.0545881i \(0.982615\pi\)
\(912\) 10.5313 5.76390i 0.348726 0.190862i
\(913\) 31.0351 17.9181i 1.02711 0.593004i
\(914\) 27.8772 16.0949i 0.922096 0.532373i
\(915\) −0.278397 + 12.1965i −0.00920353 + 0.403204i
\(916\) −11.5882 + 6.69046i −0.382885 + 0.221059i
\(917\) 0 0
\(918\) 7.42857 3.63555i 0.245179 0.119991i
\(919\) −11.0899 19.2084i −0.365824 0.633625i 0.623084 0.782155i \(-0.285879\pi\)
−0.988908 + 0.148530i \(0.952546\pi\)
\(920\) 24.1707 0.796884
\(921\) 4.08487 2.23570i 0.134601 0.0736688i
\(922\) 18.1343i 0.597221i
\(923\) −29.4128 + 50.9444i −0.968133 + 1.67686i
\(924\) 0 0
\(925\) 5.80167 + 10.0488i 0.190758 + 0.330402i
\(926\) −0.343310 + 0.198210i −0.0112819 + 0.00651359i
\(927\) 4.14149 + 2.65014i 0.136024 + 0.0870422i
\(928\) 1.60433 2.77878i 0.0526647 0.0912180i
\(929\) 27.4954 47.6234i 0.902093 1.56247i 0.0773215 0.997006i \(-0.475363\pi\)
0.824772 0.565466i \(-0.191303\pi\)
\(930\) 6.55772 + 11.9817i 0.215036 + 0.392895i
\(931\) 0 0
\(932\) −0.725243 0.418719i −0.0237561 0.0137156i
\(933\) −9.96806 + 16.3897i −0.326340 + 0.536574i
\(934\) 14.7495i 0.482618i
\(935\) −10.7992 6.23491i −0.353171 0.203903i
\(936\) −16.6894 32.2181i −0.545510 1.05308i
\(937\) 29.3132i 0.957622i 0.877918 + 0.478811i \(0.158932\pi\)
−0.877918 + 0.478811i \(0.841068\pi\)
\(938\) 0 0
\(939\) −0.661646 + 28.9865i −0.0215920 + 0.945940i
\(940\) 15.4755 0.504757
\(941\) 7.58758 + 13.1421i 0.247348 + 0.428419i 0.962789 0.270254i \(-0.0871076\pi\)
−0.715441 + 0.698673i \(0.753774\pi\)
\(942\) 7.77201 + 14.2003i 0.253226 + 0.462672i
\(943\) 6.80950 + 3.93147i 0.221748 + 0.128026i
\(944\) 6.97265 0.226940
\(945\) 0 0
\(946\) 28.3808 0.922739
\(947\) −2.27478 1.31335i −0.0739206 0.0426781i 0.462584 0.886575i \(-0.346922\pi\)
−0.536505 + 0.843897i \(0.680256\pi\)
\(948\) −7.20625 13.1666i −0.234048 0.427633i
\(949\) −7.68820 13.3164i −0.249570 0.432267i
\(950\) 11.6545 0.378122
\(951\) 0.116279 5.09415i 0.00377060 0.165189i
\(952\) 0 0
\(953\) 40.5520i 1.31361i 0.754061 + 0.656805i \(0.228092\pi\)
−0.754061 + 0.656805i \(0.771908\pi\)
\(954\) −24.6268 1.12485i −0.797321 0.0364182i
\(955\) 9.33981 + 5.39234i 0.302229 + 0.174492i
\(956\) 14.6042i 0.472335i
\(957\) −2.30410 + 3.78844i −0.0744808 + 0.122463i
\(958\) −26.4214 15.2544i −0.853637 0.492847i
\(959\) 0 0
\(960\) −10.5370 19.2523i −0.340081 0.621366i
\(961\) −6.38155 + 11.0532i −0.205856 + 0.356554i
\(962\) −15.8164 + 27.3948i −0.509942 + 0.883245i
\(963\) 0.470266 10.2957i 0.0151541 0.331776i
\(964\) −16.6039 + 9.58629i −0.534777 + 0.308754i
\(965\) 1.46643 + 2.53993i 0.0472059 + 0.0817631i
\(966\) 0 0
\(967\) 6.47468 11.2145i 0.208212 0.360633i −0.742939 0.669359i \(-0.766569\pi\)
0.951151 + 0.308725i \(0.0999023\pi\)
\(968\) 17.0269i 0.547264i
\(969\) 20.0189 10.9566i 0.643099 0.351975i
\(970\) 24.4317 0.784456
\(971\) −8.26077 14.3081i −0.265101 0.459168i 0.702489 0.711694i \(-0.252072\pi\)
−0.967590 + 0.252526i \(0.918739\pi\)
\(972\) 16.0511 + 1.83958i 0.514839 + 0.0590047i
\(973\) 0 0
\(974\) −11.4728 + 6.62381i −0.367611 + 0.212240i
\(975\) 0.234340 10.2664i 0.00750488 0.328787i
\(976\) 2.76587 1.59687i 0.0885333 0.0511147i
\(977\) −5.50730 + 3.17964i −0.176194 + 0.101726i −0.585503 0.810670i \(-0.699103\pi\)
0.409309 + 0.912396i \(0.365770\pi\)
\(978\) −1.65582 + 0.906251i −0.0529474 + 0.0289787i
\(979\) 34.7227 20.0472i 1.10974 0.640711i
\(980\) 0 0
\(981\) −5.09261 9.83102i −0.162594 0.313880i
\(982\) −4.00740 6.94103i −0.127881 0.221497i
\(983\) −2.22975 −0.0711179 −0.0355590 0.999368i \(-0.511321\pi\)
−0.0355590 + 0.999368i \(0.511321\pi\)
\(984\) 0.214891 9.41432i 0.00685048 0.300118i
\(985\) 36.7781i 1.17185i
\(986\) −0.498358 + 0.863181i −0.0158709 + 0.0274893i
\(987\) 0 0
\(988\) −17.0870 29.5956i −0.543610 0.941561i
\(989\) −26.4021 + 15.2433i −0.839538 + 0.484708i
\(990\) 10.4170 + 20.1096i 0.331076 + 0.639125i
\(991\) 24.7285 42.8310i 0.785527 1.36057i −0.143157 0.989700i \(-0.545726\pi\)
0.928684 0.370872i \(-0.120941\pi\)
\(992\) −10.9407 + 18.9499i −0.347369 + 0.601661i
\(993\) 8.45286 + 0.192945i 0.268243 + 0.00612292i
\(994\) 0 0
\(995\) 1.59072 + 0.918403i 0.0504293 + 0.0291153i
\(996\) 15.7320 + 0.359099i 0.498489 + 0.0113785i
\(997\) 8.40875i 0.266308i −0.991095 0.133154i \(-0.957490\pi\)
0.991095 0.133154i \(-0.0425104\pi\)
\(998\) −23.8195 13.7522i −0.753993 0.435318i
\(999\) −18.1395 37.0647i −0.573909 1.17267i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.s.d.374.15 48
3.2 odd 2 1323.2.s.d.962.10 48
7.2 even 3 441.2.i.d.68.10 48
7.3 odd 6 441.2.o.e.293.10 yes 48
7.4 even 3 441.2.o.e.293.9 yes 48
7.5 odd 6 441.2.i.d.68.9 48
7.6 odd 2 inner 441.2.s.d.374.16 48
9.2 odd 6 441.2.i.d.227.15 48
9.7 even 3 1323.2.i.d.521.18 48
21.2 odd 6 1323.2.i.d.1097.8 48
21.5 even 6 1323.2.i.d.1097.18 48
21.11 odd 6 1323.2.o.e.881.16 48
21.17 even 6 1323.2.o.e.881.15 48
21.20 even 2 1323.2.s.d.962.9 48
63.2 odd 6 inner 441.2.s.d.362.16 48
63.11 odd 6 441.2.o.e.146.10 yes 48
63.16 even 3 1323.2.s.d.656.9 48
63.20 even 6 441.2.i.d.227.16 48
63.25 even 3 1323.2.o.e.440.15 48
63.34 odd 6 1323.2.i.d.521.8 48
63.38 even 6 441.2.o.e.146.9 48
63.47 even 6 inner 441.2.s.d.362.15 48
63.52 odd 6 1323.2.o.e.440.16 48
63.61 odd 6 1323.2.s.d.656.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.9 48 7.5 odd 6
441.2.i.d.68.10 48 7.2 even 3
441.2.i.d.227.15 48 9.2 odd 6
441.2.i.d.227.16 48 63.20 even 6
441.2.o.e.146.9 48 63.38 even 6
441.2.o.e.146.10 yes 48 63.11 odd 6
441.2.o.e.293.9 yes 48 7.4 even 3
441.2.o.e.293.10 yes 48 7.3 odd 6
441.2.s.d.362.15 48 63.47 even 6 inner
441.2.s.d.362.16 48 63.2 odd 6 inner
441.2.s.d.374.15 48 1.1 even 1 trivial
441.2.s.d.374.16 48 7.6 odd 2 inner
1323.2.i.d.521.8 48 63.34 odd 6
1323.2.i.d.521.18 48 9.7 even 3
1323.2.i.d.1097.8 48 21.2 odd 6
1323.2.i.d.1097.18 48 21.5 even 6
1323.2.o.e.440.15 48 63.25 even 3
1323.2.o.e.440.16 48 63.52 odd 6
1323.2.o.e.881.15 48 21.17 even 6
1323.2.o.e.881.16 48 21.11 odd 6
1323.2.s.d.656.9 48 63.16 even 3
1323.2.s.d.656.10 48 63.61 odd 6
1323.2.s.d.962.9 48 21.20 even 2
1323.2.s.d.962.10 48 3.2 odd 2