Properties

Label 1274.2.n.b.753.1
Level $1274$
Weight $2$
Character 1274.753
Analytic conductor $10.173$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,2,0,0,0,0,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 753.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1274.753
Dual form 1274.2.n.b.961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.73205 - 1.00000i) q^{5} -1.00000i q^{6} +1.00000i q^{8} +(1.00000 + 1.73205i) q^{9} +(-1.00000 + 1.73205i) q^{10} +(4.33013 + 2.50000i) q^{11} +(0.500000 + 0.866025i) q^{12} +(3.00000 - 2.00000i) q^{13} +2.00000i q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 + 1.73205i) q^{17} +(-1.73205 - 1.00000i) q^{18} +(3.46410 - 2.00000i) q^{19} -2.00000i q^{20} -5.00000 q^{22} +(-4.50000 - 7.79423i) q^{23} +(-0.866025 - 0.500000i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-1.59808 + 3.23205i) q^{26} -5.00000 q^{27} +(-1.00000 - 1.73205i) q^{30} +(4.33013 + 2.50000i) q^{31} +(0.866025 + 0.500000i) q^{32} +(-4.33013 + 2.50000i) q^{33} -2.00000i q^{34} +2.00000 q^{36} +(-2.59808 + 1.50000i) q^{37} +(-2.00000 + 3.46410i) q^{38} +(0.232051 + 3.59808i) q^{39} +(1.00000 + 1.73205i) q^{40} -5.00000i q^{41} +4.00000 q^{43} +(4.33013 - 2.50000i) q^{44} +(3.46410 + 2.00000i) q^{45} +(7.79423 + 4.50000i) q^{46} +(11.2583 - 6.50000i) q^{47} +1.00000 q^{48} -1.00000i q^{50} +(-1.00000 - 1.73205i) q^{51} +(-0.232051 - 3.59808i) q^{52} +(-7.00000 + 12.1244i) q^{53} +(4.33013 - 2.50000i) q^{54} +10.0000 q^{55} +4.00000i q^{57} +(5.19615 + 3.00000i) q^{59} +(1.73205 + 1.00000i) q^{60} +(-6.50000 - 11.2583i) q^{61} -5.00000 q^{62} -1.00000 q^{64} +(3.19615 - 6.46410i) q^{65} +(2.50000 - 4.33013i) q^{66} +(2.59808 + 1.50000i) q^{67} +(1.00000 + 1.73205i) q^{68} +9.00000 q^{69} +(-1.73205 + 1.00000i) q^{72} +(-0.866025 - 0.500000i) q^{73} +(1.50000 - 2.59808i) q^{74} +(-0.500000 - 0.866025i) q^{75} -4.00000i q^{76} +(-2.00000 - 3.00000i) q^{78} +(7.50000 + 12.9904i) q^{79} +(-1.73205 - 1.00000i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.50000 + 4.33013i) q^{82} +6.00000i q^{83} +4.00000i q^{85} +(-3.46410 + 2.00000i) q^{86} +(-2.50000 + 4.33013i) q^{88} +(-5.19615 + 3.00000i) q^{89} -4.00000 q^{90} -9.00000 q^{92} +(-4.33013 + 2.50000i) q^{93} +(-6.50000 + 11.2583i) q^{94} +(4.00000 - 6.92820i) q^{95} +(-0.866025 + 0.500000i) q^{96} -7.00000i q^{97} +10.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{4} + 4 q^{9} - 4 q^{10} + 2 q^{12} + 12 q^{13} - 2 q^{16} - 4 q^{17} - 20 q^{22} - 18 q^{23} - 2 q^{25} + 4 q^{26} - 20 q^{27} - 4 q^{30} + 8 q^{36} - 8 q^{38} - 6 q^{39} + 4 q^{40}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i −0.973494 0.228714i \(-0.926548\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.73205 1.00000i 0.774597 0.447214i −0.0599153 0.998203i \(-0.519083\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) −1.00000 + 1.73205i −0.316228 + 0.547723i
\(11\) 4.33013 + 2.50000i 1.30558 + 0.753778i 0.981356 0.192201i \(-0.0615626\pi\)
0.324227 + 0.945979i \(0.394896\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 0 0
\(15\) 2.00000i 0.516398i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) −1.73205 1.00000i −0.408248 0.235702i
\(19\) 3.46410 2.00000i 0.794719 0.458831i −0.0469020 0.998899i \(-0.514935\pi\)
0.841621 + 0.540068i \(0.181602\pi\)
\(20\) 2.00000i 0.447214i
\(21\) 0 0
\(22\) −5.00000 −1.06600
\(23\) −4.50000 7.79423i −0.938315 1.62521i −0.768613 0.639713i \(-0.779053\pi\)
−0.169701 0.985496i \(-0.554280\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −1.59808 + 3.23205i −0.313409 + 0.633857i
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) −1.00000 1.73205i −0.182574 0.316228i
\(31\) 4.33013 + 2.50000i 0.777714 + 0.449013i 0.835619 0.549309i \(-0.185109\pi\)
−0.0579057 + 0.998322i \(0.518442\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −4.33013 + 2.50000i −0.753778 + 0.435194i
\(34\) 2.00000i 0.342997i
\(35\) 0 0
\(36\) 2.00000 0.333333
\(37\) −2.59808 + 1.50000i −0.427121 + 0.246598i −0.698119 0.715981i \(-0.745980\pi\)
0.270998 + 0.962580i \(0.412646\pi\)
\(38\) −2.00000 + 3.46410i −0.324443 + 0.561951i
\(39\) 0.232051 + 3.59808i 0.0371579 + 0.576153i
\(40\) 1.00000 + 1.73205i 0.158114 + 0.273861i
\(41\) 5.00000i 0.780869i −0.920631 0.390434i \(-0.872325\pi\)
0.920631 0.390434i \(-0.127675\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 4.33013 2.50000i 0.652791 0.376889i
\(45\) 3.46410 + 2.00000i 0.516398 + 0.298142i
\(46\) 7.79423 + 4.50000i 1.14920 + 0.663489i
\(47\) 11.2583 6.50000i 1.64220 0.948122i 0.662145 0.749375i \(-0.269646\pi\)
0.980051 0.198747i \(-0.0636872\pi\)
\(48\) 1.00000 0.144338
\(49\) 0 0
\(50\) 1.00000i 0.141421i
\(51\) −1.00000 1.73205i −0.140028 0.242536i
\(52\) −0.232051 3.59808i −0.0321797 0.498963i
\(53\) −7.00000 + 12.1244i −0.961524 + 1.66541i −0.242846 + 0.970065i \(0.578081\pi\)
−0.718677 + 0.695344i \(0.755252\pi\)
\(54\) 4.33013 2.50000i 0.589256 0.340207i
\(55\) 10.0000 1.34840
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 5.19615 + 3.00000i 0.676481 + 0.390567i 0.798528 0.601958i \(-0.205612\pi\)
−0.122047 + 0.992524i \(0.538946\pi\)
\(60\) 1.73205 + 1.00000i 0.223607 + 0.129099i
\(61\) −6.50000 11.2583i −0.832240 1.44148i −0.896258 0.443533i \(-0.853725\pi\)
0.0640184 0.997949i \(-0.479608\pi\)
\(62\) −5.00000 −0.635001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 3.19615 6.46410i 0.396434 0.801773i
\(66\) 2.50000 4.33013i 0.307729 0.533002i
\(67\) 2.59808 + 1.50000i 0.317406 + 0.183254i 0.650236 0.759733i \(-0.274670\pi\)
−0.332830 + 0.942987i \(0.608004\pi\)
\(68\) 1.00000 + 1.73205i 0.121268 + 0.210042i
\(69\) 9.00000 1.08347
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −1.73205 + 1.00000i −0.204124 + 0.117851i
\(73\) −0.866025 0.500000i −0.101361 0.0585206i 0.448463 0.893801i \(-0.351972\pi\)
−0.549823 + 0.835281i \(0.685305\pi\)
\(74\) 1.50000 2.59808i 0.174371 0.302020i
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 4.00000i 0.458831i
\(77\) 0 0
\(78\) −2.00000 3.00000i −0.226455 0.339683i
\(79\) 7.50000 + 12.9904i 0.843816 + 1.46153i 0.886646 + 0.462450i \(0.153029\pi\)
−0.0428296 + 0.999082i \(0.513637\pi\)
\(80\) −1.73205 1.00000i −0.193649 0.111803i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.50000 + 4.33013i 0.276079 + 0.478183i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) −3.46410 + 2.00000i −0.373544 + 0.215666i
\(87\) 0 0
\(88\) −2.50000 + 4.33013i −0.266501 + 0.461593i
\(89\) −5.19615 + 3.00000i −0.550791 + 0.317999i −0.749441 0.662071i \(-0.769678\pi\)
0.198650 + 0.980071i \(0.436344\pi\)
\(90\) −4.00000 −0.421637
\(91\) 0 0
\(92\) −9.00000 −0.938315
\(93\) −4.33013 + 2.50000i −0.449013 + 0.259238i
\(94\) −6.50000 + 11.2583i −0.670424 + 1.16121i
\(95\) 4.00000 6.92820i 0.410391 0.710819i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) 7.00000i 0.710742i −0.934725 0.355371i \(-0.884354\pi\)
0.934725 0.355371i \(-0.115646\pi\)
\(98\) 0 0
\(99\) 10.0000i 1.00504i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 3.50000 6.06218i 0.348263 0.603209i −0.637678 0.770303i \(-0.720105\pi\)
0.985941 + 0.167094i \(0.0534383\pi\)
\(102\) 1.73205 + 1.00000i 0.171499 + 0.0990148i
\(103\) 2.00000 + 3.46410i 0.197066 + 0.341328i 0.947576 0.319531i \(-0.103525\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) 2.00000 + 3.00000i 0.196116 + 0.294174i
\(105\) 0 0
\(106\) 14.0000i 1.35980i
\(107\) 1.00000 + 1.73205i 0.0966736 + 0.167444i 0.910306 0.413936i \(-0.135846\pi\)
−0.813632 + 0.581380i \(0.802513\pi\)
\(108\) −2.50000 + 4.33013i −0.240563 + 0.416667i
\(109\) 12.1244 + 7.00000i 1.16130 + 0.670478i 0.951616 0.307290i \(-0.0994222\pi\)
0.209687 + 0.977769i \(0.432756\pi\)
\(110\) −8.66025 + 5.00000i −0.825723 + 0.476731i
\(111\) 3.00000i 0.284747i
\(112\) 0 0
\(113\) −11.0000 −1.03479 −0.517396 0.855746i \(-0.673099\pi\)
−0.517396 + 0.855746i \(0.673099\pi\)
\(114\) −2.00000 3.46410i −0.187317 0.324443i
\(115\) −15.5885 9.00000i −1.45363 0.839254i
\(116\) 0 0
\(117\) 6.46410 + 3.19615i 0.597606 + 0.295484i
\(118\) −6.00000 −0.552345
\(119\) 0 0
\(120\) −2.00000 −0.182574
\(121\) 7.00000 + 12.1244i 0.636364 + 1.10221i
\(122\) 11.2583 + 6.50000i 1.01928 + 0.588482i
\(123\) 4.33013 + 2.50000i 0.390434 + 0.225417i
\(124\) 4.33013 2.50000i 0.388857 0.224507i
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −2.00000 + 3.46410i −0.176090 + 0.304997i
\(130\) 0.464102 + 7.19615i 0.0407044 + 0.631144i
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 5.00000i 0.435194i
\(133\) 0 0
\(134\) −3.00000 −0.259161
\(135\) −8.66025 + 5.00000i −0.745356 + 0.430331i
\(136\) −1.73205 1.00000i −0.148522 0.0857493i
\(137\) −10.3923 6.00000i −0.887875 0.512615i −0.0146279 0.999893i \(-0.504656\pi\)
−0.873247 + 0.487278i \(0.837990\pi\)
\(138\) −7.79423 + 4.50000i −0.663489 + 0.383065i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 13.0000i 1.09480i
\(142\) 0 0
\(143\) 17.9904 1.16025i 1.50443 0.0970253i
\(144\) 1.00000 1.73205i 0.0833333 0.144338i
\(145\) 0 0
\(146\) 1.00000 0.0827606
\(147\) 0 0
\(148\) 3.00000i 0.246598i
\(149\) −7.79423 + 4.50000i −0.638528 + 0.368654i −0.784047 0.620701i \(-0.786848\pi\)
0.145519 + 0.989355i \(0.453515\pi\)
\(150\) 0.866025 + 0.500000i 0.0707107 + 0.0408248i
\(151\) −8.66025 5.00000i −0.704761 0.406894i 0.104357 0.994540i \(-0.466722\pi\)
−0.809118 + 0.587646i \(0.800055\pi\)
\(152\) 2.00000 + 3.46410i 0.162221 + 0.280976i
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 10.0000 0.803219
\(156\) 3.23205 + 1.59808i 0.258771 + 0.127948i
\(157\) 1.50000 2.59808i 0.119713 0.207349i −0.799941 0.600079i \(-0.795136\pi\)
0.919654 + 0.392730i \(0.128469\pi\)
\(158\) −12.9904 7.50000i −1.03346 0.596668i
\(159\) −7.00000 12.1244i −0.555136 0.961524i
\(160\) 2.00000 0.158114
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 3.46410 2.00000i 0.271329 0.156652i −0.358162 0.933659i \(-0.616597\pi\)
0.629492 + 0.777007i \(0.283263\pi\)
\(164\) −4.33013 2.50000i −0.338126 0.195217i
\(165\) −5.00000 + 8.66025i −0.389249 + 0.674200i
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) −2.00000 3.46410i −0.153393 0.265684i
\(171\) 6.92820 + 4.00000i 0.529813 + 0.305888i
\(172\) 2.00000 3.46410i 0.152499 0.264135i
\(173\) 7.00000 + 12.1244i 0.532200 + 0.921798i 0.999293 + 0.0375896i \(0.0119679\pi\)
−0.467093 + 0.884208i \(0.654699\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.00000i 0.376889i
\(177\) −5.19615 + 3.00000i −0.390567 + 0.225494i
\(178\) 3.00000 5.19615i 0.224860 0.389468i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 3.46410 2.00000i 0.258199 0.149071i
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 13.0000 0.960988
\(184\) 7.79423 4.50000i 0.574598 0.331744i
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) 2.50000 4.33013i 0.183309 0.317500i
\(187\) −8.66025 + 5.00000i −0.633300 + 0.365636i
\(188\) 13.0000i 0.948122i
\(189\) 0 0
\(190\) 8.00000i 0.580381i
\(191\) 4.00000 + 6.92820i 0.289430 + 0.501307i 0.973674 0.227946i \(-0.0732010\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −20.7846 12.0000i −1.49611 0.863779i −0.496119 0.868255i \(-0.665242\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 3.50000 + 6.06218i 0.251285 + 0.435239i
\(195\) 4.00000 + 6.00000i 0.286446 + 0.429669i
\(196\) 0 0
\(197\) 7.00000i 0.498729i 0.968410 + 0.249365i \(0.0802218\pi\)
−0.968410 + 0.249365i \(0.919778\pi\)
\(198\) −5.00000 8.66025i −0.355335 0.615457i
\(199\) 10.0000 17.3205i 0.708881 1.22782i −0.256391 0.966573i \(-0.582534\pi\)
0.965272 0.261245i \(-0.0841331\pi\)
\(200\) −0.866025 0.500000i −0.0612372 0.0353553i
\(201\) −2.59808 + 1.50000i −0.183254 + 0.105802i
\(202\) 7.00000i 0.492518i
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) −5.00000 8.66025i −0.349215 0.604858i
\(206\) −3.46410 2.00000i −0.241355 0.139347i
\(207\) 9.00000 15.5885i 0.625543 1.08347i
\(208\) −3.23205 1.59808i −0.224102 0.110807i
\(209\) 20.0000 1.38343
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 7.00000 + 12.1244i 0.480762 + 0.832704i
\(213\) 0 0
\(214\) −1.73205 1.00000i −0.118401 0.0683586i
\(215\) 6.92820 4.00000i 0.472500 0.272798i
\(216\) 5.00000i 0.340207i
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) 0.866025 0.500000i 0.0585206 0.0337869i
\(220\) 5.00000 8.66025i 0.337100 0.583874i
\(221\) 0.464102 + 7.19615i 0.0312189 + 0.484066i
\(222\) 1.50000 + 2.59808i 0.100673 + 0.174371i
\(223\) 19.0000i 1.27233i −0.771551 0.636167i \(-0.780519\pi\)
0.771551 0.636167i \(-0.219481\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 9.52628 5.50000i 0.633679 0.365855i
\(227\) −15.5885 9.00000i −1.03464 0.597351i −0.116331 0.993210i \(-0.537113\pi\)
−0.918311 + 0.395860i \(0.870447\pi\)
\(228\) 3.46410 + 2.00000i 0.229416 + 0.132453i
\(229\) 3.46410 2.00000i 0.228914 0.132164i −0.381157 0.924510i \(-0.624474\pi\)
0.610071 + 0.792347i \(0.291141\pi\)
\(230\) 18.0000 1.18688
\(231\) 0 0
\(232\) 0 0
\(233\) −4.50000 7.79423i −0.294805 0.510617i 0.680135 0.733087i \(-0.261921\pi\)
−0.974939 + 0.222470i \(0.928588\pi\)
\(234\) −7.19615 + 0.464102i −0.470427 + 0.0303393i
\(235\) 13.0000 22.5167i 0.848026 1.46882i
\(236\) 5.19615 3.00000i 0.338241 0.195283i
\(237\) −15.0000 −0.974355
\(238\) 0 0
\(239\) 14.0000i 0.905585i −0.891616 0.452792i \(-0.850428\pi\)
0.891616 0.452792i \(-0.149572\pi\)
\(240\) 1.73205 1.00000i 0.111803 0.0645497i
\(241\) 8.66025 + 5.00000i 0.557856 + 0.322078i 0.752285 0.658838i \(-0.228952\pi\)
−0.194429 + 0.980917i \(0.562285\pi\)
\(242\) −12.1244 7.00000i −0.779383 0.449977i
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) −13.0000 −0.832240
\(245\) 0 0
\(246\) −5.00000 −0.318788
\(247\) 6.39230 12.9282i 0.406733 0.822602i
\(248\) −2.50000 + 4.33013i −0.158750 + 0.274963i
\(249\) −5.19615 3.00000i −0.329293 0.190117i
\(250\) −6.00000 10.3923i −0.379473 0.657267i
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 0 0
\(253\) 45.0000i 2.82913i
\(254\) −11.2583 + 6.50000i −0.706410 + 0.407846i
\(255\) −3.46410 2.00000i −0.216930 0.125245i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −11.0000 19.0526i −0.686161 1.18847i −0.973070 0.230508i \(-0.925961\pi\)
0.286909 0.957958i \(-0.407372\pi\)
\(258\) 4.00000i 0.249029i
\(259\) 0 0
\(260\) −4.00000 6.00000i −0.248069 0.372104i
\(261\) 0 0
\(262\) −10.3923 6.00000i −0.642039 0.370681i
\(263\) −2.00000 + 3.46410i −0.123325 + 0.213606i −0.921077 0.389380i \(-0.872689\pi\)
0.797752 + 0.602986i \(0.206023\pi\)
\(264\) −2.50000 4.33013i −0.153864 0.266501i
\(265\) 28.0000i 1.72003i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 2.59808 1.50000i 0.158703 0.0916271i
\(269\) −2.50000 + 4.33013i −0.152428 + 0.264013i −0.932119 0.362151i \(-0.882042\pi\)
0.779692 + 0.626164i \(0.215376\pi\)
\(270\) 5.00000 8.66025i 0.304290 0.527046i
\(271\) −4.33013 + 2.50000i −0.263036 + 0.151864i −0.625719 0.780049i \(-0.715194\pi\)
0.362682 + 0.931913i \(0.381861\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) −4.33013 + 2.50000i −0.261116 + 0.150756i
\(276\) 4.50000 7.79423i 0.270868 0.469157i
\(277\) 1.00000 1.73205i 0.0600842 0.104069i −0.834419 0.551131i \(-0.814196\pi\)
0.894503 + 0.447062i \(0.147530\pi\)
\(278\) 0 0
\(279\) 10.0000i 0.598684i
\(280\) 0 0
\(281\) 20.0000i 1.19310i 0.802576 + 0.596550i \(0.203462\pi\)
−0.802576 + 0.596550i \(0.796538\pi\)
\(282\) −6.50000 11.2583i −0.387069 0.670424i
\(283\) −5.50000 + 9.52628i −0.326941 + 0.566279i −0.981903 0.189383i \(-0.939351\pi\)
0.654962 + 0.755662i \(0.272685\pi\)
\(284\) 0 0
\(285\) 4.00000 + 6.92820i 0.236940 + 0.410391i
\(286\) −15.0000 + 10.0000i −0.886969 + 0.591312i
\(287\) 0 0
\(288\) 2.00000i 0.117851i
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) 6.06218 + 3.50000i 0.355371 + 0.205174i
\(292\) −0.866025 + 0.500000i −0.0506803 + 0.0292603i
\(293\) 26.0000i 1.51894i 0.650545 + 0.759468i \(0.274541\pi\)
−0.650545 + 0.759468i \(0.725459\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −1.50000 2.59808i −0.0871857 0.151010i
\(297\) −21.6506 12.5000i −1.25630 0.725324i
\(298\) 4.50000 7.79423i 0.260678 0.451508i
\(299\) −29.0885 14.3827i −1.68223 0.831772i
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) 10.0000 0.575435
\(303\) 3.50000 + 6.06218i 0.201070 + 0.348263i
\(304\) −3.46410 2.00000i −0.198680 0.114708i
\(305\) −22.5167 13.0000i −1.28930 0.744378i
\(306\) 3.46410 2.00000i 0.198030 0.114332i
\(307\) 22.0000i 1.25561i −0.778372 0.627803i \(-0.783954\pi\)
0.778372 0.627803i \(-0.216046\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) −8.66025 + 5.00000i −0.491869 + 0.283981i
\(311\) −14.0000 + 24.2487i −0.793867 + 1.37502i 0.129689 + 0.991555i \(0.458602\pi\)
−0.923556 + 0.383464i \(0.874731\pi\)
\(312\) −3.59808 + 0.232051i −0.203701 + 0.0131373i
\(313\) 2.00000 + 3.46410i 0.113047 + 0.195803i 0.916997 0.398894i \(-0.130606\pi\)
−0.803951 + 0.594696i \(0.797272\pi\)
\(314\) 3.00000i 0.169300i
\(315\) 0 0
\(316\) 15.0000 0.843816
\(317\) 23.3827 13.5000i 1.31330 0.758236i 0.330661 0.943750i \(-0.392728\pi\)
0.982642 + 0.185514i \(0.0593950\pi\)
\(318\) 12.1244 + 7.00000i 0.679900 + 0.392541i
\(319\) 0 0
\(320\) −1.73205 + 1.00000i −0.0968246 + 0.0559017i
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) 8.00000i 0.445132i
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 0.232051 + 3.59808i 0.0128719 + 0.199585i
\(326\) −2.00000 + 3.46410i −0.110770 + 0.191859i
\(327\) −12.1244 + 7.00000i −0.670478 + 0.387101i
\(328\) 5.00000 0.276079
\(329\) 0 0
\(330\) 10.0000i 0.550482i
\(331\) 21.6506 12.5000i 1.19003 0.687062i 0.231714 0.972784i \(-0.425567\pi\)
0.958313 + 0.285722i \(0.0922333\pi\)
\(332\) 5.19615 + 3.00000i 0.285176 + 0.164646i
\(333\) −5.19615 3.00000i −0.284747 0.164399i
\(334\) −4.00000 6.92820i −0.218870 0.379094i
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 1.66987 + 12.8923i 0.0908291 + 0.701249i
\(339\) 5.50000 9.52628i 0.298719 0.517396i
\(340\) 3.46410 + 2.00000i 0.187867 + 0.108465i
\(341\) 12.5000 + 21.6506i 0.676913 + 1.17245i
\(342\) −8.00000 −0.432590
\(343\) 0 0
\(344\) 4.00000i 0.215666i
\(345\) 15.5885 9.00000i 0.839254 0.484544i
\(346\) −12.1244 7.00000i −0.651809 0.376322i
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) 26.0000i 1.39175i −0.718164 0.695874i \(-0.755017\pi\)
0.718164 0.695874i \(-0.244983\pi\)
\(350\) 0 0
\(351\) −15.0000 + 10.0000i −0.800641 + 0.533761i
\(352\) 2.50000 + 4.33013i 0.133250 + 0.230797i
\(353\) −26.8468 15.5000i −1.42891 0.824982i −0.431875 0.901933i \(-0.642148\pi\)
−0.997035 + 0.0769515i \(0.975481\pi\)
\(354\) 3.00000 5.19615i 0.159448 0.276172i
\(355\) 0 0
\(356\) 6.00000i 0.317999i
\(357\) 0 0
\(358\) 0 0
\(359\) −20.7846 + 12.0000i −1.09697 + 0.633336i −0.935423 0.353529i \(-0.884981\pi\)
−0.161546 + 0.986865i \(0.551648\pi\)
\(360\) −2.00000 + 3.46410i −0.105409 + 0.182574i
\(361\) −1.50000 + 2.59808i −0.0789474 + 0.136741i
\(362\) 6.06218 3.50000i 0.318621 0.183956i
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) −11.2583 + 6.50000i −0.588482 + 0.339760i
\(367\) 14.0000 24.2487i 0.730794 1.26577i −0.225750 0.974185i \(-0.572483\pi\)
0.956544 0.291587i \(-0.0941834\pi\)
\(368\) −4.50000 + 7.79423i −0.234579 + 0.406302i
\(369\) 8.66025 5.00000i 0.450835 0.260290i
\(370\) 6.00000i 0.311925i
\(371\) 0 0
\(372\) 5.00000i 0.259238i
\(373\) −17.0000 29.4449i −0.880227 1.52460i −0.851089 0.525022i \(-0.824057\pi\)
−0.0291379 0.999575i \(-0.509276\pi\)
\(374\) 5.00000 8.66025i 0.258544 0.447811i
\(375\) −10.3923 6.00000i −0.536656 0.309839i
\(376\) 6.50000 + 11.2583i 0.335212 + 0.580604i
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) −4.00000 6.92820i −0.205196 0.355409i
\(381\) −6.50000 + 11.2583i −0.333005 + 0.576782i
\(382\) −6.92820 4.00000i −0.354478 0.204658i
\(383\) 0.866025 0.500000i 0.0442518 0.0255488i −0.477711 0.878517i \(-0.658533\pi\)
0.521963 + 0.852968i \(0.325200\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) 4.00000 + 6.92820i 0.203331 + 0.352180i
\(388\) −6.06218 3.50000i −0.307760 0.177686i
\(389\) 5.00000 8.66025i 0.253510 0.439092i −0.710980 0.703213i \(-0.751748\pi\)
0.964490 + 0.264120i \(0.0850816\pi\)
\(390\) −6.46410 3.19615i −0.327323 0.161843i
\(391\) 18.0000 0.910299
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) −3.50000 6.06218i −0.176327 0.305408i
\(395\) 25.9808 + 15.0000i 1.30723 + 0.754732i
\(396\) 8.66025 + 5.00000i 0.435194 + 0.251259i
\(397\) −19.0526 + 11.0000i −0.956221 + 0.552074i −0.895008 0.446051i \(-0.852830\pi\)
−0.0612128 + 0.998125i \(0.519497\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 17.3205 10.0000i 0.864945 0.499376i −0.000720188 1.00000i \(-0.500229\pi\)
0.865665 + 0.500624i \(0.166896\pi\)
\(402\) 1.50000 2.59808i 0.0748132 0.129580i
\(403\) 17.9904 1.16025i 0.896165 0.0577964i
\(404\) −3.50000 6.06218i −0.174132 0.301605i
\(405\) 2.00000i 0.0993808i
\(406\) 0 0
\(407\) −15.0000 −0.743522
\(408\) 1.73205 1.00000i 0.0857493 0.0495074i
\(409\) 5.19615 + 3.00000i 0.256933 + 0.148340i 0.622935 0.782274i \(-0.285940\pi\)
−0.366002 + 0.930614i \(0.619274\pi\)
\(410\) 8.66025 + 5.00000i 0.427699 + 0.246932i
\(411\) 10.3923 6.00000i 0.512615 0.295958i
\(412\) 4.00000 0.197066
\(413\) 0 0
\(414\) 18.0000i 0.884652i
\(415\) 6.00000 + 10.3923i 0.294528 + 0.510138i
\(416\) 3.59808 0.232051i 0.176410 0.0113772i
\(417\) 0 0
\(418\) −17.3205 + 10.0000i −0.847174 + 0.489116i
\(419\) −35.0000 −1.70986 −0.854931 0.518742i \(-0.826401\pi\)
−0.854931 + 0.518742i \(0.826401\pi\)
\(420\) 0 0
\(421\) 35.0000i 1.70580i −0.522078 0.852898i \(-0.674843\pi\)
0.522078 0.852898i \(-0.325157\pi\)
\(422\) 6.92820 4.00000i 0.337260 0.194717i
\(423\) 22.5167 + 13.0000i 1.09480 + 0.632082i
\(424\) −12.1244 7.00000i −0.588811 0.339950i
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 2.00000 0.0966736
\(429\) −7.99038 + 16.1603i −0.385779 + 0.780224i
\(430\) −4.00000 + 6.92820i −0.192897 + 0.334108i
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 2.50000 + 4.33013i 0.120281 + 0.208333i
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.1244 7.00000i 0.580651 0.335239i
\(437\) −31.1769 18.0000i −1.49139 0.861057i
\(438\) −0.500000 + 0.866025i −0.0238909 + 0.0413803i
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 10.0000i 0.476731i
\(441\) 0 0
\(442\) −4.00000 6.00000i −0.190261 0.285391i
\(443\) −12.0000 20.7846i −0.570137 0.987507i −0.996551 0.0829786i \(-0.973557\pi\)
0.426414 0.904528i \(-0.359777\pi\)
\(444\) −2.59808 1.50000i −0.123299 0.0711868i
\(445\) −6.00000 + 10.3923i −0.284427 + 0.492642i
\(446\) 9.50000 + 16.4545i 0.449838 + 0.779142i
\(447\) 9.00000i 0.425685i
\(448\) 0 0
\(449\) 6.00000i 0.283158i 0.989927 + 0.141579i \(0.0452178\pi\)
−0.989927 + 0.141579i \(0.954782\pi\)
\(450\) 1.73205 1.00000i 0.0816497 0.0471405i
\(451\) 12.5000 21.6506i 0.588602 1.01949i
\(452\) −5.50000 + 9.52628i −0.258698 + 0.448078i
\(453\) 8.66025 5.00000i 0.406894 0.234920i
\(454\) 18.0000 0.844782
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) −6.92820 + 4.00000i −0.324088 + 0.187112i −0.653213 0.757174i \(-0.726579\pi\)
0.329125 + 0.944286i \(0.393246\pi\)
\(458\) −2.00000 + 3.46410i −0.0934539 + 0.161867i
\(459\) 5.00000 8.66025i 0.233380 0.404226i
\(460\) −15.5885 + 9.00000i −0.726816 + 0.419627i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 14.0000i 0.650635i 0.945605 + 0.325318i \(0.105471\pi\)
−0.945605 + 0.325318i \(0.894529\pi\)
\(464\) 0 0
\(465\) −5.00000 + 8.66025i −0.231869 + 0.401610i
\(466\) 7.79423 + 4.50000i 0.361061 + 0.208458i
\(467\) 4.00000 + 6.92820i 0.185098 + 0.320599i 0.943610 0.331061i \(-0.107406\pi\)
−0.758512 + 0.651660i \(0.774073\pi\)
\(468\) 6.00000 4.00000i 0.277350 0.184900i
\(469\) 0 0
\(470\) 26.0000i 1.19929i
\(471\) 1.50000 + 2.59808i 0.0691164 + 0.119713i
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) 17.3205 + 10.0000i 0.796398 + 0.459800i
\(474\) 12.9904 7.50000i 0.596668 0.344486i
\(475\) 4.00000i 0.183533i
\(476\) 0 0
\(477\) −28.0000 −1.28203
\(478\) 7.00000 + 12.1244i 0.320173 + 0.554555i
\(479\) −20.7846 12.0000i −0.949673 0.548294i −0.0566937 0.998392i \(-0.518056\pi\)
−0.892979 + 0.450098i \(0.851389\pi\)
\(480\) −1.00000 + 1.73205i −0.0456435 + 0.0790569i
\(481\) −4.79423 + 9.69615i −0.218598 + 0.442106i
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) −7.00000 12.1244i −0.317854 0.550539i
\(486\) 13.8564 + 8.00000i 0.628539 + 0.362887i
\(487\) 24.2487 + 14.0000i 1.09881 + 0.634401i 0.935909 0.352241i \(-0.114580\pi\)
0.162905 + 0.986642i \(0.447914\pi\)
\(488\) 11.2583 6.50000i 0.509641 0.294241i
\(489\) 4.00000i 0.180886i
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 4.33013 2.50000i 0.195217 0.112709i
\(493\) 0 0
\(494\) 0.928203 + 14.3923i 0.0417618 + 0.647540i
\(495\) 10.0000 + 17.3205i 0.449467 + 0.778499i
\(496\) 5.00000i 0.224507i
\(497\) 0 0
\(498\) 6.00000 0.268866
\(499\) 9.52628 5.50000i 0.426455 0.246214i −0.271380 0.962472i \(-0.587480\pi\)
0.697835 + 0.716258i \(0.254147\pi\)
\(500\) 10.3923 + 6.00000i 0.464758 + 0.268328i
\(501\) −6.92820 4.00000i −0.309529 0.178707i
\(502\) 14.7224 8.50000i 0.657094 0.379374i
\(503\) −34.0000 −1.51599 −0.757993 0.652263i \(-0.773820\pi\)
−0.757993 + 0.652263i \(0.773820\pi\)
\(504\) 0 0
\(505\) 14.0000i 0.622992i
\(506\) 22.5000 + 38.9711i 1.00025 + 1.73248i
\(507\) 7.89230 + 10.3301i 0.350510 + 0.458777i
\(508\) 6.50000 11.2583i 0.288391 0.499508i
\(509\) 29.4449 17.0000i 1.30512 0.753512i 0.323843 0.946111i \(-0.395025\pi\)
0.981278 + 0.192599i \(0.0616917\pi\)
\(510\) 4.00000 0.177123
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −17.3205 + 10.0000i −0.764719 + 0.441511i
\(514\) 19.0526 + 11.0000i 0.840372 + 0.485189i
\(515\) 6.92820 + 4.00000i 0.305293 + 0.176261i
\(516\) 2.00000 + 3.46410i 0.0880451 + 0.152499i
\(517\) 65.0000 2.85870
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 6.46410 + 3.19615i 0.283470 + 0.140161i
\(521\) −14.0000 + 24.2487i −0.613351 + 1.06236i 0.377320 + 0.926083i \(0.376846\pi\)
−0.990671 + 0.136272i \(0.956488\pi\)
\(522\) 0 0
\(523\) −10.5000 18.1865i −0.459133 0.795242i 0.539782 0.841805i \(-0.318507\pi\)
−0.998915 + 0.0465630i \(0.985173\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 4.00000i 0.174408i
\(527\) −8.66025 + 5.00000i −0.377247 + 0.217803i
\(528\) 4.33013 + 2.50000i 0.188445 + 0.108799i
\(529\) −29.0000 + 50.2295i −1.26087 + 2.18389i
\(530\) −14.0000 24.2487i −0.608121 1.05330i
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) −10.0000 15.0000i −0.433148 0.649722i
\(534\) 3.00000 + 5.19615i 0.129823 + 0.224860i
\(535\) 3.46410 + 2.00000i 0.149766 + 0.0864675i
\(536\) −1.50000 + 2.59808i −0.0647901 + 0.112220i
\(537\) 0 0
\(538\) 5.00000i 0.215565i
\(539\) 0 0
\(540\) 10.0000i 0.430331i
\(541\) −8.66025 + 5.00000i −0.372333 + 0.214967i −0.674477 0.738296i \(-0.735631\pi\)
0.302144 + 0.953262i \(0.402298\pi\)
\(542\) 2.50000 4.33013i 0.107384 0.185995i
\(543\) 3.50000 6.06218i 0.150199 0.260153i
\(544\) −1.73205 + 1.00000i −0.0742611 + 0.0428746i
\(545\) 28.0000 1.19939
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) −10.3923 + 6.00000i −0.443937 + 0.256307i
\(549\) 13.0000 22.5167i 0.554826 0.960988i
\(550\) 2.50000 4.33013i 0.106600 0.184637i
\(551\) 0 0
\(552\) 9.00000i 0.383065i
\(553\) 0 0
\(554\) 2.00000i 0.0849719i
\(555\) −3.00000 5.19615i −0.127343 0.220564i
\(556\) 0 0
\(557\) −32.0429 18.5000i −1.35770 0.783870i −0.368389 0.929672i \(-0.620091\pi\)
−0.989314 + 0.145802i \(0.953424\pi\)
\(558\) −5.00000 8.66025i −0.211667 0.366618i
\(559\) 12.0000 8.00000i 0.507546 0.338364i
\(560\) 0 0
\(561\) 10.0000i 0.422200i
\(562\) −10.0000 17.3205i −0.421825 0.730622i
\(563\) −15.5000 + 26.8468i −0.653247 + 1.13146i 0.329083 + 0.944301i \(0.393260\pi\)
−0.982330 + 0.187156i \(0.940073\pi\)
\(564\) 11.2583 + 6.50000i 0.474061 + 0.273699i
\(565\) −19.0526 + 11.0000i −0.801547 + 0.462773i
\(566\) 11.0000i 0.462364i
\(567\) 0 0
\(568\) 0 0
\(569\) −7.50000 12.9904i −0.314416 0.544585i 0.664897 0.746935i \(-0.268475\pi\)
−0.979313 + 0.202350i \(0.935142\pi\)
\(570\) −6.92820 4.00000i −0.290191 0.167542i
\(571\) −1.00000 + 1.73205i −0.0418487 + 0.0724841i −0.886191 0.463320i \(-0.846658\pi\)
0.844342 + 0.535804i \(0.179991\pi\)
\(572\) 7.99038 16.1603i 0.334095 0.675694i
\(573\) −8.00000 −0.334205
\(574\) 0 0
\(575\) 9.00000 0.375326
\(576\) −1.00000 1.73205i −0.0416667 0.0721688i
\(577\) 36.3731 + 21.0000i 1.51423 + 0.874241i 0.999861 + 0.0166728i \(0.00530737\pi\)
0.514370 + 0.857569i \(0.328026\pi\)
\(578\) −11.2583 6.50000i −0.468285 0.270364i
\(579\) 20.7846 12.0000i 0.863779 0.498703i
\(580\) 0 0
\(581\) 0 0
\(582\) −7.00000 −0.290159
\(583\) −60.6218 + 35.0000i −2.51070 + 1.44955i
\(584\) 0.500000 0.866025i 0.0206901 0.0358364i
\(585\) 14.3923 0.928203i 0.595049 0.0383765i
\(586\) −13.0000 22.5167i −0.537025 0.930155i
\(587\) 2.00000i 0.0825488i −0.999148 0.0412744i \(-0.986858\pi\)
0.999148 0.0412744i \(-0.0131418\pi\)
\(588\) 0 0
\(589\) 20.0000 0.824086
\(590\) −10.3923 + 6.00000i −0.427844 + 0.247016i
\(591\) −6.06218 3.50000i −0.249365 0.143971i
\(592\) 2.59808 + 1.50000i 0.106780 + 0.0616496i
\(593\) −12.1244 + 7.00000i −0.497888 + 0.287456i −0.727841 0.685746i \(-0.759476\pi\)
0.229953 + 0.973202i \(0.426143\pi\)
\(594\) 25.0000 1.02576
\(595\) 0 0
\(596\) 9.00000i 0.368654i
\(597\) 10.0000 + 17.3205i 0.409273 + 0.708881i
\(598\) 32.3827 2.08846i 1.32423 0.0854034i
\(599\) 7.50000 12.9904i 0.306442 0.530773i −0.671140 0.741331i \(-0.734195\pi\)
0.977581 + 0.210558i \(0.0675282\pi\)
\(600\) 0.866025 0.500000i 0.0353553 0.0204124i
\(601\) 28.0000 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(602\) 0 0
\(603\) 6.00000i 0.244339i
\(604\) −8.66025 + 5.00000i −0.352381 + 0.203447i
\(605\) 24.2487 + 14.0000i 0.985850 + 0.569181i
\(606\) −6.06218 3.50000i −0.246259 0.142178i
\(607\) −1.00000 1.73205i −0.0405887 0.0703018i 0.845017 0.534739i \(-0.179590\pi\)
−0.885606 + 0.464437i \(0.846257\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) 26.0000 1.05271
\(611\) 20.7750 42.0167i 0.840466 1.69981i
\(612\) −2.00000 + 3.46410i −0.0808452 + 0.140028i
\(613\) 9.52628 + 5.50000i 0.384763 + 0.222143i 0.679888 0.733316i \(-0.262028\pi\)
−0.295126 + 0.955458i \(0.595362\pi\)
\(614\) 11.0000 + 19.0526i 0.443924 + 0.768899i
\(615\) 10.0000 0.403239
\(616\) 0 0
\(617\) 32.0000i 1.28827i 0.764911 + 0.644136i \(0.222783\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 3.46410 2.00000i 0.139347 0.0804518i
\(619\) −20.7846 12.0000i −0.835404 0.482321i 0.0202954 0.999794i \(-0.493539\pi\)
−0.855699 + 0.517473i \(0.826873\pi\)
\(620\) 5.00000 8.66025i 0.200805 0.347804i
\(621\) 22.5000 + 38.9711i 0.902894 + 1.56386i
\(622\) 28.0000i 1.12270i
\(623\) 0 0
\(624\) 3.00000 2.00000i 0.120096 0.0800641i
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) −3.46410 2.00000i −0.138453 0.0799361i
\(627\) −10.0000 + 17.3205i −0.399362 + 0.691714i
\(628\) −1.50000 2.59808i −0.0598565 0.103675i
\(629\) 6.00000i 0.239236i
\(630\) 0 0
\(631\) 40.0000i 1.59237i −0.605050 0.796187i \(-0.706847\pi\)
0.605050 0.796187i \(-0.293153\pi\)
\(632\) −12.9904 + 7.50000i −0.516730 + 0.298334i
\(633\) 4.00000 6.92820i 0.158986 0.275371i
\(634\) −13.5000 + 23.3827i −0.536153 + 0.928645i
\(635\) 22.5167 13.0000i 0.893546 0.515889i
\(636\) −14.0000 −0.555136
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 1.73205i 0.0395285 0.0684653i
\(641\) −18.5000 + 32.0429i −0.730706 + 1.26562i 0.225876 + 0.974156i \(0.427476\pi\)
−0.956582 + 0.291464i \(0.905858\pi\)
\(642\) 1.73205 1.00000i 0.0683586 0.0394669i
\(643\) 14.0000i 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) 0 0
\(645\) 8.00000i 0.315000i
\(646\) −4.00000 6.92820i −0.157378 0.272587i
\(647\) 9.00000 15.5885i 0.353827 0.612845i −0.633090 0.774078i \(-0.718214\pi\)
0.986916 + 0.161233i \(0.0515470\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) 15.0000 + 25.9808i 0.588802 + 1.01983i
\(650\) −2.00000 3.00000i −0.0784465 0.117670i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 8.00000 + 13.8564i 0.313064 + 0.542243i 0.979024 0.203744i \(-0.0653112\pi\)
−0.665960 + 0.745988i \(0.731978\pi\)
\(654\) 7.00000 12.1244i 0.273722 0.474100i
\(655\) 20.7846 + 12.0000i 0.812122 + 0.468879i
\(656\) −4.33013 + 2.50000i −0.169063 + 0.0976086i
\(657\) 2.00000i 0.0780274i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 5.00000 + 8.66025i 0.194625 + 0.337100i
\(661\) −34.6410 20.0000i −1.34738 0.777910i −0.359502 0.933144i \(-0.617053\pi\)
−0.987878 + 0.155235i \(0.950387\pi\)
\(662\) −12.5000 + 21.6506i −0.485826 + 0.841476i
\(663\) −6.46410 3.19615i −0.251045 0.124128i
\(664\) −6.00000 −0.232845
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 0 0
\(668\) 6.92820 + 4.00000i 0.268060 + 0.154765i
\(669\) 16.4545 + 9.50000i 0.636167 + 0.367291i
\(670\) −5.19615 + 3.00000i −0.200745 + 0.115900i
\(671\) 65.0000i 2.50930i
\(672\) 0 0
\(673\) −31.0000 −1.19496 −0.597481 0.801883i \(-0.703832\pi\)
−0.597481 + 0.801883i \(0.703832\pi\)
\(674\) −19.9186 + 11.5000i −0.767235 + 0.442963i
\(675\) 2.50000 4.33013i 0.0962250 0.166667i
\(676\) −7.89230 10.3301i −0.303550 0.397313i
\(677\) −3.50000 6.06218i −0.134516 0.232988i 0.790897 0.611950i \(-0.209615\pi\)
−0.925412 + 0.378962i \(0.876281\pi\)
\(678\) 11.0000i 0.422452i
\(679\) 0 0
\(680\) −4.00000 −0.153393
\(681\) 15.5885 9.00000i 0.597351 0.344881i
\(682\) −21.6506 12.5000i −0.829046 0.478650i
\(683\) 35.5070 + 20.5000i 1.35864 + 0.784411i 0.989440 0.144940i \(-0.0462988\pi\)
0.369199 + 0.929350i \(0.379632\pi\)
\(684\) 6.92820 4.00000i 0.264906 0.152944i
\(685\) −24.0000 −0.916993
\(686\) 0 0
\(687\) 4.00000i 0.152610i
\(688\) −2.00000 3.46410i −0.0762493 0.132068i
\(689\) 3.24871 + 50.3731i 0.123766 + 1.91906i
\(690\) −9.00000 + 15.5885i −0.342624 + 0.593442i
\(691\) 8.66025 5.00000i 0.329452 0.190209i −0.326146 0.945319i \(-0.605750\pi\)
0.655598 + 0.755110i \(0.272417\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 12.0000i 0.455514i
\(695\) 0 0
\(696\) 0 0
\(697\) 8.66025 + 5.00000i 0.328031 + 0.189389i
\(698\) 13.0000 + 22.5167i 0.492057 + 0.852268i
\(699\) 9.00000 0.340411
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 7.99038 16.1603i 0.301577 0.609929i
\(703\) −6.00000 + 10.3923i −0.226294 + 0.391953i
\(704\) −4.33013 2.50000i −0.163198 0.0942223i
\(705\) 13.0000 + 22.5167i 0.489608 + 0.848026i
\(706\) 31.0000 1.16670
\(707\) 0 0
\(708\) 6.00000i 0.225494i
\(709\) 26.8468 15.5000i 1.00825 0.582115i 0.0975728 0.995228i \(-0.468892\pi\)
0.910679 + 0.413114i \(0.135559\pi\)
\(710\) 0 0
\(711\) −15.0000 + 25.9808i −0.562544 + 0.974355i
\(712\) −3.00000 5.19615i −0.112430 0.194734i
\(713\) 45.0000i 1.68526i
\(714\) 0 0
\(715\) 30.0000 20.0000i 1.12194 0.747958i
\(716\) 0 0
\(717\) 12.1244 + 7.00000i 0.452792 + 0.261420i
\(718\) 12.0000 20.7846i 0.447836 0.775675i
\(719\) 20.0000 + 34.6410i 0.745874 + 1.29189i 0.949785 + 0.312903i \(0.101301\pi\)
−0.203911 + 0.978989i \(0.565365\pi\)
\(720\) 4.00000i 0.149071i
\(721\) 0 0
\(722\) 3.00000i 0.111648i
\(723\) −8.66025 + 5.00000i −0.322078 + 0.185952i
\(724\) −3.50000 + 6.06218i −0.130076 + 0.225299i
\(725\) 0 0
\(726\) 12.1244 7.00000i 0.449977 0.259794i
\(727\) −38.0000 −1.40934 −0.704671 0.709534i \(-0.748905\pi\)
−0.704671 + 0.709534i \(0.748905\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 1.73205 1.00000i 0.0641061 0.0370117i
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) 6.50000 11.2583i 0.240247 0.416120i
\(733\) −38.1051 + 22.0000i −1.40744 + 0.812589i −0.995141 0.0984580i \(-0.968609\pi\)
−0.412303 + 0.911047i \(0.635276\pi\)
\(734\) 28.0000i 1.03350i
\(735\) 0 0
\(736\) 9.00000i 0.331744i
\(737\) 7.50000 + 12.9904i 0.276266 + 0.478507i
\(738\) −5.00000 + 8.66025i −0.184053 + 0.318788i
\(739\) 3.46410 + 2.00000i 0.127429 + 0.0735712i 0.562360 0.826893i \(-0.309894\pi\)
−0.434930 + 0.900464i \(0.643227\pi\)
\(740\) 3.00000 + 5.19615i 0.110282 + 0.191014i
\(741\) 8.00000 + 12.0000i 0.293887 + 0.440831i
\(742\) 0 0
\(743\) 6.00000i 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) −2.50000 4.33013i −0.0916544 0.158750i
\(745\) −9.00000 + 15.5885i −0.329734 + 0.571117i
\(746\) 29.4449 + 17.0000i 1.07805 + 0.622414i
\(747\) −10.3923 + 6.00000i −0.380235 + 0.219529i
\(748\) 10.0000i 0.365636i
\(749\) 0 0
\(750\) 12.0000 0.438178
\(751\) 21.5000 + 37.2391i 0.784546 + 1.35887i 0.929270 + 0.369402i \(0.120437\pi\)
−0.144724 + 0.989472i \(0.546229\pi\)
\(752\) −11.2583 6.50000i −0.410549 0.237031i
\(753\) 8.50000 14.7224i 0.309757 0.536515i
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −8.00000 13.8564i −0.290573 0.503287i
\(759\) 38.9711 + 22.5000i 1.41456 + 0.816698i
\(760\) 6.92820 + 4.00000i 0.251312 + 0.145095i
\(761\) −12.9904 + 7.50000i −0.470901 + 0.271875i −0.716617 0.697467i \(-0.754310\pi\)
0.245716 + 0.969342i \(0.420977\pi\)
\(762\) 13.0000i 0.470940i
\(763\) 0 0
\(764\) 8.00000 0.289430
\(765\) −6.92820 + 4.00000i −0.250490 + 0.144620i
\(766\) −0.500000 + 0.866025i −0.0180657 + 0.0312908i
\(767\) 21.5885 1.39230i 0.779514 0.0502732i
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) 1.00000i 0.0360609i −0.999837 0.0180305i \(-0.994260\pi\)
0.999837 0.0180305i \(-0.00573959\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) −20.7846 + 12.0000i −0.748054 + 0.431889i
\(773\) 29.4449 + 17.0000i 1.05906 + 0.611448i 0.925172 0.379549i \(-0.123921\pi\)
0.133887 + 0.990997i \(0.457254\pi\)
\(774\) −6.92820 4.00000i −0.249029 0.143777i
\(775\) −4.33013 + 2.50000i −0.155543 + 0.0898027i
\(776\) 7.00000 0.251285
\(777\) 0 0
\(778\) 10.0000i 0.358517i
\(779\) −10.0000 17.3205i −0.358287 0.620572i
\(780\) 7.19615 0.464102i 0.257664 0.0166175i
\(781\) 0 0
\(782\) −15.5885 + 9.00000i −0.557442 + 0.321839i
\(783\) 0 0
\(784\) 0 0
\(785\) 6.00000i 0.214149i
\(786\) 10.3923 6.00000i 0.370681 0.214013i
\(787\) −24.2487 14.0000i −0.864373 0.499046i 0.00110111 0.999999i \(-0.499650\pi\)
−0.865474 + 0.500953i \(0.832983\pi\)
\(788\) 6.06218 + 3.50000i 0.215956 + 0.124682i
\(789\) −2.00000 3.46410i −0.0712019 0.123325i
\(790\) −30.0000 −1.06735
\(791\) 0 0
\(792\) −10.0000 −0.355335
\(793\) −42.0167 20.7750i −1.49206 0.737742i
\(794\) 11.0000 19.0526i 0.390375 0.676150i
\(795\) −24.2487 14.0000i −0.860013 0.496529i
\(796\) −10.0000 17.3205i −0.354441 0.613909i
\(797\) 37.0000 1.31061 0.655304 0.755366i \(-0.272541\pi\)
0.655304 + 0.755366i \(0.272541\pi\)
\(798\) 0 0
\(799\) 26.0000i 0.919814i
\(800\) −0.866025 + 0.500000i −0.0306186 + 0.0176777i
\(801\) −10.3923 6.00000i −0.367194 0.212000i
\(802\) −10.0000 + 17.3205i −0.353112 + 0.611608i
\(803\) −2.50000 4.33013i −0.0882231 0.152807i
\(804\) 3.00000i 0.105802i
\(805\) 0 0
\(806\) −15.0000 + 10.0000i −0.528352 + 0.352235i
\(807\) −2.50000 4.33013i −0.0880042 0.152428i
\(808\) 6.06218 + 3.50000i 0.213267 + 0.123130i
\(809\) 5.00000 8.66025i 0.175791 0.304478i −0.764644 0.644453i \(-0.777085\pi\)
0.940435 + 0.339975i \(0.110418\pi\)
\(810\) −1.00000 1.73205i −0.0351364 0.0608581i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 5.00000i 0.175358i
\(814\) 12.9904 7.50000i 0.455313 0.262875i
\(815\) 4.00000 6.92820i 0.140114 0.242684i
\(816\) −1.00000 + 1.73205i −0.0350070 + 0.0606339i
\(817\) 13.8564 8.00000i 0.484774 0.279885i
\(818\) −6.00000 −0.209785
\(819\) 0 0
\(820\) −10.0000 −0.349215
\(821\) 25.9808 15.0000i 0.906735 0.523504i 0.0273557 0.999626i \(-0.491291\pi\)
0.879379 + 0.476122i \(0.157958\pi\)
\(822\) −6.00000 + 10.3923i −0.209274 + 0.362473i
\(823\) 5.50000 9.52628i 0.191718 0.332065i −0.754102 0.656758i \(-0.771927\pi\)
0.945820 + 0.324692i \(0.105261\pi\)
\(824\) −3.46410 + 2.00000i −0.120678 + 0.0696733i
\(825\) 5.00000i 0.174078i
\(826\) 0 0
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) −9.00000 15.5885i −0.312772 0.541736i
\(829\) 5.00000 8.66025i 0.173657 0.300783i −0.766039 0.642795i \(-0.777775\pi\)
0.939696 + 0.342012i \(0.111108\pi\)
\(830\) −10.3923 6.00000i −0.360722 0.208263i
\(831\) 1.00000 + 1.73205i 0.0346896 + 0.0600842i
\(832\) −3.00000 + 2.00000i −0.104006 + 0.0693375i
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 + 13.8564i 0.276851 + 0.479521i
\(836\) 10.0000 17.3205i 0.345857 0.599042i
\(837\) −21.6506 12.5000i −0.748355 0.432063i
\(838\) 30.3109 17.5000i 1.04707 0.604527i
\(839\) 1.00000i 0.0345238i −0.999851 0.0172619i \(-0.994505\pi\)
0.999851 0.0172619i \(-0.00549491\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 17.5000 + 30.3109i 0.603090 + 1.04458i
\(843\) −17.3205 10.0000i −0.596550 0.344418i
\(844\) −4.00000 + 6.92820i −0.137686 + 0.238479i
\(845\) −3.33975 25.7846i −0.114891 0.887018i
\(846\) −26.0000 −0.893898
\(847\) 0 0
\(848\) 14.0000 0.480762
\(849\) −5.50000 9.52628i −0.188760 0.326941i
\(850\) 1.73205 + 1.00000i 0.0594089 + 0.0342997i
\(851\) 23.3827 + 13.5000i 0.801548 + 0.462774i
\(852\) 0 0
\(853\) 56.0000i 1.91740i 0.284413 + 0.958702i \(0.408201\pi\)
−0.284413 + 0.958702i \(0.591799\pi\)
\(854\) 0 0
\(855\) 16.0000 0.547188
\(856\) −1.73205 + 1.00000i −0.0592003 + 0.0341793i
\(857\) 4.00000 6.92820i 0.136637 0.236663i −0.789584 0.613642i \(-0.789704\pi\)
0.926222 + 0.376979i \(0.123037\pi\)
\(858\) −1.16025 17.9904i −0.0396104 0.614181i
\(859\) −17.5000 30.3109i −0.597092 1.03419i −0.993248 0.116011i \(-0.962989\pi\)
0.396156 0.918183i \(-0.370344\pi\)
\(860\) 8.00000i 0.272798i
\(861\) 0 0
\(862\) 0 0
\(863\) −5.19615 + 3.00000i −0.176879 + 0.102121i −0.585826 0.810437i \(-0.699230\pi\)
0.408946 + 0.912558i \(0.365896\pi\)
\(864\) −4.33013 2.50000i −0.147314 0.0850517i
\(865\) 24.2487 + 14.0000i 0.824481 + 0.476014i
\(866\) 29.4449 17.0000i 1.00058 0.577684i
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 75.0000i 2.54420i
\(870\) 0 0
\(871\) 10.7942 0.696152i 0.365748 0.0235882i
\(872\) −7.00000 + 12.1244i −0.237050 + 0.410582i
\(873\) 12.1244 7.00000i 0.410347 0.236914i
\(874\) 36.0000 1.21772
\(875\) 0 0
\(876\) 1.00000i 0.0337869i
\(877\) 14.7224 8.50000i 0.497141 0.287025i −0.230391 0.973098i \(-0.574001\pi\)
0.727532 + 0.686074i \(0.240667\pi\)
\(878\) 0 0
\(879\) −22.5167 13.0000i −0.759468 0.438479i
\(880\) −5.00000 8.66025i −0.168550 0.291937i
\(881\) 8.00000 0.269527 0.134763 0.990878i \(-0.456973\pi\)
0.134763 + 0.990878i \(0.456973\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 6.46410 + 3.19615i 0.217411 + 0.107498i
\(885\) −6.00000 + 10.3923i −0.201688 + 0.349334i
\(886\) 20.7846 + 12.0000i 0.698273 + 0.403148i
\(887\) 4.00000 + 6.92820i 0.134307 + 0.232626i 0.925332 0.379157i \(-0.123786\pi\)
−0.791026 + 0.611783i \(0.790453\pi\)
\(888\) 3.00000 0.100673
\(889\) 0 0
\(890\) 12.0000i 0.402241i
\(891\) −4.33013 + 2.50000i −0.145065 + 0.0837532i
\(892\) −16.4545 9.50000i −0.550937 0.318084i
\(893\) 26.0000 45.0333i 0.870057 1.50698i
\(894\) 4.50000 + 7.79423i 0.150503 + 0.260678i
\(895\) 0 0
\(896\) 0 0
\(897\) 27.0000 18.0000i 0.901504 0.601003i
\(898\) −3.00000 5.19615i −0.100111 0.173398i
\(899\) 0 0
\(900\) −1.00000 + 1.73205i −0.0333333 + 0.0577350i
\(901\) −14.0000 24.2487i −0.466408 0.807842i
\(902\) 25.0000i 0.832409i
\(903\) 0 0
\(904\) 11.0000i 0.365855i
\(905\) −12.1244 + 7.00000i −0.403027 + 0.232688i
\(906\) −5.00000 + 8.66025i −0.166114 + 0.287718i
\(907\) 6.00000 10.3923i 0.199227 0.345071i −0.749051 0.662512i \(-0.769490\pi\)
0.948278 + 0.317441i \(0.102824\pi\)
\(908\) −15.5885 + 9.00000i −0.517321 + 0.298675i
\(909\) 14.0000 0.464351
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 3.46410 2.00000i 0.114708 0.0662266i
\(913\) −15.0000 + 25.9808i −0.496428 + 0.859838i
\(914\) 4.00000 6.92820i 0.132308 0.229165i
\(915\) 22.5167 13.0000i 0.744378 0.429767i
\(916\) 4.00000i 0.132164i
\(917\) 0 0
\(918\) 10.0000i 0.330049i
\(919\) 17.5000 + 30.3109i 0.577272 + 0.999864i 0.995791 + 0.0916559i \(0.0292160\pi\)
−0.418519 + 0.908208i \(0.637451\pi\)
\(920\) 9.00000 15.5885i 0.296721 0.513936i
\(921\) 19.0526 + 11.0000i 0.627803 + 0.362462i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000i 0.0986394i
\(926\) −7.00000 12.1244i −0.230034 0.398431i
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) 0 0
\(929\) −0.866025 + 0.500000i −0.0284134 + 0.0164045i −0.514139 0.857707i \(-0.671889\pi\)
0.485726 + 0.874111i \(0.338555\pi\)
\(930\) 10.0000i 0.327913i
\(931\) 0 0
\(932\) −9.00000 −0.294805
\(933\) −14.0000 24.2487i −0.458339 0.793867i
\(934\) −6.92820 4.00000i −0.226698 0.130884i
\(935\) −10.0000 + 17.3205i −0.327035 + 0.566441i
\(936\) −3.19615 + 6.46410i −0.104470 + 0.211286i
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −4.00000 −0.130535
\(940\) −13.0000 22.5167i −0.424013 0.734412i
\(941\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) −2.59808 1.50000i −0.0846499 0.0488726i
\(943\) −38.9711 + 22.5000i −1.26908 + 0.732701i
\(944\) 6.00000i 0.195283i
\(945\) 0 0
\(946\) −20.0000 −0.650256
\(947\) −6.92820 + 4.00000i −0.225136 + 0.129983i −0.608326 0.793687i \(-0.708159\pi\)
0.383190 + 0.923670i \(0.374825\pi\)
\(948\) −7.50000 + 12.9904i −0.243589 + 0.421908i
\(949\) −3.59808 + 0.232051i −0.116798 + 0.00753269i
\(950\) −2.00000 3.46410i −0.0648886 0.112390i
\(951\) 27.0000i 0.875535i
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 24.2487 14.0000i 0.785081 0.453267i
\(955\) 13.8564 + 8.00000i 0.448383 + 0.258874i
\(956\) −12.1244 7.00000i −0.392130 0.226396i
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) 0 0
\(960\) 2.00000i 0.0645497i
\(961\) −3.00000 5.19615i −0.0967742 0.167618i
\(962\) −0.696152 10.7942i −0.0224449 0.348020i
\(963\) −2.00000 + 3.46410i −0.0644491 + 0.111629i
\(964\) 8.66025 5.00000i 0.278928 0.161039i
\(965\) −48.0000 −1.54517
\(966\) 0 0
\(967\) 48.0000i 1.54358i −0.635880 0.771788i \(-0.719363\pi\)
0.635880 0.771788i \(-0.280637\pi\)
\(968\) −12.1244 + 7.00000i −0.389692 + 0.224989i
\(969\) −6.92820 4.00000i −0.222566 0.128499i
\(970\) 12.1244 + 7.00000i 0.389290 + 0.224756i
\(971\) −21.5000 37.2391i −0.689968 1.19506i −0.971848 0.235610i \(-0.924291\pi\)
0.281880 0.959450i \(-0.409042\pi\)
\(972\) −16.0000 −0.513200
\(973\) 0 0
\(974\) −28.0000 −0.897178
\(975\) −3.23205 1.59808i −0.103508 0.0511794i
\(976\) −6.50000 + 11.2583i −0.208060 + 0.360370i
\(977\) 15.5885 + 9.00000i 0.498719 + 0.287936i 0.728184 0.685381i \(-0.240364\pi\)
−0.229465 + 0.973317i \(0.573698\pi\)
\(978\) −2.00000 3.46410i −0.0639529 0.110770i
\(979\) −30.0000 −0.958804
\(980\) 0 0
\(981\) 28.0000i 0.893971i
\(982\) 15.5885 9.00000i 0.497448 0.287202i
\(983\) −31.1769 18.0000i −0.994389 0.574111i −0.0878058 0.996138i \(-0.527985\pi\)
−0.906583 + 0.422027i \(0.861319\pi\)
\(984\) −2.50000 + 4.33013i −0.0796971 + 0.138039i
\(985\) 7.00000 + 12.1244i 0.223039 + 0.386314i
\(986\) 0 0
\(987\) 0 0
\(988\) −8.00000 12.0000i −0.254514 0.381771i
\(989\) −18.0000 31.1769i −0.572367 0.991368i
\(990\) −17.3205 10.0000i −0.550482 0.317821i
\(991\) 1.50000 2.59808i 0.0476491 0.0825306i −0.841217 0.540697i \(-0.818160\pi\)
0.888866 + 0.458167i \(0.151494\pi\)
\(992\) 2.50000 + 4.33013i 0.0793751 + 0.137482i
\(993\) 25.0000i 0.793351i
\(994\) 0 0
\(995\) 40.0000i 1.26809i
\(996\) −5.19615 + 3.00000i −0.164646 + 0.0950586i
\(997\) −8.50000 + 14.7224i −0.269198 + 0.466264i −0.968655 0.248410i \(-0.920092\pi\)
0.699457 + 0.714675i \(0.253425\pi\)
\(998\) −5.50000 + 9.52628i −0.174099 + 0.301549i
\(999\) 12.9904 7.50000i 0.410997 0.237289i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.n.b.753.1 4
7.2 even 3 inner 1274.2.n.b.961.2 4
7.3 odd 6 182.2.d.a.155.1 2
7.4 even 3 1274.2.d.d.883.1 2
7.5 odd 6 1274.2.n.e.961.2 4
7.6 odd 2 1274.2.n.e.753.1 4
13.12 even 2 inner 1274.2.n.b.753.2 4
21.17 even 6 1638.2.c.a.883.2 2
28.3 even 6 1456.2.k.a.337.1 2
91.12 odd 6 1274.2.n.e.961.1 4
91.25 even 6 1274.2.d.d.883.2 2
91.31 even 12 2366.2.a.c.1.1 1
91.38 odd 6 182.2.d.a.155.2 yes 2
91.51 even 6 inner 1274.2.n.b.961.1 4
91.73 even 12 2366.2.a.l.1.1 1
91.90 odd 2 1274.2.n.e.753.2 4
273.38 even 6 1638.2.c.a.883.1 2
364.311 even 6 1456.2.k.a.337.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.d.a.155.1 2 7.3 odd 6
182.2.d.a.155.2 yes 2 91.38 odd 6
1274.2.d.d.883.1 2 7.4 even 3
1274.2.d.d.883.2 2 91.25 even 6
1274.2.n.b.753.1 4 1.1 even 1 trivial
1274.2.n.b.753.2 4 13.12 even 2 inner
1274.2.n.b.961.1 4 91.51 even 6 inner
1274.2.n.b.961.2 4 7.2 even 3 inner
1274.2.n.e.753.1 4 7.6 odd 2
1274.2.n.e.753.2 4 91.90 odd 2
1274.2.n.e.961.1 4 91.12 odd 6
1274.2.n.e.961.2 4 7.5 odd 6
1456.2.k.a.337.1 2 28.3 even 6
1456.2.k.a.337.2 2 364.311 even 6
1638.2.c.a.883.1 2 273.38 even 6
1638.2.c.a.883.2 2 21.17 even 6
2366.2.a.c.1.1 1 91.31 even 12
2366.2.a.l.1.1 1 91.73 even 12