Properties

Label 1638.2.c.a.883.1
Level $1638$
Weight $2$
Character 1638.883
Analytic conductor $13.079$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(883,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,0,-4,0,0,-6,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1638.883
Dual form 1638.2.c.a.883.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -2.00000i q^{5} +1.00000i q^{7} +1.00000i q^{8} -2.00000 q^{10} -5.00000i q^{11} +(-3.00000 - 2.00000i) q^{13} +1.00000 q^{14} +1.00000 q^{16} +2.00000 q^{17} +4.00000i q^{19} +2.00000i q^{20} -5.00000 q^{22} -9.00000 q^{23} +1.00000 q^{25} +(-2.00000 + 3.00000i) q^{26} -1.00000i q^{28} -5.00000i q^{31} -1.00000i q^{32} -2.00000i q^{34} +2.00000 q^{35} +3.00000i q^{37} +4.00000 q^{38} +2.00000 q^{40} +5.00000i q^{41} +4.00000 q^{43} +5.00000i q^{44} +9.00000i q^{46} -13.0000i q^{47} -1.00000 q^{49} -1.00000i q^{50} +(3.00000 + 2.00000i) q^{52} -14.0000 q^{53} -10.0000 q^{55} -1.00000 q^{56} +6.00000i q^{59} -13.0000 q^{61} -5.00000 q^{62} -1.00000 q^{64} +(-4.00000 + 6.00000i) q^{65} +3.00000i q^{67} -2.00000 q^{68} -2.00000i q^{70} +1.00000i q^{73} +3.00000 q^{74} -4.00000i q^{76} +5.00000 q^{77} -15.0000 q^{79} -2.00000i q^{80} +5.00000 q^{82} -6.00000i q^{83} -4.00000i q^{85} -4.00000i q^{86} +5.00000 q^{88} +6.00000i q^{89} +(2.00000 - 3.00000i) q^{91} +9.00000 q^{92} -13.0000 q^{94} +8.00000 q^{95} -7.00000i q^{97} +1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{10} - 6 q^{13} + 2 q^{14} + 2 q^{16} + 4 q^{17} - 10 q^{22} - 18 q^{23} + 2 q^{25} - 4 q^{26} + 4 q^{35} + 8 q^{38} + 4 q^{40} + 8 q^{43} - 2 q^{49} + 6 q^{52} - 28 q^{53} - 20 q^{55}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.00000i 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.00000 −0.632456
\(11\) 5.00000i 1.50756i −0.657129 0.753778i \(-0.728229\pi\)
0.657129 0.753778i \(-0.271771\pi\)
\(12\) 0 0
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 2.00000i 0.447214i
\(21\) 0 0
\(22\) −5.00000 −1.06600
\(23\) −9.00000 −1.87663 −0.938315 0.345782i \(-0.887614\pi\)
−0.938315 + 0.345782i \(0.887614\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −2.00000 + 3.00000i −0.392232 + 0.588348i
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 5.00000i 0.898027i −0.893525 0.449013i \(-0.851776\pi\)
0.893525 0.449013i \(-0.148224\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 2.00000i 0.342997i
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 3.00000i 0.493197i 0.969118 + 0.246598i \(0.0793129\pi\)
−0.969118 + 0.246598i \(0.920687\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) 5.00000i 0.780869i 0.920631 + 0.390434i \(0.127675\pi\)
−0.920631 + 0.390434i \(0.872325\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 5.00000i 0.753778i
\(45\) 0 0
\(46\) 9.00000i 1.32698i
\(47\) 13.0000i 1.89624i −0.317905 0.948122i \(-0.602979\pi\)
0.317905 0.948122i \(-0.397021\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 1.00000i 0.141421i
\(51\) 0 0
\(52\) 3.00000 + 2.00000i 0.416025 + 0.277350i
\(53\) −14.0000 −1.92305 −0.961524 0.274721i \(-0.911414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) −10.0000 −1.34840
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) −5.00000 −0.635001
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.00000 + 6.00000i −0.496139 + 0.744208i
\(66\) 0 0
\(67\) 3.00000i 0.366508i 0.983066 + 0.183254i \(0.0586631\pi\)
−0.983066 + 0.183254i \(0.941337\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 2.00000i 0.239046i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 1.00000i 0.117041i 0.998286 + 0.0585206i \(0.0186383\pi\)
−0.998286 + 0.0585206i \(0.981362\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 5.00000 0.569803
\(78\) 0 0
\(79\) −15.0000 −1.68763 −0.843816 0.536633i \(-0.819696\pi\)
−0.843816 + 0.536633i \(0.819696\pi\)
\(80\) 2.00000i 0.223607i
\(81\) 0 0
\(82\) 5.00000 0.552158
\(83\) 6.00000i 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 4.00000i 0.431331i
\(87\) 0 0
\(88\) 5.00000 0.533002
\(89\) 6.00000i 0.635999i 0.948091 + 0.317999i \(0.103011\pi\)
−0.948091 + 0.317999i \(0.896989\pi\)
\(90\) 0 0
\(91\) 2.00000 3.00000i 0.209657 0.314485i
\(92\) 9.00000 0.938315
\(93\) 0 0
\(94\) −13.0000 −1.34085
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) 7.00000i 0.710742i −0.934725 0.355371i \(-0.884354\pi\)
0.934725 0.355371i \(-0.115646\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −7.00000 −0.696526 −0.348263 0.937397i \(-0.613228\pi\)
−0.348263 + 0.937397i \(0.613228\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 2.00000 3.00000i 0.196116 0.294174i
\(105\) 0 0
\(106\) 14.0000i 1.35980i
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) 14.0000i 1.34096i 0.741929 + 0.670478i \(0.233911\pi\)
−0.741929 + 0.670478i \(0.766089\pi\)
\(110\) 10.0000i 0.953463i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 11.0000 1.03479 0.517396 0.855746i \(-0.326901\pi\)
0.517396 + 0.855746i \(0.326901\pi\)
\(114\) 0 0
\(115\) 18.0000i 1.67851i
\(116\) 0 0
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 2.00000i 0.183340i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) 13.0000i 1.17696i
\(123\) 0 0
\(124\) 5.00000i 0.449013i
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 6.00000 + 4.00000i 0.526235 + 0.350823i
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 3.00000 0.259161
\(135\) 0 0
\(136\) 2.00000i 0.171499i
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) −2.00000 −0.169031
\(141\) 0 0
\(142\) 0 0
\(143\) −10.0000 + 15.0000i −0.836242 + 1.25436i
\(144\) 0 0
\(145\) 0 0
\(146\) 1.00000 0.0827606
\(147\) 0 0
\(148\) 3.00000i 0.246598i
\(149\) 9.00000i 0.737309i −0.929567 0.368654i \(-0.879819\pi\)
0.929567 0.368654i \(-0.120181\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i −0.913475 0.406894i \(-0.866612\pi\)
0.913475 0.406894i \(-0.133388\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 5.00000i 0.402911i
\(155\) −10.0000 −0.803219
\(156\) 0 0
\(157\) 3.00000 0.239426 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(158\) 15.0000i 1.19334i
\(159\) 0 0
\(160\) −2.00000 −0.158114
\(161\) 9.00000i 0.709299i
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 5.00000i 0.390434i
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 5.00000i 0.376889i
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) −3.00000 2.00000i −0.222375 0.148250i
\(183\) 0 0
\(184\) 9.00000i 0.663489i
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 10.0000i 0.731272i
\(188\) 13.0000i 0.948122i
\(189\) 0 0
\(190\) 8.00000i 0.580381i
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 24.0000i 1.72756i −0.503871 0.863779i \(-0.668091\pi\)
0.503871 0.863779i \(-0.331909\pi\)
\(194\) −7.00000 −0.502571
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 7.00000i 0.498729i 0.968410 + 0.249365i \(0.0802218\pi\)
−0.968410 + 0.249365i \(0.919778\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0 0
\(202\) 7.00000i 0.492518i
\(203\) 0 0
\(204\) 0 0
\(205\) 10.0000 0.698430
\(206\) 4.00000i 0.278693i
\(207\) 0 0
\(208\) −3.00000 2.00000i −0.208013 0.138675i
\(209\) 20.0000 1.38343
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 14.0000 0.961524
\(213\) 0 0
\(214\) 2.00000i 0.136717i
\(215\) 8.00000i 0.545595i
\(216\) 0 0
\(217\) 5.00000 0.339422
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) 10.0000 0.674200
\(221\) −6.00000 4.00000i −0.403604 0.269069i
\(222\) 0 0
\(223\) 19.0000i 1.27233i −0.771551 0.636167i \(-0.780519\pi\)
0.771551 0.636167i \(-0.219481\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 11.0000i 0.731709i
\(227\) 18.0000i 1.19470i −0.801980 0.597351i \(-0.796220\pi\)
0.801980 0.597351i \(-0.203780\pi\)
\(228\) 0 0
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 18.0000 1.18688
\(231\) 0 0
\(232\) 0 0
\(233\) −9.00000 −0.589610 −0.294805 0.955557i \(-0.595255\pi\)
−0.294805 + 0.955557i \(0.595255\pi\)
\(234\) 0 0
\(235\) −26.0000 −1.69605
\(236\) 6.00000i 0.390567i
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 14.0000i 0.905585i −0.891616 0.452792i \(-0.850428\pi\)
0.891616 0.452792i \(-0.149572\pi\)
\(240\) 0 0
\(241\) 10.0000i 0.644157i −0.946713 0.322078i \(-0.895619\pi\)
0.946713 0.322078i \(-0.104381\pi\)
\(242\) 14.0000i 0.899954i
\(243\) 0 0
\(244\) 13.0000 0.832240
\(245\) 2.00000i 0.127775i
\(246\) 0 0
\(247\) 8.00000 12.0000i 0.509028 0.763542i
\(248\) 5.00000 0.317500
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 0 0
\(253\) 45.0000i 2.82913i
\(254\) 13.0000i 0.815693i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 4.00000 6.00000i 0.248069 0.372104i
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) 28.0000i 1.72003i
\(266\) 4.00000i 0.245256i
\(267\) 0 0
\(268\) 3.00000i 0.183254i
\(269\) 5.00000 0.304855 0.152428 0.988315i \(-0.451291\pi\)
0.152428 + 0.988315i \(0.451291\pi\)
\(270\) 0 0
\(271\) 5.00000i 0.303728i −0.988401 0.151864i \(-0.951472\pi\)
0.988401 0.151864i \(-0.0485276\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 5.00000i 0.301511i
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 2.00000i 0.119523i
\(281\) 20.0000i 1.19310i 0.802576 + 0.596550i \(0.203462\pi\)
−0.802576 + 0.596550i \(0.796538\pi\)
\(282\) 0 0
\(283\) −11.0000 −0.653882 −0.326941 0.945045i \(-0.606018\pi\)
−0.326941 + 0.945045i \(0.606018\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 15.0000 + 10.0000i 0.886969 + 0.591312i
\(287\) −5.00000 −0.295141
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000i 0.0585206i
\(293\) 26.0000i 1.51894i −0.650545 0.759468i \(-0.725459\pi\)
0.650545 0.759468i \(-0.274541\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) −3.00000 −0.174371
\(297\) 0 0
\(298\) −9.00000 −0.521356
\(299\) 27.0000 + 18.0000i 1.56145 + 1.04097i
\(300\) 0 0
\(301\) 4.00000i 0.230556i
\(302\) −10.0000 −0.575435
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) 26.0000i 1.48876i
\(306\) 0 0
\(307\) 22.0000i 1.25561i −0.778372 0.627803i \(-0.783954\pi\)
0.778372 0.627803i \(-0.216046\pi\)
\(308\) −5.00000 −0.284901
\(309\) 0 0
\(310\) 10.0000i 0.567962i
\(311\) 28.0000 1.58773 0.793867 0.608091i \(-0.208065\pi\)
0.793867 + 0.608091i \(0.208065\pi\)
\(312\) 0 0
\(313\) 4.00000 0.226093 0.113047 0.993590i \(-0.463939\pi\)
0.113047 + 0.993590i \(0.463939\pi\)
\(314\) 3.00000i 0.169300i
\(315\) 0 0
\(316\) 15.0000 0.843816
\(317\) 27.0000i 1.51647i 0.651981 + 0.758236i \(0.273938\pi\)
−0.651981 + 0.758236i \(0.726062\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.00000i 0.111803i
\(321\) 0 0
\(322\) −9.00000 −0.501550
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) −3.00000 2.00000i −0.166410 0.110940i
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) −5.00000 −0.276079
\(329\) 13.0000 0.716713
\(330\) 0 0
\(331\) 25.0000i 1.37412i −0.726599 0.687062i \(-0.758900\pi\)
0.726599 0.687062i \(-0.241100\pi\)
\(332\) 6.00000i 0.329293i
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 12.0000 5.00000i 0.652714 0.271964i
\(339\) 0 0
\(340\) 4.00000i 0.216930i
\(341\) −25.0000 −1.35383
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 14.0000i 0.752645i
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 26.0000i 1.39175i −0.718164 0.695874i \(-0.755017\pi\)
0.718164 0.695874i \(-0.244983\pi\)
\(350\) 1.00000 0.0534522
\(351\) 0 0
\(352\) −5.00000 −0.266501
\(353\) 31.0000i 1.64996i −0.565159 0.824982i \(-0.691185\pi\)
0.565159 0.824982i \(-0.308815\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000i 0.317999i
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000i 1.26667i −0.773877 0.633336i \(-0.781685\pi\)
0.773877 0.633336i \(-0.218315\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 7.00000i 0.367912i
\(363\) 0 0
\(364\) −2.00000 + 3.00000i −0.104828 + 0.157243i
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) −9.00000 −0.469157
\(369\) 0 0
\(370\) 6.00000i 0.311925i
\(371\) 14.0000i 0.726844i
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) −10.0000 −0.517088
\(375\) 0 0
\(376\) 13.0000 0.670424
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000i 0.821865i −0.911666 0.410932i \(-0.865203\pi\)
0.911666 0.410932i \(-0.134797\pi\)
\(380\) −8.00000 −0.410391
\(381\) 0 0
\(382\) 8.00000i 0.409316i
\(383\) 1.00000i 0.0510976i −0.999674 0.0255488i \(-0.991867\pi\)
0.999674 0.0255488i \(-0.00813332\pi\)
\(384\) 0 0
\(385\) 10.0000i 0.509647i
\(386\) −24.0000 −1.22157
\(387\) 0 0
\(388\) 7.00000i 0.355371i
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 1.00000i 0.0505076i
\(393\) 0 0
\(394\) 7.00000 0.352655
\(395\) 30.0000i 1.50946i
\(396\) 0 0
\(397\) 22.0000i 1.10415i −0.833795 0.552074i \(-0.813837\pi\)
0.833795 0.552074i \(-0.186163\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 20.0000i 0.998752i 0.866385 + 0.499376i \(0.166437\pi\)
−0.866385 + 0.499376i \(0.833563\pi\)
\(402\) 0 0
\(403\) −10.0000 + 15.0000i −0.498135 + 0.747203i
\(404\) 7.00000 0.348263
\(405\) 0 0
\(406\) 0 0
\(407\) 15.0000 0.743522
\(408\) 0 0
\(409\) 6.00000i 0.296681i −0.988936 0.148340i \(-0.952607\pi\)
0.988936 0.148340i \(-0.0473931\pi\)
\(410\) 10.0000i 0.493865i
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) −2.00000 + 3.00000i −0.0980581 + 0.147087i
\(417\) 0 0
\(418\) 20.0000i 0.978232i
\(419\) −35.0000 −1.70986 −0.854931 0.518742i \(-0.826401\pi\)
−0.854931 + 0.518742i \(0.826401\pi\)
\(420\) 0 0
\(421\) 35.0000i 1.70580i 0.522078 + 0.852898i \(0.325157\pi\)
−0.522078 + 0.852898i \(0.674843\pi\)
\(422\) 8.00000i 0.389434i
\(423\) 0 0
\(424\) 14.0000i 0.679900i
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 13.0000i 0.629114i
\(428\) −2.00000 −0.0966736
\(429\) 0 0
\(430\) −8.00000 −0.385794
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 5.00000i 0.240008i
\(435\) 0 0
\(436\) 14.0000i 0.670478i
\(437\) 36.0000i 1.72211i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 10.0000i 0.476731i
\(441\) 0 0
\(442\) −4.00000 + 6.00000i −0.190261 + 0.285391i
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) −19.0000 −0.899676
\(447\) 0 0
\(448\) 1.00000i 0.0472456i
\(449\) 6.00000i 0.283158i 0.989927 + 0.141579i \(0.0452178\pi\)
−0.989927 + 0.141579i \(0.954782\pi\)
\(450\) 0 0
\(451\) 25.0000 1.17720
\(452\) −11.0000 −0.517396
\(453\) 0 0
\(454\) −18.0000 −0.844782
\(455\) −6.00000 4.00000i −0.281284 0.187523i
\(456\) 0 0
\(457\) 8.00000i 0.374224i 0.982339 + 0.187112i \(0.0599128\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 4.00000 0.186908
\(459\) 0 0
\(460\) 18.0000i 0.839254i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 14.0000i 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 9.00000i 0.416917i
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −3.00000 −0.138527
\(470\) 26.0000i 1.19929i
\(471\) 0 0
\(472\) −6.00000 −0.276172
\(473\) 20.0000i 0.919601i
\(474\) 0 0
\(475\) 4.00000i 0.183533i
\(476\) 2.00000i 0.0916698i
\(477\) 0 0
\(478\) −14.0000 −0.640345
\(479\) 24.0000i 1.09659i −0.836286 0.548294i \(-0.815277\pi\)
0.836286 0.548294i \(-0.184723\pi\)
\(480\) 0 0
\(481\) 6.00000 9.00000i 0.273576 0.410365i
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 28.0000i 1.26880i 0.773004 + 0.634401i \(0.218753\pi\)
−0.773004 + 0.634401i \(0.781247\pi\)
\(488\) 13.0000i 0.588482i
\(489\) 0 0
\(490\) 2.00000 0.0903508
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −12.0000 8.00000i −0.539906 0.359937i
\(495\) 0 0
\(496\) 5.00000i 0.224507i
\(497\) 0 0
\(498\) 0 0
\(499\) 11.0000i 0.492428i −0.969216 0.246214i \(-0.920813\pi\)
0.969216 0.246214i \(-0.0791865\pi\)
\(500\) 12.0000i 0.536656i
\(501\) 0 0
\(502\) 17.0000i 0.758747i
\(503\) −34.0000 −1.51599 −0.757993 0.652263i \(-0.773820\pi\)
−0.757993 + 0.652263i \(0.773820\pi\)
\(504\) 0 0
\(505\) 14.0000i 0.622992i
\(506\) 45.0000 2.00049
\(507\) 0 0
\(508\) −13.0000 −0.576782
\(509\) 34.0000i 1.50702i −0.657434 0.753512i \(-0.728358\pi\)
0.657434 0.753512i \(-0.271642\pi\)
\(510\) 0 0
\(511\) −1.00000 −0.0442374
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 22.0000i 0.970378i
\(515\) 8.00000i 0.352522i
\(516\) 0 0
\(517\) −65.0000 −2.85870
\(518\) 3.00000i 0.131812i
\(519\) 0 0
\(520\) −6.00000 4.00000i −0.263117 0.175412i
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) −21.0000 −0.918266 −0.459133 0.888368i \(-0.651840\pi\)
−0.459133 + 0.888368i \(0.651840\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 4.00000i 0.174408i
\(527\) 10.0000i 0.435607i
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) 28.0000 1.21624
\(531\) 0 0
\(532\) 4.00000 0.173422
\(533\) 10.0000 15.0000i 0.433148 0.649722i
\(534\) 0 0
\(535\) 4.00000i 0.172935i
\(536\) −3.00000 −0.129580
\(537\) 0 0
\(538\) 5.00000i 0.215565i
\(539\) 5.00000i 0.215365i
\(540\) 0 0
\(541\) 10.0000i 0.429934i 0.976621 + 0.214967i \(0.0689643\pi\)
−0.976621 + 0.214967i \(0.931036\pi\)
\(542\) −5.00000 −0.214768
\(543\) 0 0
\(544\) 2.00000i 0.0857493i
\(545\) 28.0000 1.19939
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 0 0
\(550\) −5.00000 −0.213201
\(551\) 0 0
\(552\) 0 0
\(553\) 15.0000i 0.637865i
\(554\) 2.00000i 0.0849719i
\(555\) 0 0
\(556\) 0 0
\(557\) 37.0000i 1.56774i 0.620925 + 0.783870i \(0.286757\pi\)
−0.620925 + 0.783870i \(0.713243\pi\)
\(558\) 0 0
\(559\) −12.0000 8.00000i −0.507546 0.338364i
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 20.0000 0.843649
\(563\) 31.0000 1.30649 0.653247 0.757145i \(-0.273406\pi\)
0.653247 + 0.757145i \(0.273406\pi\)
\(564\) 0 0
\(565\) 22.0000i 0.925547i
\(566\) 11.0000i 0.462364i
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) 10.0000 15.0000i 0.418121 0.627182i
\(573\) 0 0
\(574\) 5.00000i 0.208696i
\(575\) −9.00000 −0.375326
\(576\) 0 0
\(577\) 42.0000i 1.74848i −0.485491 0.874241i \(-0.661359\pi\)
0.485491 0.874241i \(-0.338641\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) 70.0000i 2.89910i
\(584\) −1.00000 −0.0413803
\(585\) 0 0
\(586\) −26.0000 −1.07405
\(587\) 2.00000i 0.0825488i 0.999148 + 0.0412744i \(0.0131418\pi\)
−0.999148 + 0.0412744i \(0.986858\pi\)
\(588\) 0 0
\(589\) 20.0000 0.824086
\(590\) 12.0000i 0.494032i
\(591\) 0 0
\(592\) 3.00000i 0.123299i
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) 9.00000i 0.368654i
\(597\) 0 0
\(598\) 18.0000 27.0000i 0.736075 1.10411i
\(599\) 15.0000 0.612883 0.306442 0.951889i \(-0.400862\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(600\) 0 0
\(601\) −28.0000 −1.14214 −0.571072 0.820900i \(-0.693472\pi\)
−0.571072 + 0.820900i \(0.693472\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 10.0000i 0.406894i
\(605\) 28.0000i 1.13836i
\(606\) 0 0
\(607\) −2.00000 −0.0811775 −0.0405887 0.999176i \(-0.512923\pi\)
−0.0405887 + 0.999176i \(0.512923\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) 26.0000 1.05271
\(611\) −26.0000 + 39.0000i −1.05185 + 1.57777i
\(612\) 0 0
\(613\) 11.0000i 0.444286i 0.975014 + 0.222143i \(0.0713052\pi\)
−0.975014 + 0.222143i \(0.928695\pi\)
\(614\) −22.0000 −0.887848
\(615\) 0 0
\(616\) 5.00000i 0.201456i
\(617\) 32.0000i 1.28827i 0.764911 + 0.644136i \(0.222783\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 10.0000 0.401610
\(621\) 0 0
\(622\) 28.0000i 1.12270i
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 4.00000i 0.159872i
\(627\) 0 0
\(628\) −3.00000 −0.119713
\(629\) 6.00000i 0.239236i
\(630\) 0 0
\(631\) 40.0000i 1.59237i 0.605050 + 0.796187i \(0.293153\pi\)
−0.605050 + 0.796187i \(0.706847\pi\)
\(632\) 15.0000i 0.596668i
\(633\) 0 0
\(634\) 27.0000 1.07231
\(635\) 26.0000i 1.03178i
\(636\) 0 0
\(637\) 3.00000 + 2.00000i 0.118864 + 0.0792429i
\(638\) 0 0
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) −37.0000 −1.46141 −0.730706 0.682692i \(-0.760809\pi\)
−0.730706 + 0.682692i \(0.760809\pi\)
\(642\) 0 0
\(643\) 14.0000i 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) 9.00000i 0.354650i
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 30.0000 1.17760
\(650\) −2.00000 + 3.00000i −0.0784465 + 0.117670i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 16.0000 0.626128 0.313064 0.949732i \(-0.398644\pi\)
0.313064 + 0.949732i \(0.398644\pi\)
\(654\) 0 0
\(655\) 24.0000i 0.937758i
\(656\) 5.00000i 0.195217i
\(657\) 0 0
\(658\) 13.0000i 0.506793i
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 40.0000i 1.55582i 0.628376 + 0.777910i \(0.283720\pi\)
−0.628376 + 0.777910i \(0.716280\pi\)
\(662\) −25.0000 −0.971653
\(663\) 0 0
\(664\) 6.00000 0.232845
\(665\) 8.00000i 0.310227i
\(666\) 0 0
\(667\) 0 0
\(668\) 8.00000i 0.309529i
\(669\) 0 0
\(670\) 6.00000i 0.231800i
\(671\) 65.0000i 2.50930i
\(672\) 0 0
\(673\) −31.0000 −1.19496 −0.597481 0.801883i \(-0.703832\pi\)
−0.597481 + 0.801883i \(0.703832\pi\)
\(674\) 23.0000i 0.885927i
\(675\) 0 0
\(676\) −5.00000 12.0000i −0.192308 0.461538i
\(677\) 7.00000 0.269032 0.134516 0.990911i \(-0.457052\pi\)
0.134516 + 0.990911i \(0.457052\pi\)
\(678\) 0 0
\(679\) 7.00000 0.268635
\(680\) 4.00000 0.153393
\(681\) 0 0
\(682\) 25.0000i 0.957299i
\(683\) 41.0000i 1.56882i −0.620242 0.784411i \(-0.712966\pi\)
0.620242 0.784411i \(-0.287034\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 42.0000 + 28.0000i 1.60007 + 1.06672i
\(690\) 0 0
\(691\) 10.0000i 0.380418i 0.981744 + 0.190209i \(0.0609166\pi\)
−0.981744 + 0.190209i \(0.939083\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 12.0000i 0.455514i
\(695\) 0 0
\(696\) 0 0
\(697\) 10.0000i 0.378777i
\(698\) −26.0000 −0.984115
\(699\) 0 0
\(700\) 1.00000i 0.0377964i
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −12.0000 −0.452589
\(704\) 5.00000i 0.188445i
\(705\) 0 0
\(706\) −31.0000 −1.16670
\(707\) 7.00000i 0.263262i
\(708\) 0 0
\(709\) 31.0000i 1.16423i −0.813107 0.582115i \(-0.802225\pi\)
0.813107 0.582115i \(-0.197775\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 45.0000i 1.68526i
\(714\) 0 0
\(715\) 30.0000 + 20.0000i 1.12194 + 0.747958i
\(716\) 0 0
\(717\) 0 0
\(718\) −24.0000 −0.895672
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) 4.00000i 0.148968i
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) −7.00000 −0.260153
\(725\) 0 0
\(726\) 0 0
\(727\) 38.0000 1.40934 0.704671 0.709534i \(-0.251095\pi\)
0.704671 + 0.709534i \(0.251095\pi\)
\(728\) 3.00000 + 2.00000i 0.111187 + 0.0741249i
\(729\) 0 0
\(730\) 2.00000i 0.0740233i
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 44.0000i 1.62518i −0.582838 0.812589i \(-0.698058\pi\)
0.582838 0.812589i \(-0.301942\pi\)
\(734\) 28.0000i 1.03350i
\(735\) 0 0
\(736\) 9.00000i 0.331744i
\(737\) 15.0000 0.552532
\(738\) 0 0
\(739\) 4.00000i 0.147142i 0.997290 + 0.0735712i \(0.0234396\pi\)
−0.997290 + 0.0735712i \(0.976560\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) −14.0000 −0.513956
\(743\) 6.00000i 0.220119i −0.993925 0.110059i \(-0.964896\pi\)
0.993925 0.110059i \(-0.0351041\pi\)
\(744\) 0 0
\(745\) −18.0000 −0.659469
\(746\) 34.0000i 1.24483i
\(747\) 0 0
\(748\) 10.0000i 0.365636i
\(749\) 2.00000i 0.0730784i
\(750\) 0 0
\(751\) −43.0000 −1.56909 −0.784546 0.620070i \(-0.787104\pi\)
−0.784546 + 0.620070i \(0.787104\pi\)
\(752\) 13.0000i 0.474061i
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) −16.0000 −0.581146
\(759\) 0 0
\(760\) 8.00000i 0.290191i
\(761\) 15.0000i 0.543750i 0.962333 + 0.271875i \(0.0876437\pi\)
−0.962333 + 0.271875i \(0.912356\pi\)
\(762\) 0 0
\(763\) −14.0000 −0.506834
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) −1.00000 −0.0361315
\(767\) 12.0000 18.0000i 0.433295 0.649942i
\(768\) 0 0
\(769\) 1.00000i 0.0360609i −0.999837 0.0180305i \(-0.994260\pi\)
0.999837 0.0180305i \(-0.00573959\pi\)
\(770\) −10.0000 −0.360375
\(771\) 0 0
\(772\) 24.0000i 0.863779i
\(773\) 34.0000i 1.22290i 0.791285 + 0.611448i \(0.209412\pi\)
−0.791285 + 0.611448i \(0.790588\pi\)
\(774\) 0 0
\(775\) 5.00000i 0.179605i
\(776\) 7.00000 0.251285
\(777\) 0 0
\(778\) 10.0000i 0.358517i
\(779\) −20.0000 −0.716574
\(780\) 0 0
\(781\) 0 0
\(782\) 18.0000i 0.643679i
\(783\) 0 0
\(784\) −1.00000 −0.0357143
\(785\) 6.00000i 0.214149i
\(786\) 0 0
\(787\) 28.0000i 0.998092i 0.866575 + 0.499046i \(0.166316\pi\)
−0.866575 + 0.499046i \(0.833684\pi\)
\(788\) 7.00000i 0.249365i
\(789\) 0 0
\(790\) 30.0000 1.06735
\(791\) 11.0000i 0.391115i
\(792\) 0 0
\(793\) 39.0000 + 26.0000i 1.38493 + 0.923287i
\(794\) −22.0000 −0.780751
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) 37.0000 1.31061 0.655304 0.755366i \(-0.272541\pi\)
0.655304 + 0.755366i \(0.272541\pi\)
\(798\) 0 0
\(799\) 26.0000i 0.919814i
\(800\) 1.00000i 0.0353553i
\(801\) 0 0
\(802\) 20.0000 0.706225
\(803\) 5.00000 0.176446
\(804\) 0 0
\(805\) −18.0000 −0.634417
\(806\) 15.0000 + 10.0000i 0.528352 + 0.352235i
\(807\) 0 0
\(808\) 7.00000i 0.246259i
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 15.0000i 0.525750i
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) 16.0000i 0.559769i
\(818\) −6.00000 −0.209785
\(819\) 0 0
\(820\) −10.0000 −0.349215
\(821\) 30.0000i 1.04701i 0.852023 + 0.523504i \(0.175375\pi\)
−0.852023 + 0.523504i \(0.824625\pi\)
\(822\) 0 0
\(823\) −11.0000 −0.383436 −0.191718 0.981450i \(-0.561406\pi\)
−0.191718 + 0.981450i \(0.561406\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 6.00000i 0.208767i
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 12.0000i 0.416526i
\(831\) 0 0
\(832\) 3.00000 + 2.00000i 0.104006 + 0.0693375i
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) −20.0000 −0.691714
\(837\) 0 0
\(838\) 35.0000i 1.20905i
\(839\) 1.00000i 0.0345238i 0.999851 + 0.0172619i \(0.00549491\pi\)
−0.999851 + 0.0172619i \(0.994505\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 35.0000 1.20618
\(843\) 0 0
\(844\) 8.00000 0.275371
\(845\) 24.0000 10.0000i 0.825625 0.344010i
\(846\) 0 0
\(847\) 14.0000i 0.481046i
\(848\) −14.0000 −0.480762
\(849\) 0 0
\(850\) 2.00000i 0.0685994i
\(851\) 27.0000i 0.925548i
\(852\) 0 0
\(853\) 56.0000i 1.91740i 0.284413 + 0.958702i \(0.408201\pi\)
−0.284413 + 0.958702i \(0.591799\pi\)
\(854\) −13.0000 −0.444851
\(855\) 0 0
\(856\) 2.00000i 0.0683586i
\(857\) −8.00000 −0.273275 −0.136637 0.990621i \(-0.543630\pi\)
−0.136637 + 0.990621i \(0.543630\pi\)
\(858\) 0 0
\(859\) −35.0000 −1.19418 −0.597092 0.802173i \(-0.703677\pi\)
−0.597092 + 0.802173i \(0.703677\pi\)
\(860\) 8.00000i 0.272798i
\(861\) 0 0
\(862\) 0 0
\(863\) 6.00000i 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) 0 0
\(865\) 28.0000i 0.952029i
\(866\) 34.0000i 1.15537i
\(867\) 0 0
\(868\) −5.00000 −0.169711
\(869\) 75.0000i 2.54420i
\(870\) 0 0
\(871\) 6.00000 9.00000i 0.203302 0.304953i
\(872\) −14.0000 −0.474100
\(873\) 0 0
\(874\) −36.0000 −1.21772
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) 17.0000i 0.574049i −0.957923 0.287025i \(-0.907334\pi\)
0.957923 0.287025i \(-0.0926662\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −10.0000 −0.337100
\(881\) 8.00000 0.269527 0.134763 0.990878i \(-0.456973\pi\)
0.134763 + 0.990878i \(0.456973\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 6.00000 + 4.00000i 0.201802 + 0.134535i
\(885\) 0 0
\(886\) 24.0000i 0.806296i
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) 13.0000i 0.436006i
\(890\) 12.0000i 0.402241i
\(891\) 0 0
\(892\) 19.0000i 0.636167i
\(893\) 52.0000 1.74011
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) 0 0
\(900\) 0 0
\(901\) −28.0000 −0.932815
\(902\) 25.0000i 0.832409i
\(903\) 0 0
\(904\) 11.0000i 0.365855i
\(905\) 14.0000i 0.465376i
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 18.0000i 0.597351i
\(909\) 0 0
\(910\) −4.00000 + 6.00000i −0.132599 + 0.198898i
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) −30.0000 −0.992855
\(914\) 8.00000 0.264616
\(915\) 0 0
\(916\) 4.00000i 0.132164i
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) −35.0000 −1.15454 −0.577272 0.816552i \(-0.695883\pi\)
−0.577272 + 0.816552i \(0.695883\pi\)
\(920\) −18.0000 −0.593442
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.00000i 0.0986394i
\(926\) −14.0000 −0.460069
\(927\) 0 0
\(928\) 0 0
\(929\) 1.00000i 0.0328089i 0.999865 + 0.0164045i \(0.00522194\pi\)
−0.999865 + 0.0164045i \(0.994778\pi\)
\(930\) 0 0
\(931\) 4.00000i 0.131095i
\(932\) 9.00000 0.294805
\(933\) 0 0
\(934\) 8.00000i 0.261768i
\(935\) −20.0000 −0.654070
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 3.00000i 0.0979535i
\(939\) 0 0
\(940\) 26.0000 0.848026
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 45.0000i 1.46540i
\(944\) 6.00000i 0.195283i
\(945\) 0 0
\(946\) −20.0000 −0.650256
\(947\) 8.00000i 0.259965i −0.991516 0.129983i \(-0.958508\pi\)
0.991516 0.129983i \(-0.0414921\pi\)
\(948\) 0 0
\(949\) 2.00000 3.00000i 0.0649227 0.0973841i
\(950\) 4.00000 0.129777
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 16.0000i 0.517748i
\(956\) 14.0000i 0.452792i
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) 6.00000 0.193548
\(962\) −9.00000 6.00000i −0.290172 0.193448i
\(963\) 0 0
\(964\) 10.0000i 0.322078i
\(965\) −48.0000 −1.54517
\(966\) 0 0
\(967\) 48.0000i 1.54358i 0.635880 + 0.771788i \(0.280637\pi\)
−0.635880 + 0.771788i \(0.719363\pi\)
\(968\) 14.0000i 0.449977i
\(969\) 0 0
\(970\) 14.0000i 0.449513i
\(971\) 43.0000 1.37994 0.689968 0.723840i \(-0.257625\pi\)
0.689968 + 0.723840i \(0.257625\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 28.0000 0.897178
\(975\) 0 0
\(976\) −13.0000 −0.416120
\(977\) 18.0000i 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) 30.0000 0.958804
\(980\) 2.00000i 0.0638877i
\(981\) 0 0
\(982\) 18.0000i 0.574403i
\(983\) 36.0000i 1.14822i −0.818778 0.574111i \(-0.805348\pi\)
0.818778 0.574111i \(-0.194652\pi\)
\(984\) 0 0
\(985\) 14.0000 0.446077
\(986\) 0 0
\(987\) 0 0
\(988\) −8.00000 + 12.0000i −0.254514 + 0.381771i
\(989\) −36.0000 −1.14473
\(990\) 0 0
\(991\) −3.00000 −0.0952981 −0.0476491 0.998864i \(-0.515173\pi\)
−0.0476491 + 0.998864i \(0.515173\pi\)
\(992\) −5.00000 −0.158750
\(993\) 0 0
\(994\) 0 0
\(995\) 40.0000i 1.26809i
\(996\) 0 0
\(997\) −17.0000 −0.538395 −0.269198 0.963085i \(-0.586759\pi\)
−0.269198 + 0.963085i \(0.586759\pi\)
\(998\) −11.0000 −0.348199
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.c.a.883.1 2
3.2 odd 2 182.2.d.a.155.2 yes 2
12.11 even 2 1456.2.k.a.337.2 2
13.12 even 2 inner 1638.2.c.a.883.2 2
21.2 odd 6 1274.2.n.e.753.2 4
21.5 even 6 1274.2.n.b.753.2 4
21.11 odd 6 1274.2.n.e.961.1 4
21.17 even 6 1274.2.n.b.961.1 4
21.20 even 2 1274.2.d.d.883.2 2
39.5 even 4 2366.2.a.l.1.1 1
39.8 even 4 2366.2.a.c.1.1 1
39.38 odd 2 182.2.d.a.155.1 2
156.155 even 2 1456.2.k.a.337.1 2
273.38 even 6 1274.2.n.b.961.2 4
273.116 odd 6 1274.2.n.e.961.2 4
273.194 even 6 1274.2.n.b.753.1 4
273.233 odd 6 1274.2.n.e.753.1 4
273.272 even 2 1274.2.d.d.883.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.d.a.155.1 2 39.38 odd 2
182.2.d.a.155.2 yes 2 3.2 odd 2
1274.2.d.d.883.1 2 273.272 even 2
1274.2.d.d.883.2 2 21.20 even 2
1274.2.n.b.753.1 4 273.194 even 6
1274.2.n.b.753.2 4 21.5 even 6
1274.2.n.b.961.1 4 21.17 even 6
1274.2.n.b.961.2 4 273.38 even 6
1274.2.n.e.753.1 4 273.233 odd 6
1274.2.n.e.753.2 4 21.2 odd 6
1274.2.n.e.961.1 4 21.11 odd 6
1274.2.n.e.961.2 4 273.116 odd 6
1456.2.k.a.337.1 2 156.155 even 2
1456.2.k.a.337.2 2 12.11 even 2
1638.2.c.a.883.1 2 1.1 even 1 trivial
1638.2.c.a.883.2 2 13.12 even 2 inner
2366.2.a.c.1.1 1 39.8 even 4
2366.2.a.l.1.1 1 39.5 even 4