Properties

Label 1274.2.n.b
Level $1274$
Weight $2$
Character orbit 1274.n
Analytic conductor $10.173$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(753,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.753"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,2,0,0,0,0,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} - \zeta_{12}^{2} q^{3} + \zeta_{12}^{2} q^{4} - 2 \zeta_{12} q^{5} - \zeta_{12}^{3} q^{6} + \zeta_{12}^{3} q^{8} + ( - 2 \zeta_{12}^{2} + 2) q^{9} - 2 \zeta_{12}^{2} q^{10} + (5 \zeta_{12}^{3} - 5 \zeta_{12}) q^{11} + \cdots + 10 \zeta_{12}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{4} + 4 q^{9} - 4 q^{10} + 2 q^{12} + 12 q^{13} - 2 q^{16} - 4 q^{17} - 20 q^{22} - 18 q^{23} - 2 q^{25} + 4 q^{26} - 20 q^{27} - 4 q^{30} + 8 q^{36} - 8 q^{38} - 6 q^{39} + 4 q^{40}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-1\) \(-1 + \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
753.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i −0.500000 + 0.866025i 0.500000 0.866025i 1.73205 1.00000i 1.00000i 0 1.00000i 1.00000 + 1.73205i −1.00000 + 1.73205i
753.2 0.866025 0.500000i −0.500000 + 0.866025i 0.500000 0.866025i −1.73205 + 1.00000i 1.00000i 0 1.00000i 1.00000 + 1.73205i −1.00000 + 1.73205i
961.1 −0.866025 0.500000i −0.500000 0.866025i 0.500000 + 0.866025i 1.73205 + 1.00000i 1.00000i 0 1.00000i 1.00000 1.73205i −1.00000 1.73205i
961.2 0.866025 + 0.500000i −0.500000 0.866025i 0.500000 + 0.866025i −1.73205 1.00000i 1.00000i 0 1.00000i 1.00000 1.73205i −1.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
13.b even 2 1 inner
91.r even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.n.b 4
7.b odd 2 1 1274.2.n.e 4
7.c even 3 1 1274.2.d.d 2
7.c even 3 1 inner 1274.2.n.b 4
7.d odd 6 1 182.2.d.a 2
7.d odd 6 1 1274.2.n.e 4
13.b even 2 1 inner 1274.2.n.b 4
21.g even 6 1 1638.2.c.a 2
28.f even 6 1 1456.2.k.a 2
91.b odd 2 1 1274.2.n.e 4
91.r even 6 1 1274.2.d.d 2
91.r even 6 1 inner 1274.2.n.b 4
91.s odd 6 1 182.2.d.a 2
91.s odd 6 1 1274.2.n.e 4
91.bb even 12 1 2366.2.a.c 1
91.bb even 12 1 2366.2.a.l 1
273.ba even 6 1 1638.2.c.a 2
364.x even 6 1 1456.2.k.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.d.a 2 7.d odd 6 1
182.2.d.a 2 91.s odd 6 1
1274.2.d.d 2 7.c even 3 1
1274.2.d.d 2 91.r even 6 1
1274.2.n.b 4 1.a even 1 1 trivial
1274.2.n.b 4 7.c even 3 1 inner
1274.2.n.b 4 13.b even 2 1 inner
1274.2.n.b 4 91.r even 6 1 inner
1274.2.n.e 4 7.b odd 2 1
1274.2.n.e 4 7.d odd 6 1
1274.2.n.e 4 91.b odd 2 1
1274.2.n.e 4 91.s odd 6 1
1456.2.k.a 2 28.f even 6 1
1456.2.k.a 2 364.x even 6 1
1638.2.c.a 2 21.g even 6 1
1638.2.c.a 2 273.ba even 6 1
2366.2.a.c 1 91.bb even 12 1
2366.2.a.l 1 91.bb even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1274, [\chi])\):

\( T_{3}^{2} + T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} - 4T_{5}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$23$ \( (T^{2} + 9 T + 81)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$37$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$41$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 169 T^{2} + 28561 \) Copy content Toggle raw display
$53$ \( (T^{2} + 14 T + 196)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$61$ \( (T^{2} + 13 T + 169)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$79$ \( (T^{2} - 15 T + 225)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$97$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
show more
show less