Properties

Label 1274.2.n
Level $1274$
Weight $2$
Character orbit 1274.n
Rep. character $\chi_{1274}(753,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $14$
Sturm bound $392$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 14 \)
Sturm bound: \(392\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1274, [\chi])\).

Total New Old
Modular forms 424 96 328
Cusp forms 360 96 264
Eisenstein series 64 0 64

Trace form

\( 96 q + 48 q^{4} - 68 q^{9} + 4 q^{10} - 4 q^{13} - 48 q^{16} + 10 q^{17} + 4 q^{22} - 24 q^{23} + 48 q^{25} + 6 q^{26} + 12 q^{27} - 44 q^{29} + 22 q^{30} - 136 q^{36} + 14 q^{38} - 4 q^{40} + 136 q^{43}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1274, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1274.2.n.a 1274.n 91.r $4$ $10.173$ \(\Q(\zeta_{12})\) None 1274.2.d.a \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}-3\zeta_{12}^{2}q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
1274.2.n.b 1274.n 91.r $4$ $10.173$ \(\Q(\zeta_{12})\) None 182.2.d.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}-\zeta_{12}^{2}q^{3}+\zeta_{12}^{2}q^{4}-2\zeta_{12}q^{5}+\cdots\)
1274.2.n.c 1274.n 91.r $4$ $10.173$ \(\Q(\zeta_{12})\) None 26.2.b.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}-\zeta_{12}^{2}q^{3}+\zeta_{12}^{2}q^{4}+3\zeta_{12}q^{5}+\cdots\)
1274.2.n.d 1274.n 91.r $4$ $10.173$ \(\Q(\zeta_{12})\) None 26.2.b.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{12}q^{2}+\zeta_{12}^{2}q^{3}+\zeta_{12}^{2}q^{4}+3\zeta_{12}q^{5}+\cdots\)
1274.2.n.e 1274.n 91.r $4$ $10.173$ \(\Q(\zeta_{12})\) None 182.2.d.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{12}q^{2}+\zeta_{12}^{2}q^{3}+\zeta_{12}^{2}q^{4}-2\zeta_{12}q^{5}+\cdots\)
1274.2.n.f 1274.n 91.r $4$ $10.173$ \(\Q(\zeta_{12})\) None 182.2.n.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+2\zeta_{12}^{2}q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
1274.2.n.g 1274.n 91.r $4$ $10.173$ \(\Q(\zeta_{12})\) None 1274.2.d.a \(0\) \(6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{3})q^{2}+(3-3\zeta_{12}^{2})q^{3}+\cdots\)
1274.2.n.h 1274.n 91.r $8$ $10.173$ \(\Q(\zeta_{24})\) None 1274.2.d.g \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta_{3}-\beta_1)q^{2}+(\beta_{7}-\beta_{4}+\beta_{2}-1)q^{3}+\cdots\)
1274.2.n.i 1274.n 91.r $8$ $10.173$ \(\Q(\zeta_{24})\) None 1274.2.d.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{24}^{2}q^{2}+(2\zeta_{24}+2\zeta_{24}^{7})q^{3}+\zeta_{24}^{4}q^{4}+\cdots\)
1274.2.n.j 1274.n 91.r $8$ $10.173$ \(\Q(\zeta_{24})\) None 1274.2.d.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{24}^{2}+\zeta_{24}^{6})q^{2}+(\zeta_{24}^{3}-\zeta_{24}^{5}+\cdots)q^{3}+\cdots\)
1274.2.n.k 1274.n 91.r $8$ $10.173$ \(\Q(\zeta_{24})\) None 1274.2.d.g \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta_1 q^{2}+(\beta_{4}+\beta_{2})q^{3}+\beta_{2} q^{4}+\cdots\)
1274.2.n.l 1274.n 91.r $12$ $10.173$ 12.0.\(\cdots\).1 None 182.2.n.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{10}q^{2}+(-1-\beta _{4}+\beta _{7})q^{3}+(1+\cdots)q^{4}+\cdots\)
1274.2.n.m 1274.n 91.r $12$ $10.173$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 182.2.d.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}+\beta _{8})q^{2}+(-\beta _{2}-\beta _{11})q^{3}+\cdots\)
1274.2.n.n 1274.n 91.r $12$ $10.173$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 182.2.d.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{2}-\beta _{11}q^{3}-\beta _{9}q^{4}+(-\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1274, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1274, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(637, [\chi])\)\(^{\oplus 2}\)