Properties

Label 1232.4.a.m.1.2
Level $1232$
Weight $4$
Character 1232.1
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1232,4,Mod(1,1232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1232.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1232, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1232.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{3} +6.48528 q^{5} -7.00000 q^{7} -23.0000 q^{9} +11.0000 q^{11} -45.6569 q^{13} +12.9706 q^{15} -63.6812 q^{17} +39.5147 q^{19} -14.0000 q^{21} +78.9117 q^{23} -82.9411 q^{25} -100.000 q^{27} +256.558 q^{29} +170.818 q^{31} +22.0000 q^{33} -45.3970 q^{35} -223.941 q^{37} -91.3137 q^{39} +307.730 q^{41} +316.000 q^{43} -149.161 q^{45} +576.357 q^{47} +49.0000 q^{49} -127.362 q^{51} +173.951 q^{53} +71.3381 q^{55} +79.0294 q^{57} +82.6375 q^{59} -63.1472 q^{61} +161.000 q^{63} -296.098 q^{65} +349.726 q^{67} +157.823 q^{69} +119.050 q^{71} +573.318 q^{73} -165.882 q^{75} -77.0000 q^{77} -568.362 q^{79} +421.000 q^{81} -510.447 q^{83} -412.991 q^{85} +513.117 q^{87} +1090.10 q^{89} +319.598 q^{91} +341.637 q^{93} +256.264 q^{95} +396.530 q^{97} -253.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 4 q^{5} - 14 q^{7} - 46 q^{9} + 22 q^{11} - 80 q^{13} - 8 q^{15} + 48 q^{17} + 96 q^{19} - 28 q^{21} + 56 q^{23} - 98 q^{25} - 200 q^{27} + 4 q^{29} - 60 q^{31} + 44 q^{33} + 28 q^{35} - 380 q^{37}+ \cdots - 506 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) 0 0
\(5\) 6.48528 0.580061 0.290031 0.957017i \(-0.406335\pi\)
0.290031 + 0.957017i \(0.406335\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −45.6569 −0.974072 −0.487036 0.873382i \(-0.661922\pi\)
−0.487036 + 0.873382i \(0.661922\pi\)
\(14\) 0 0
\(15\) 12.9706 0.223266
\(16\) 0 0
\(17\) −63.6812 −0.908528 −0.454264 0.890867i \(-0.650098\pi\)
−0.454264 + 0.890867i \(0.650098\pi\)
\(18\) 0 0
\(19\) 39.5147 0.477121 0.238560 0.971128i \(-0.423324\pi\)
0.238560 + 0.971128i \(0.423324\pi\)
\(20\) 0 0
\(21\) −14.0000 −0.145479
\(22\) 0 0
\(23\) 78.9117 0.715401 0.357701 0.933836i \(-0.383561\pi\)
0.357701 + 0.933836i \(0.383561\pi\)
\(24\) 0 0
\(25\) −82.9411 −0.663529
\(26\) 0 0
\(27\) −100.000 −0.712778
\(28\) 0 0
\(29\) 256.558 1.64282 0.821409 0.570340i \(-0.193189\pi\)
0.821409 + 0.570340i \(0.193189\pi\)
\(30\) 0 0
\(31\) 170.818 0.989673 0.494837 0.868986i \(-0.335228\pi\)
0.494837 + 0.868986i \(0.335228\pi\)
\(32\) 0 0
\(33\) 22.0000 0.116052
\(34\) 0 0
\(35\) −45.3970 −0.219243
\(36\) 0 0
\(37\) −223.941 −0.995019 −0.497509 0.867459i \(-0.665752\pi\)
−0.497509 + 0.867459i \(0.665752\pi\)
\(38\) 0 0
\(39\) −91.3137 −0.374920
\(40\) 0 0
\(41\) 307.730 1.17218 0.586090 0.810246i \(-0.300667\pi\)
0.586090 + 0.810246i \(0.300667\pi\)
\(42\) 0 0
\(43\) 316.000 1.12069 0.560344 0.828260i \(-0.310669\pi\)
0.560344 + 0.828260i \(0.310669\pi\)
\(44\) 0 0
\(45\) −149.161 −0.494126
\(46\) 0 0
\(47\) 576.357 1.78873 0.894366 0.447337i \(-0.147627\pi\)
0.894366 + 0.447337i \(0.147627\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −127.362 −0.349692
\(52\) 0 0
\(53\) 173.951 0.450831 0.225415 0.974263i \(-0.427626\pi\)
0.225415 + 0.974263i \(0.427626\pi\)
\(54\) 0 0
\(55\) 71.3381 0.174895
\(56\) 0 0
\(57\) 79.0294 0.183644
\(58\) 0 0
\(59\) 82.6375 0.182347 0.0911736 0.995835i \(-0.470938\pi\)
0.0911736 + 0.995835i \(0.470938\pi\)
\(60\) 0 0
\(61\) −63.1472 −0.132544 −0.0662719 0.997802i \(-0.521110\pi\)
−0.0662719 + 0.997802i \(0.521110\pi\)
\(62\) 0 0
\(63\) 161.000 0.321970
\(64\) 0 0
\(65\) −296.098 −0.565021
\(66\) 0 0
\(67\) 349.726 0.637699 0.318849 0.947805i \(-0.396704\pi\)
0.318849 + 0.947805i \(0.396704\pi\)
\(68\) 0 0
\(69\) 157.823 0.275358
\(70\) 0 0
\(71\) 119.050 0.198994 0.0994971 0.995038i \(-0.468277\pi\)
0.0994971 + 0.995038i \(0.468277\pi\)
\(72\) 0 0
\(73\) 573.318 0.919203 0.459601 0.888125i \(-0.347992\pi\)
0.459601 + 0.888125i \(0.347992\pi\)
\(74\) 0 0
\(75\) −165.882 −0.255392
\(76\) 0 0
\(77\) −77.0000 −0.113961
\(78\) 0 0
\(79\) −568.362 −0.809439 −0.404719 0.914441i \(-0.632631\pi\)
−0.404719 + 0.914441i \(0.632631\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) 0 0
\(83\) −510.447 −0.675046 −0.337523 0.941317i \(-0.609589\pi\)
−0.337523 + 0.941317i \(0.609589\pi\)
\(84\) 0 0
\(85\) −412.991 −0.527002
\(86\) 0 0
\(87\) 513.117 0.632321
\(88\) 0 0
\(89\) 1090.10 1.29832 0.649158 0.760654i \(-0.275121\pi\)
0.649158 + 0.760654i \(0.275121\pi\)
\(90\) 0 0
\(91\) 319.598 0.368165
\(92\) 0 0
\(93\) 341.637 0.380925
\(94\) 0 0
\(95\) 256.264 0.276759
\(96\) 0 0
\(97\) 396.530 0.415067 0.207534 0.978228i \(-0.433456\pi\)
0.207534 + 0.978228i \(0.433456\pi\)
\(98\) 0 0
\(99\) −253.000 −0.256843
\(100\) 0 0
\(101\) 825.844 0.813609 0.406804 0.913515i \(-0.366643\pi\)
0.406804 + 0.913515i \(0.366643\pi\)
\(102\) 0 0
\(103\) −1246.19 −1.19214 −0.596071 0.802932i \(-0.703272\pi\)
−0.596071 + 0.802932i \(0.703272\pi\)
\(104\) 0 0
\(105\) −90.7939 −0.0843865
\(106\) 0 0
\(107\) 1368.24 1.23620 0.618099 0.786100i \(-0.287903\pi\)
0.618099 + 0.786100i \(0.287903\pi\)
\(108\) 0 0
\(109\) −1312.80 −1.15361 −0.576806 0.816881i \(-0.695701\pi\)
−0.576806 + 0.816881i \(0.695701\pi\)
\(110\) 0 0
\(111\) −447.882 −0.382983
\(112\) 0 0
\(113\) −312.607 −0.260244 −0.130122 0.991498i \(-0.541537\pi\)
−0.130122 + 0.991498i \(0.541537\pi\)
\(114\) 0 0
\(115\) 511.765 0.414976
\(116\) 0 0
\(117\) 1050.11 0.829765
\(118\) 0 0
\(119\) 445.769 0.343391
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 615.460 0.451172
\(124\) 0 0
\(125\) −1348.56 −0.964949
\(126\) 0 0
\(127\) 1592.65 1.11280 0.556398 0.830916i \(-0.312183\pi\)
0.556398 + 0.830916i \(0.312183\pi\)
\(128\) 0 0
\(129\) 632.000 0.431353
\(130\) 0 0
\(131\) −1291.43 −0.861321 −0.430661 0.902514i \(-0.641719\pi\)
−0.430661 + 0.902514i \(0.641719\pi\)
\(132\) 0 0
\(133\) −276.603 −0.180335
\(134\) 0 0
\(135\) −648.528 −0.413455
\(136\) 0 0
\(137\) −2107.76 −1.31444 −0.657220 0.753699i \(-0.728268\pi\)
−0.657220 + 0.753699i \(0.728268\pi\)
\(138\) 0 0
\(139\) −2318.30 −1.41464 −0.707321 0.706892i \(-0.750097\pi\)
−0.707321 + 0.706892i \(0.750097\pi\)
\(140\) 0 0
\(141\) 1152.71 0.688483
\(142\) 0 0
\(143\) −502.225 −0.293694
\(144\) 0 0
\(145\) 1663.85 0.952935
\(146\) 0 0
\(147\) 98.0000 0.0549857
\(148\) 0 0
\(149\) 602.061 0.331025 0.165513 0.986208i \(-0.447072\pi\)
0.165513 + 0.986208i \(0.447072\pi\)
\(150\) 0 0
\(151\) 1928.20 1.03917 0.519584 0.854420i \(-0.326087\pi\)
0.519584 + 0.854420i \(0.326087\pi\)
\(152\) 0 0
\(153\) 1464.67 0.773931
\(154\) 0 0
\(155\) 1107.80 0.574071
\(156\) 0 0
\(157\) 2476.45 1.25887 0.629434 0.777054i \(-0.283287\pi\)
0.629434 + 0.777054i \(0.283287\pi\)
\(158\) 0 0
\(159\) 347.902 0.173525
\(160\) 0 0
\(161\) −552.382 −0.270396
\(162\) 0 0
\(163\) 1063.06 0.510829 0.255415 0.966832i \(-0.417788\pi\)
0.255415 + 0.966832i \(0.417788\pi\)
\(164\) 0 0
\(165\) 142.676 0.0673171
\(166\) 0 0
\(167\) 3720.65 1.72403 0.862015 0.506883i \(-0.169203\pi\)
0.862015 + 0.506883i \(0.169203\pi\)
\(168\) 0 0
\(169\) −112.452 −0.0511842
\(170\) 0 0
\(171\) −908.839 −0.406436
\(172\) 0 0
\(173\) −909.421 −0.399665 −0.199832 0.979830i \(-0.564040\pi\)
−0.199832 + 0.979830i \(0.564040\pi\)
\(174\) 0 0
\(175\) 580.588 0.250790
\(176\) 0 0
\(177\) 165.275 0.0701855
\(178\) 0 0
\(179\) −1349.80 −0.563626 −0.281813 0.959469i \(-0.590936\pi\)
−0.281813 + 0.959469i \(0.590936\pi\)
\(180\) 0 0
\(181\) −4559.47 −1.87239 −0.936196 0.351479i \(-0.885679\pi\)
−0.936196 + 0.351479i \(0.885679\pi\)
\(182\) 0 0
\(183\) −126.294 −0.0510161
\(184\) 0 0
\(185\) −1452.32 −0.577172
\(186\) 0 0
\(187\) −700.494 −0.273931
\(188\) 0 0
\(189\) 700.000 0.269405
\(190\) 0 0
\(191\) 2238.60 0.848061 0.424031 0.905648i \(-0.360615\pi\)
0.424031 + 0.905648i \(0.360615\pi\)
\(192\) 0 0
\(193\) 2966.36 1.10634 0.553169 0.833069i \(-0.313418\pi\)
0.553169 + 0.833069i \(0.313418\pi\)
\(194\) 0 0
\(195\) −592.195 −0.217477
\(196\) 0 0
\(197\) 3982.18 1.44020 0.720099 0.693872i \(-0.244097\pi\)
0.720099 + 0.693872i \(0.244097\pi\)
\(198\) 0 0
\(199\) −1895.03 −0.675052 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(200\) 0 0
\(201\) 699.452 0.245450
\(202\) 0 0
\(203\) −1795.91 −0.620927
\(204\) 0 0
\(205\) 1995.72 0.679936
\(206\) 0 0
\(207\) −1814.97 −0.609416
\(208\) 0 0
\(209\) 434.662 0.143857
\(210\) 0 0
\(211\) 1506.79 0.491621 0.245810 0.969318i \(-0.420946\pi\)
0.245810 + 0.969318i \(0.420946\pi\)
\(212\) 0 0
\(213\) 238.099 0.0765929
\(214\) 0 0
\(215\) 2049.35 0.650067
\(216\) 0 0
\(217\) −1195.73 −0.374061
\(218\) 0 0
\(219\) 1146.64 0.353801
\(220\) 0 0
\(221\) 2907.49 0.884971
\(222\) 0 0
\(223\) −4289.51 −1.28810 −0.644051 0.764983i \(-0.722748\pi\)
−0.644051 + 0.764983i \(0.722748\pi\)
\(224\) 0 0
\(225\) 1907.65 0.565228
\(226\) 0 0
\(227\) 2848.72 0.832934 0.416467 0.909151i \(-0.363268\pi\)
0.416467 + 0.909151i \(0.363268\pi\)
\(228\) 0 0
\(229\) 3273.70 0.944681 0.472341 0.881416i \(-0.343409\pi\)
0.472341 + 0.881416i \(0.343409\pi\)
\(230\) 0 0
\(231\) −154.000 −0.0438634
\(232\) 0 0
\(233\) 4773.81 1.34224 0.671122 0.741347i \(-0.265813\pi\)
0.671122 + 0.741347i \(0.265813\pi\)
\(234\) 0 0
\(235\) 3737.84 1.03757
\(236\) 0 0
\(237\) −1136.72 −0.311553
\(238\) 0 0
\(239\) −1976.50 −0.534934 −0.267467 0.963567i \(-0.586187\pi\)
−0.267467 + 0.963567i \(0.586187\pi\)
\(240\) 0 0
\(241\) −2236.73 −0.597845 −0.298923 0.954277i \(-0.596627\pi\)
−0.298923 + 0.954277i \(0.596627\pi\)
\(242\) 0 0
\(243\) 3542.00 0.935059
\(244\) 0 0
\(245\) 317.779 0.0828659
\(246\) 0 0
\(247\) −1804.12 −0.464750
\(248\) 0 0
\(249\) −1020.89 −0.259825
\(250\) 0 0
\(251\) 6364.56 1.60051 0.800254 0.599662i \(-0.204698\pi\)
0.800254 + 0.599662i \(0.204698\pi\)
\(252\) 0 0
\(253\) 868.029 0.215702
\(254\) 0 0
\(255\) −825.982 −0.202843
\(256\) 0 0
\(257\) 7947.46 1.92898 0.964492 0.264110i \(-0.0850783\pi\)
0.964492 + 0.264110i \(0.0850783\pi\)
\(258\) 0 0
\(259\) 1567.59 0.376082
\(260\) 0 0
\(261\) −5900.84 −1.39944
\(262\) 0 0
\(263\) 7330.82 1.71877 0.859387 0.511325i \(-0.170845\pi\)
0.859387 + 0.511325i \(0.170845\pi\)
\(264\) 0 0
\(265\) 1128.12 0.261510
\(266\) 0 0
\(267\) 2180.20 0.499722
\(268\) 0 0
\(269\) −3504.02 −0.794216 −0.397108 0.917772i \(-0.629986\pi\)
−0.397108 + 0.917772i \(0.629986\pi\)
\(270\) 0 0
\(271\) −36.4996 −0.00818152 −0.00409076 0.999992i \(-0.501302\pi\)
−0.00409076 + 0.999992i \(0.501302\pi\)
\(272\) 0 0
\(273\) 639.196 0.141707
\(274\) 0 0
\(275\) −912.352 −0.200062
\(276\) 0 0
\(277\) −4965.14 −1.07699 −0.538495 0.842629i \(-0.681007\pi\)
−0.538495 + 0.842629i \(0.681007\pi\)
\(278\) 0 0
\(279\) −3928.82 −0.843055
\(280\) 0 0
\(281\) −4560.42 −0.968156 −0.484078 0.875025i \(-0.660845\pi\)
−0.484078 + 0.875025i \(0.660845\pi\)
\(282\) 0 0
\(283\) 917.744 0.192771 0.0963855 0.995344i \(-0.469272\pi\)
0.0963855 + 0.995344i \(0.469272\pi\)
\(284\) 0 0
\(285\) 512.528 0.106525
\(286\) 0 0
\(287\) −2154.11 −0.443042
\(288\) 0 0
\(289\) −857.700 −0.174578
\(290\) 0 0
\(291\) 793.060 0.159759
\(292\) 0 0
\(293\) −3983.97 −0.794355 −0.397177 0.917742i \(-0.630010\pi\)
−0.397177 + 0.917742i \(0.630010\pi\)
\(294\) 0 0
\(295\) 535.928 0.105773
\(296\) 0 0
\(297\) −1100.00 −0.214911
\(298\) 0 0
\(299\) −3602.86 −0.696852
\(300\) 0 0
\(301\) −2212.00 −0.423580
\(302\) 0 0
\(303\) 1651.69 0.313158
\(304\) 0 0
\(305\) −409.527 −0.0768835
\(306\) 0 0
\(307\) 7992.52 1.48585 0.742927 0.669372i \(-0.233437\pi\)
0.742927 + 0.669372i \(0.233437\pi\)
\(308\) 0 0
\(309\) −2492.38 −0.458856
\(310\) 0 0
\(311\) −7217.65 −1.31600 −0.657999 0.753019i \(-0.728597\pi\)
−0.657999 + 0.753019i \(0.728597\pi\)
\(312\) 0 0
\(313\) −8415.62 −1.51974 −0.759871 0.650074i \(-0.774738\pi\)
−0.759871 + 0.650074i \(0.774738\pi\)
\(314\) 0 0
\(315\) 1044.13 0.186762
\(316\) 0 0
\(317\) 632.365 0.112041 0.0560207 0.998430i \(-0.482159\pi\)
0.0560207 + 0.998430i \(0.482159\pi\)
\(318\) 0 0
\(319\) 2822.14 0.495328
\(320\) 0 0
\(321\) 2736.49 0.475813
\(322\) 0 0
\(323\) −2516.35 −0.433478
\(324\) 0 0
\(325\) 3786.83 0.646325
\(326\) 0 0
\(327\) −2625.60 −0.444025
\(328\) 0 0
\(329\) −4034.50 −0.676077
\(330\) 0 0
\(331\) −425.759 −0.0707004 −0.0353502 0.999375i \(-0.511255\pi\)
−0.0353502 + 0.999375i \(0.511255\pi\)
\(332\) 0 0
\(333\) 5150.65 0.847609
\(334\) 0 0
\(335\) 2268.07 0.369904
\(336\) 0 0
\(337\) 1369.56 0.221379 0.110689 0.993855i \(-0.464694\pi\)
0.110689 + 0.993855i \(0.464694\pi\)
\(338\) 0 0
\(339\) −625.214 −0.100168
\(340\) 0 0
\(341\) 1879.00 0.298398
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 1023.53 0.159724
\(346\) 0 0
\(347\) 5531.76 0.855794 0.427897 0.903827i \(-0.359255\pi\)
0.427897 + 0.903827i \(0.359255\pi\)
\(348\) 0 0
\(349\) 10171.7 1.56011 0.780055 0.625711i \(-0.215191\pi\)
0.780055 + 0.625711i \(0.215191\pi\)
\(350\) 0 0
\(351\) 4565.69 0.694297
\(352\) 0 0
\(353\) 9626.38 1.45145 0.725723 0.687987i \(-0.241505\pi\)
0.725723 + 0.687987i \(0.241505\pi\)
\(354\) 0 0
\(355\) 772.070 0.115429
\(356\) 0 0
\(357\) 891.537 0.132171
\(358\) 0 0
\(359\) −8491.00 −1.24829 −0.624147 0.781307i \(-0.714553\pi\)
−0.624147 + 0.781307i \(0.714553\pi\)
\(360\) 0 0
\(361\) −5297.59 −0.772356
\(362\) 0 0
\(363\) 242.000 0.0349909
\(364\) 0 0
\(365\) 3718.13 0.533194
\(366\) 0 0
\(367\) −2948.02 −0.419307 −0.209653 0.977776i \(-0.567234\pi\)
−0.209653 + 0.977776i \(0.567234\pi\)
\(368\) 0 0
\(369\) −7077.79 −0.998523
\(370\) 0 0
\(371\) −1217.66 −0.170398
\(372\) 0 0
\(373\) −8295.57 −1.15155 −0.575775 0.817608i \(-0.695300\pi\)
−0.575775 + 0.817608i \(0.695300\pi\)
\(374\) 0 0
\(375\) −2697.11 −0.371409
\(376\) 0 0
\(377\) −11713.7 −1.60022
\(378\) 0 0
\(379\) 12137.3 1.64499 0.822495 0.568773i \(-0.192582\pi\)
0.822495 + 0.568773i \(0.192582\pi\)
\(380\) 0 0
\(381\) 3185.31 0.428316
\(382\) 0 0
\(383\) 9053.44 1.20786 0.603929 0.797038i \(-0.293601\pi\)
0.603929 + 0.797038i \(0.293601\pi\)
\(384\) 0 0
\(385\) −499.367 −0.0661041
\(386\) 0 0
\(387\) −7268.00 −0.954659
\(388\) 0 0
\(389\) −1130.94 −0.147406 −0.0737030 0.997280i \(-0.523482\pi\)
−0.0737030 + 0.997280i \(0.523482\pi\)
\(390\) 0 0
\(391\) −5025.19 −0.649962
\(392\) 0 0
\(393\) −2582.87 −0.331523
\(394\) 0 0
\(395\) −3685.98 −0.469524
\(396\) 0 0
\(397\) −13113.4 −1.65779 −0.828896 0.559403i \(-0.811030\pi\)
−0.828896 + 0.559403i \(0.811030\pi\)
\(398\) 0 0
\(399\) −553.206 −0.0694109
\(400\) 0 0
\(401\) 12805.1 1.59465 0.797327 0.603548i \(-0.206247\pi\)
0.797327 + 0.603548i \(0.206247\pi\)
\(402\) 0 0
\(403\) −7799.03 −0.964013
\(404\) 0 0
\(405\) 2730.30 0.334987
\(406\) 0 0
\(407\) −2463.35 −0.300009
\(408\) 0 0
\(409\) 9184.62 1.11039 0.555196 0.831720i \(-0.312643\pi\)
0.555196 + 0.831720i \(0.312643\pi\)
\(410\) 0 0
\(411\) −4215.53 −0.505928
\(412\) 0 0
\(413\) −578.463 −0.0689208
\(414\) 0 0
\(415\) −3310.39 −0.391568
\(416\) 0 0
\(417\) −4636.59 −0.544496
\(418\) 0 0
\(419\) 6249.25 0.728629 0.364315 0.931276i \(-0.381303\pi\)
0.364315 + 0.931276i \(0.381303\pi\)
\(420\) 0 0
\(421\) 4703.21 0.544467 0.272233 0.962231i \(-0.412238\pi\)
0.272233 + 0.962231i \(0.412238\pi\)
\(422\) 0 0
\(423\) −13256.2 −1.52373
\(424\) 0 0
\(425\) 5281.79 0.602834
\(426\) 0 0
\(427\) 442.030 0.0500968
\(428\) 0 0
\(429\) −1004.45 −0.113043
\(430\) 0 0
\(431\) −7554.41 −0.844276 −0.422138 0.906532i \(-0.638720\pi\)
−0.422138 + 0.906532i \(0.638720\pi\)
\(432\) 0 0
\(433\) 2631.98 0.292113 0.146057 0.989276i \(-0.453342\pi\)
0.146057 + 0.989276i \(0.453342\pi\)
\(434\) 0 0
\(435\) 3327.71 0.366785
\(436\) 0 0
\(437\) 3118.17 0.341333
\(438\) 0 0
\(439\) −12551.2 −1.36455 −0.682274 0.731097i \(-0.739009\pi\)
−0.682274 + 0.731097i \(0.739009\pi\)
\(440\) 0 0
\(441\) −1127.00 −0.121693
\(442\) 0 0
\(443\) −11226.2 −1.20400 −0.602000 0.798496i \(-0.705629\pi\)
−0.602000 + 0.798496i \(0.705629\pi\)
\(444\) 0 0
\(445\) 7069.59 0.753103
\(446\) 0 0
\(447\) 1204.12 0.127412
\(448\) 0 0
\(449\) −11177.4 −1.17482 −0.587410 0.809289i \(-0.699853\pi\)
−0.587410 + 0.809289i \(0.699853\pi\)
\(450\) 0 0
\(451\) 3385.03 0.353425
\(452\) 0 0
\(453\) 3856.39 0.399976
\(454\) 0 0
\(455\) 2072.68 0.213558
\(456\) 0 0
\(457\) 7040.35 0.720643 0.360321 0.932828i \(-0.382667\pi\)
0.360321 + 0.932828i \(0.382667\pi\)
\(458\) 0 0
\(459\) 6368.12 0.647579
\(460\) 0 0
\(461\) −1483.35 −0.149862 −0.0749312 0.997189i \(-0.523874\pi\)
−0.0749312 + 0.997189i \(0.523874\pi\)
\(462\) 0 0
\(463\) 3106.19 0.311786 0.155893 0.987774i \(-0.450174\pi\)
0.155893 + 0.987774i \(0.450174\pi\)
\(464\) 0 0
\(465\) 2215.61 0.220960
\(466\) 0 0
\(467\) 9605.04 0.951752 0.475876 0.879512i \(-0.342131\pi\)
0.475876 + 0.879512i \(0.342131\pi\)
\(468\) 0 0
\(469\) −2448.08 −0.241027
\(470\) 0 0
\(471\) 4952.90 0.484539
\(472\) 0 0
\(473\) 3476.00 0.337900
\(474\) 0 0
\(475\) −3277.40 −0.316584
\(476\) 0 0
\(477\) −4000.88 −0.384041
\(478\) 0 0
\(479\) −9118.53 −0.869805 −0.434902 0.900478i \(-0.643217\pi\)
−0.434902 + 0.900478i \(0.643217\pi\)
\(480\) 0 0
\(481\) 10224.4 0.969220
\(482\) 0 0
\(483\) −1104.76 −0.104076
\(484\) 0 0
\(485\) 2571.61 0.240764
\(486\) 0 0
\(487\) −14045.1 −1.30687 −0.653434 0.756983i \(-0.726672\pi\)
−0.653434 + 0.756983i \(0.726672\pi\)
\(488\) 0 0
\(489\) 2126.12 0.196618
\(490\) 0 0
\(491\) 1034.26 0.0950620 0.0475310 0.998870i \(-0.484865\pi\)
0.0475310 + 0.998870i \(0.484865\pi\)
\(492\) 0 0
\(493\) −16338.0 −1.49255
\(494\) 0 0
\(495\) −1640.78 −0.148985
\(496\) 0 0
\(497\) −833.347 −0.0752128
\(498\) 0 0
\(499\) 14332.3 1.28577 0.642886 0.765962i \(-0.277737\pi\)
0.642886 + 0.765962i \(0.277737\pi\)
\(500\) 0 0
\(501\) 7441.31 0.663579
\(502\) 0 0
\(503\) 5007.72 0.443903 0.221951 0.975058i \(-0.428757\pi\)
0.221951 + 0.975058i \(0.428757\pi\)
\(504\) 0 0
\(505\) 5355.83 0.471943
\(506\) 0 0
\(507\) −224.903 −0.0197008
\(508\) 0 0
\(509\) −9234.40 −0.804140 −0.402070 0.915609i \(-0.631709\pi\)
−0.402070 + 0.915609i \(0.631709\pi\)
\(510\) 0 0
\(511\) −4013.23 −0.347426
\(512\) 0 0
\(513\) −3951.47 −0.340081
\(514\) 0 0
\(515\) −8081.89 −0.691516
\(516\) 0 0
\(517\) 6339.93 0.539323
\(518\) 0 0
\(519\) −1818.84 −0.153831
\(520\) 0 0
\(521\) −5141.26 −0.432328 −0.216164 0.976357i \(-0.569355\pi\)
−0.216164 + 0.976357i \(0.569355\pi\)
\(522\) 0 0
\(523\) 19766.3 1.65262 0.826308 0.563218i \(-0.190437\pi\)
0.826308 + 0.563218i \(0.190437\pi\)
\(524\) 0 0
\(525\) 1161.18 0.0965293
\(526\) 0 0
\(527\) −10877.9 −0.899146
\(528\) 0 0
\(529\) −5939.95 −0.488201
\(530\) 0 0
\(531\) −1900.66 −0.155333
\(532\) 0 0
\(533\) −14050.0 −1.14179
\(534\) 0 0
\(535\) 8873.45 0.717070
\(536\) 0 0
\(537\) −2699.61 −0.216940
\(538\) 0 0
\(539\) 539.000 0.0430730
\(540\) 0 0
\(541\) −16805.9 −1.33556 −0.667782 0.744356i \(-0.732756\pi\)
−0.667782 + 0.744356i \(0.732756\pi\)
\(542\) 0 0
\(543\) −9118.95 −0.720684
\(544\) 0 0
\(545\) −8513.89 −0.669165
\(546\) 0 0
\(547\) −16284.0 −1.27286 −0.636428 0.771336i \(-0.719589\pi\)
−0.636428 + 0.771336i \(0.719589\pi\)
\(548\) 0 0
\(549\) 1452.39 0.112908
\(550\) 0 0
\(551\) 10137.8 0.783823
\(552\) 0 0
\(553\) 3978.53 0.305939
\(554\) 0 0
\(555\) −2904.64 −0.222154
\(556\) 0 0
\(557\) −13972.6 −1.06291 −0.531454 0.847087i \(-0.678354\pi\)
−0.531454 + 0.847087i \(0.678354\pi\)
\(558\) 0 0
\(559\) −14427.6 −1.09163
\(560\) 0 0
\(561\) −1400.99 −0.105436
\(562\) 0 0
\(563\) −6396.33 −0.478816 −0.239408 0.970919i \(-0.576953\pi\)
−0.239408 + 0.970919i \(0.576953\pi\)
\(564\) 0 0
\(565\) −2027.35 −0.150958
\(566\) 0 0
\(567\) −2947.00 −0.218276
\(568\) 0 0
\(569\) −15320.3 −1.12876 −0.564378 0.825517i \(-0.690884\pi\)
−0.564378 + 0.825517i \(0.690884\pi\)
\(570\) 0 0
\(571\) 14347.1 1.05150 0.525750 0.850639i \(-0.323785\pi\)
0.525750 + 0.850639i \(0.323785\pi\)
\(572\) 0 0
\(573\) 4477.21 0.326419
\(574\) 0 0
\(575\) −6545.02 −0.474689
\(576\) 0 0
\(577\) −19882.3 −1.43451 −0.717256 0.696810i \(-0.754602\pi\)
−0.717256 + 0.696810i \(0.754602\pi\)
\(578\) 0 0
\(579\) 5932.72 0.425829
\(580\) 0 0
\(581\) 3573.13 0.255143
\(582\) 0 0
\(583\) 1913.46 0.135931
\(584\) 0 0
\(585\) 6810.24 0.481314
\(586\) 0 0
\(587\) −17868.5 −1.25641 −0.628204 0.778048i \(-0.716210\pi\)
−0.628204 + 0.778048i \(0.716210\pi\)
\(588\) 0 0
\(589\) 6749.84 0.472194
\(590\) 0 0
\(591\) 7964.37 0.554332
\(592\) 0 0
\(593\) 24594.0 1.70312 0.851562 0.524253i \(-0.175656\pi\)
0.851562 + 0.524253i \(0.175656\pi\)
\(594\) 0 0
\(595\) 2890.94 0.199188
\(596\) 0 0
\(597\) −3790.07 −0.259828
\(598\) 0 0
\(599\) −13645.6 −0.930789 −0.465394 0.885103i \(-0.654087\pi\)
−0.465394 + 0.885103i \(0.654087\pi\)
\(600\) 0 0
\(601\) −23143.9 −1.57081 −0.785407 0.618980i \(-0.787546\pi\)
−0.785407 + 0.618980i \(0.787546\pi\)
\(602\) 0 0
\(603\) −8043.69 −0.543225
\(604\) 0 0
\(605\) 784.719 0.0527328
\(606\) 0 0
\(607\) 11968.7 0.800321 0.400160 0.916445i \(-0.368954\pi\)
0.400160 + 0.916445i \(0.368954\pi\)
\(608\) 0 0
\(609\) −3591.82 −0.238995
\(610\) 0 0
\(611\) −26314.7 −1.74235
\(612\) 0 0
\(613\) 7079.21 0.466438 0.233219 0.972424i \(-0.425074\pi\)
0.233219 + 0.972424i \(0.425074\pi\)
\(614\) 0 0
\(615\) 3991.43 0.261707
\(616\) 0 0
\(617\) −24592.0 −1.60460 −0.802300 0.596921i \(-0.796390\pi\)
−0.802300 + 0.596921i \(0.796390\pi\)
\(618\) 0 0
\(619\) 5460.23 0.354548 0.177274 0.984162i \(-0.443272\pi\)
0.177274 + 0.984162i \(0.443272\pi\)
\(620\) 0 0
\(621\) −7891.17 −0.509922
\(622\) 0 0
\(623\) −7630.68 −0.490717
\(624\) 0 0
\(625\) 1621.87 0.103800
\(626\) 0 0
\(627\) 869.324 0.0553707
\(628\) 0 0
\(629\) 14260.8 0.904002
\(630\) 0 0
\(631\) 23358.4 1.47367 0.736833 0.676075i \(-0.236320\pi\)
0.736833 + 0.676075i \(0.236320\pi\)
\(632\) 0 0
\(633\) 3013.59 0.189225
\(634\) 0 0
\(635\) 10328.8 0.645490
\(636\) 0 0
\(637\) −2237.19 −0.139153
\(638\) 0 0
\(639\) −2738.14 −0.169514
\(640\) 0 0
\(641\) 9328.68 0.574822 0.287411 0.957807i \(-0.407205\pi\)
0.287411 + 0.957807i \(0.407205\pi\)
\(642\) 0 0
\(643\) 267.859 0.0164282 0.00821409 0.999966i \(-0.497385\pi\)
0.00821409 + 0.999966i \(0.497385\pi\)
\(644\) 0 0
\(645\) 4098.70 0.250211
\(646\) 0 0
\(647\) −11518.0 −0.699877 −0.349939 0.936773i \(-0.613798\pi\)
−0.349939 + 0.936773i \(0.613798\pi\)
\(648\) 0 0
\(649\) 909.013 0.0549798
\(650\) 0 0
\(651\) −2391.46 −0.143976
\(652\) 0 0
\(653\) −12565.0 −0.752994 −0.376497 0.926418i \(-0.622871\pi\)
−0.376497 + 0.926418i \(0.622871\pi\)
\(654\) 0 0
\(655\) −8375.31 −0.499619
\(656\) 0 0
\(657\) −13186.3 −0.783024
\(658\) 0 0
\(659\) 4020.26 0.237643 0.118822 0.992916i \(-0.462088\pi\)
0.118822 + 0.992916i \(0.462088\pi\)
\(660\) 0 0
\(661\) −2080.20 −0.122406 −0.0612031 0.998125i \(-0.519494\pi\)
−0.0612031 + 0.998125i \(0.519494\pi\)
\(662\) 0 0
\(663\) 5814.97 0.340626
\(664\) 0 0
\(665\) −1793.85 −0.104605
\(666\) 0 0
\(667\) 20245.5 1.17527
\(668\) 0 0
\(669\) −8579.02 −0.495791
\(670\) 0 0
\(671\) −694.619 −0.0399634
\(672\) 0 0
\(673\) −17535.3 −1.00436 −0.502182 0.864762i \(-0.667469\pi\)
−0.502182 + 0.864762i \(0.667469\pi\)
\(674\) 0 0
\(675\) 8294.11 0.472949
\(676\) 0 0
\(677\) 12560.8 0.713074 0.356537 0.934281i \(-0.383957\pi\)
0.356537 + 0.934281i \(0.383957\pi\)
\(678\) 0 0
\(679\) −2775.71 −0.156881
\(680\) 0 0
\(681\) 5697.43 0.320596
\(682\) 0 0
\(683\) 4961.51 0.277961 0.138980 0.990295i \(-0.455618\pi\)
0.138980 + 0.990295i \(0.455618\pi\)
\(684\) 0 0
\(685\) −13669.4 −0.762456
\(686\) 0 0
\(687\) 6547.40 0.363608
\(688\) 0 0
\(689\) −7942.07 −0.439142
\(690\) 0 0
\(691\) 15429.4 0.849441 0.424720 0.905325i \(-0.360372\pi\)
0.424720 + 0.905325i \(0.360372\pi\)
\(692\) 0 0
\(693\) 1771.00 0.0970775
\(694\) 0 0
\(695\) −15034.8 −0.820579
\(696\) 0 0
\(697\) −19596.6 −1.06496
\(698\) 0 0
\(699\) 9547.62 0.516630
\(700\) 0 0
\(701\) 20446.3 1.10163 0.550817 0.834626i \(-0.314316\pi\)
0.550817 + 0.834626i \(0.314316\pi\)
\(702\) 0 0
\(703\) −8848.97 −0.474744
\(704\) 0 0
\(705\) 7475.68 0.399362
\(706\) 0 0
\(707\) −5780.91 −0.307515
\(708\) 0 0
\(709\) −28090.1 −1.48794 −0.743968 0.668216i \(-0.767058\pi\)
−0.743968 + 0.668216i \(0.767058\pi\)
\(710\) 0 0
\(711\) 13072.3 0.689522
\(712\) 0 0
\(713\) 13479.6 0.708013
\(714\) 0 0
\(715\) −3257.07 −0.170360
\(716\) 0 0
\(717\) −3953.00 −0.205896
\(718\) 0 0
\(719\) −24923.7 −1.29277 −0.646383 0.763013i \(-0.723719\pi\)
−0.646383 + 0.763013i \(0.723719\pi\)
\(720\) 0 0
\(721\) 8723.32 0.450587
\(722\) 0 0
\(723\) −4473.47 −0.230111
\(724\) 0 0
\(725\) −21279.2 −1.09006
\(726\) 0 0
\(727\) 24025.9 1.22568 0.612842 0.790205i \(-0.290026\pi\)
0.612842 + 0.790205i \(0.290026\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) −20123.3 −1.01818
\(732\) 0 0
\(733\) 31004.0 1.56229 0.781145 0.624350i \(-0.214636\pi\)
0.781145 + 0.624350i \(0.214636\pi\)
\(734\) 0 0
\(735\) 635.558 0.0318951
\(736\) 0 0
\(737\) 3846.98 0.192273
\(738\) 0 0
\(739\) 5542.14 0.275874 0.137937 0.990441i \(-0.455953\pi\)
0.137937 + 0.990441i \(0.455953\pi\)
\(740\) 0 0
\(741\) −3608.24 −0.178882
\(742\) 0 0
\(743\) −35227.3 −1.73939 −0.869694 0.493591i \(-0.835684\pi\)
−0.869694 + 0.493591i \(0.835684\pi\)
\(744\) 0 0
\(745\) 3904.53 0.192015
\(746\) 0 0
\(747\) 11740.3 0.575039
\(748\) 0 0
\(749\) −9577.71 −0.467239
\(750\) 0 0
\(751\) −19148.6 −0.930415 −0.465207 0.885202i \(-0.654020\pi\)
−0.465207 + 0.885202i \(0.654020\pi\)
\(752\) 0 0
\(753\) 12729.1 0.616036
\(754\) 0 0
\(755\) 12504.9 0.602781
\(756\) 0 0
\(757\) 12899.6 0.619345 0.309673 0.950843i \(-0.399781\pi\)
0.309673 + 0.950843i \(0.399781\pi\)
\(758\) 0 0
\(759\) 1736.06 0.0830236
\(760\) 0 0
\(761\) 4568.70 0.217628 0.108814 0.994062i \(-0.465295\pi\)
0.108814 + 0.994062i \(0.465295\pi\)
\(762\) 0 0
\(763\) 9189.62 0.436024
\(764\) 0 0
\(765\) 9498.79 0.448927
\(766\) 0 0
\(767\) −3772.97 −0.177619
\(768\) 0 0
\(769\) 6294.43 0.295166 0.147583 0.989050i \(-0.452851\pi\)
0.147583 + 0.989050i \(0.452851\pi\)
\(770\) 0 0
\(771\) 15894.9 0.742467
\(772\) 0 0
\(773\) −4218.70 −0.196295 −0.0981475 0.995172i \(-0.531292\pi\)
−0.0981475 + 0.995172i \(0.531292\pi\)
\(774\) 0 0
\(775\) −14167.9 −0.656677
\(776\) 0 0
\(777\) 3135.18 0.144754
\(778\) 0 0
\(779\) 12159.9 0.559271
\(780\) 0 0
\(781\) 1309.55 0.0599990
\(782\) 0 0
\(783\) −25655.8 −1.17096
\(784\) 0 0
\(785\) 16060.5 0.730221
\(786\) 0 0
\(787\) −10453.6 −0.473482 −0.236741 0.971573i \(-0.576079\pi\)
−0.236741 + 0.971573i \(0.576079\pi\)
\(788\) 0 0
\(789\) 14661.6 0.661557
\(790\) 0 0
\(791\) 2188.25 0.0983631
\(792\) 0 0
\(793\) 2883.10 0.129107
\(794\) 0 0
\(795\) 2256.25 0.100655
\(796\) 0 0
\(797\) 2131.75 0.0947436 0.0473718 0.998877i \(-0.484915\pi\)
0.0473718 + 0.998877i \(0.484915\pi\)
\(798\) 0 0
\(799\) −36703.2 −1.62511
\(800\) 0 0
\(801\) −25072.2 −1.10597
\(802\) 0 0
\(803\) 6306.50 0.277150
\(804\) 0 0
\(805\) −3582.35 −0.156846
\(806\) 0 0
\(807\) −7008.05 −0.305694
\(808\) 0 0
\(809\) −35641.7 −1.54894 −0.774472 0.632608i \(-0.781984\pi\)
−0.774472 + 0.632608i \(0.781984\pi\)
\(810\) 0 0
\(811\) 8034.96 0.347898 0.173949 0.984755i \(-0.444347\pi\)
0.173949 + 0.984755i \(0.444347\pi\)
\(812\) 0 0
\(813\) −72.9991 −0.00314907
\(814\) 0 0
\(815\) 6894.23 0.296312
\(816\) 0 0
\(817\) 12486.7 0.534703
\(818\) 0 0
\(819\) −7350.75 −0.313622
\(820\) 0 0
\(821\) 37824.5 1.60790 0.803950 0.594697i \(-0.202728\pi\)
0.803950 + 0.594697i \(0.202728\pi\)
\(822\) 0 0
\(823\) −19245.1 −0.815118 −0.407559 0.913179i \(-0.633620\pi\)
−0.407559 + 0.913179i \(0.633620\pi\)
\(824\) 0 0
\(825\) −1824.70 −0.0770037
\(826\) 0 0
\(827\) 31294.1 1.31584 0.657921 0.753087i \(-0.271436\pi\)
0.657921 + 0.753087i \(0.271436\pi\)
\(828\) 0 0
\(829\) −13121.7 −0.549740 −0.274870 0.961481i \(-0.588635\pi\)
−0.274870 + 0.961481i \(0.588635\pi\)
\(830\) 0 0
\(831\) −9930.27 −0.414533
\(832\) 0 0
\(833\) −3120.38 −0.129790
\(834\) 0 0
\(835\) 24129.5 1.00004
\(836\) 0 0
\(837\) −17081.8 −0.705418
\(838\) 0 0
\(839\) 5784.11 0.238009 0.119005 0.992894i \(-0.462030\pi\)
0.119005 + 0.992894i \(0.462030\pi\)
\(840\) 0 0
\(841\) 41433.2 1.69885
\(842\) 0 0
\(843\) −9120.84 −0.372643
\(844\) 0 0
\(845\) −729.281 −0.0296900
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) 0 0
\(849\) 1835.49 0.0741976
\(850\) 0 0
\(851\) −17671.6 −0.711837
\(852\) 0 0
\(853\) 39103.1 1.56959 0.784797 0.619753i \(-0.212767\pi\)
0.784797 + 0.619753i \(0.212767\pi\)
\(854\) 0 0
\(855\) −5894.07 −0.235758
\(856\) 0 0
\(857\) 5793.14 0.230910 0.115455 0.993313i \(-0.463167\pi\)
0.115455 + 0.993313i \(0.463167\pi\)
\(858\) 0 0
\(859\) −16365.8 −0.650049 −0.325025 0.945706i \(-0.605373\pi\)
−0.325025 + 0.945706i \(0.605373\pi\)
\(860\) 0 0
\(861\) −4308.22 −0.170527
\(862\) 0 0
\(863\) 20999.3 0.828303 0.414151 0.910208i \(-0.364078\pi\)
0.414151 + 0.910208i \(0.364078\pi\)
\(864\) 0 0
\(865\) −5897.85 −0.231830
\(866\) 0 0
\(867\) −1715.40 −0.0671949
\(868\) 0 0
\(869\) −6251.98 −0.244055
\(870\) 0 0
\(871\) −15967.4 −0.621164
\(872\) 0 0
\(873\) −9120.19 −0.353576
\(874\) 0 0
\(875\) 9439.90 0.364716
\(876\) 0 0
\(877\) 22042.8 0.848727 0.424364 0.905492i \(-0.360498\pi\)
0.424364 + 0.905492i \(0.360498\pi\)
\(878\) 0 0
\(879\) −7967.94 −0.305747
\(880\) 0 0
\(881\) −7746.91 −0.296254 −0.148127 0.988968i \(-0.547324\pi\)
−0.148127 + 0.988968i \(0.547324\pi\)
\(882\) 0 0
\(883\) 12901.9 0.491715 0.245857 0.969306i \(-0.420930\pi\)
0.245857 + 0.969306i \(0.420930\pi\)
\(884\) 0 0
\(885\) 1071.86 0.0407119
\(886\) 0 0
\(887\) 22230.9 0.841532 0.420766 0.907169i \(-0.361761\pi\)
0.420766 + 0.907169i \(0.361761\pi\)
\(888\) 0 0
\(889\) −11148.6 −0.420598
\(890\) 0 0
\(891\) 4631.00 0.174124
\(892\) 0 0
\(893\) 22774.6 0.853441
\(894\) 0 0
\(895\) −8753.85 −0.326937
\(896\) 0 0
\(897\) −7205.72 −0.268218
\(898\) 0 0
\(899\) 43824.9 1.62585
\(900\) 0 0
\(901\) −11077.4 −0.409592
\(902\) 0 0
\(903\) −4424.00 −0.163036
\(904\) 0 0
\(905\) −29569.5 −1.08610
\(906\) 0 0
\(907\) 35025.3 1.28225 0.641123 0.767438i \(-0.278469\pi\)
0.641123 + 0.767438i \(0.278469\pi\)
\(908\) 0 0
\(909\) −18994.4 −0.693074
\(910\) 0 0
\(911\) −9605.98 −0.349353 −0.174676 0.984626i \(-0.555888\pi\)
−0.174676 + 0.984626i \(0.555888\pi\)
\(912\) 0 0
\(913\) −5614.91 −0.203534
\(914\) 0 0
\(915\) −819.055 −0.0295925
\(916\) 0 0
\(917\) 9040.04 0.325549
\(918\) 0 0
\(919\) 791.576 0.0284132 0.0142066 0.999899i \(-0.495478\pi\)
0.0142066 + 0.999899i \(0.495478\pi\)
\(920\) 0 0
\(921\) 15985.0 0.571906
\(922\) 0 0
\(923\) −5435.43 −0.193835
\(924\) 0 0
\(925\) 18573.9 0.660224
\(926\) 0 0
\(927\) 28662.4 1.01553
\(928\) 0 0
\(929\) 25050.6 0.884695 0.442348 0.896844i \(-0.354146\pi\)
0.442348 + 0.896844i \(0.354146\pi\)
\(930\) 0 0
\(931\) 1936.22 0.0681601
\(932\) 0 0
\(933\) −14435.3 −0.506528
\(934\) 0 0
\(935\) −4542.90 −0.158897
\(936\) 0 0
\(937\) 14769.7 0.514948 0.257474 0.966285i \(-0.417110\pi\)
0.257474 + 0.966285i \(0.417110\pi\)
\(938\) 0 0
\(939\) −16831.2 −0.584949
\(940\) 0 0
\(941\) 678.921 0.0235199 0.0117599 0.999931i \(-0.496257\pi\)
0.0117599 + 0.999931i \(0.496257\pi\)
\(942\) 0 0
\(943\) 24283.5 0.838578
\(944\) 0 0
\(945\) 4539.70 0.156271
\(946\) 0 0
\(947\) 21354.7 0.732772 0.366386 0.930463i \(-0.380595\pi\)
0.366386 + 0.930463i \(0.380595\pi\)
\(948\) 0 0
\(949\) −26175.9 −0.895369
\(950\) 0 0
\(951\) 1264.73 0.0431248
\(952\) 0 0
\(953\) −3942.06 −0.133994 −0.0669968 0.997753i \(-0.521342\pi\)
−0.0669968 + 0.997753i \(0.521342\pi\)
\(954\) 0 0
\(955\) 14518.0 0.491927
\(956\) 0 0
\(957\) 5644.29 0.190652
\(958\) 0 0
\(959\) 14754.3 0.496812
\(960\) 0 0
\(961\) −612.100 −0.0205465
\(962\) 0 0
\(963\) −31469.6 −1.05306
\(964\) 0 0
\(965\) 19237.7 0.641743
\(966\) 0 0
\(967\) 27117.9 0.901813 0.450907 0.892571i \(-0.351101\pi\)
0.450907 + 0.892571i \(0.351101\pi\)
\(968\) 0 0
\(969\) −5032.69 −0.166846
\(970\) 0 0
\(971\) 28536.2 0.943120 0.471560 0.881834i \(-0.343691\pi\)
0.471560 + 0.881834i \(0.343691\pi\)
\(972\) 0 0
\(973\) 16228.1 0.534685
\(974\) 0 0
\(975\) 7573.66 0.248771
\(976\) 0 0
\(977\) 24692.4 0.808577 0.404288 0.914632i \(-0.367519\pi\)
0.404288 + 0.914632i \(0.367519\pi\)
\(978\) 0 0
\(979\) 11991.1 0.391457
\(980\) 0 0
\(981\) 30194.5 0.982706
\(982\) 0 0
\(983\) −26814.7 −0.870047 −0.435024 0.900419i \(-0.643260\pi\)
−0.435024 + 0.900419i \(0.643260\pi\)
\(984\) 0 0
\(985\) 25825.6 0.835402
\(986\) 0 0
\(987\) −8069.00 −0.260222
\(988\) 0 0
\(989\) 24936.1 0.801741
\(990\) 0 0
\(991\) −46160.9 −1.47967 −0.739833 0.672790i \(-0.765096\pi\)
−0.739833 + 0.672790i \(0.765096\pi\)
\(992\) 0 0
\(993\) −851.519 −0.0272126
\(994\) 0 0
\(995\) −12289.8 −0.391572
\(996\) 0 0
\(997\) −43200.4 −1.37229 −0.686143 0.727467i \(-0.740698\pi\)
−0.686143 + 0.727467i \(0.740698\pi\)
\(998\) 0 0
\(999\) 22394.1 0.709228
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.4.a.m.1.2 2
4.3 odd 2 77.4.a.b.1.1 2
12.11 even 2 693.4.a.i.1.2 2
20.19 odd 2 1925.4.a.l.1.2 2
28.27 even 2 539.4.a.d.1.1 2
44.43 even 2 847.4.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.b.1.1 2 4.3 odd 2
539.4.a.d.1.1 2 28.27 even 2
693.4.a.i.1.2 2 12.11 even 2
847.4.a.c.1.2 2 44.43 even 2
1232.4.a.m.1.2 2 1.1 even 1 trivial
1925.4.a.l.1.2 2 20.19 odd 2