Properties

Label 847.4.a.c.1.2
Level $847$
Weight $4$
Character 847.1
Self dual yes
Analytic conductor $49.975$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [847,4,Mod(1,847)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("847.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(847, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.9746177749\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 847.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.82843 q^{2} -2.00000 q^{3} +6.65685 q^{4} +6.48528 q^{5} -7.65685 q^{6} -7.00000 q^{7} -5.14214 q^{8} -23.0000 q^{9} +24.8284 q^{10} -13.3137 q^{12} +45.6569 q^{13} -26.7990 q^{14} -12.9706 q^{15} -72.9411 q^{16} +63.6812 q^{17} -88.0538 q^{18} +39.5147 q^{19} +43.1716 q^{20} +14.0000 q^{21} -78.9117 q^{23} +10.2843 q^{24} -82.9411 q^{25} +174.794 q^{26} +100.000 q^{27} -46.5980 q^{28} -256.558 q^{29} -49.6569 q^{30} -170.818 q^{31} -238.113 q^{32} +243.799 q^{34} -45.3970 q^{35} -153.108 q^{36} -223.941 q^{37} +151.279 q^{38} -91.3137 q^{39} -33.3482 q^{40} -307.730 q^{41} +53.5980 q^{42} +316.000 q^{43} -149.161 q^{45} -302.108 q^{46} -576.357 q^{47} +145.882 q^{48} +49.0000 q^{49} -317.534 q^{50} -127.362 q^{51} +303.931 q^{52} +173.951 q^{53} +382.843 q^{54} +35.9949 q^{56} -79.0294 q^{57} -982.215 q^{58} -82.6375 q^{59} -86.3431 q^{60} +63.1472 q^{61} -653.966 q^{62} +161.000 q^{63} -328.068 q^{64} +296.098 q^{65} -349.726 q^{67} +423.917 q^{68} +157.823 q^{69} -173.799 q^{70} -119.050 q^{71} +118.269 q^{72} -573.318 q^{73} -857.342 q^{74} +165.882 q^{75} +263.044 q^{76} -349.588 q^{78} -568.362 q^{79} -473.044 q^{80} +421.000 q^{81} -1178.12 q^{82} -510.447 q^{83} +93.1960 q^{84} +412.991 q^{85} +1209.78 q^{86} +513.117 q^{87} +1090.10 q^{89} -571.054 q^{90} -319.598 q^{91} -525.304 q^{92} +341.637 q^{93} -2206.54 q^{94} +256.264 q^{95} +476.225 q^{96} +396.530 q^{97} +187.593 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{3} + 2 q^{4} - 4 q^{5} - 4 q^{6} - 14 q^{7} + 18 q^{8} - 46 q^{9} + 44 q^{10} - 4 q^{12} + 80 q^{13} - 14 q^{14} + 8 q^{15} - 78 q^{16} - 48 q^{17} - 46 q^{18} + 96 q^{19} + 92 q^{20}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.82843 1.35355 0.676777 0.736188i \(-0.263376\pi\)
0.676777 + 0.736188i \(0.263376\pi\)
\(3\) −2.00000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) 6.65685 0.832107
\(5\) 6.48528 0.580061 0.290031 0.957017i \(-0.406335\pi\)
0.290031 + 0.957017i \(0.406335\pi\)
\(6\) −7.65685 −0.520983
\(7\) −7.00000 −0.377964
\(8\) −5.14214 −0.227252
\(9\) −23.0000 −0.851852
\(10\) 24.8284 0.785144
\(11\) 0 0
\(12\) −13.3137 −0.320278
\(13\) 45.6569 0.974072 0.487036 0.873382i \(-0.338078\pi\)
0.487036 + 0.873382i \(0.338078\pi\)
\(14\) −26.7990 −0.511595
\(15\) −12.9706 −0.223266
\(16\) −72.9411 −1.13971
\(17\) 63.6812 0.908528 0.454264 0.890867i \(-0.349902\pi\)
0.454264 + 0.890867i \(0.349902\pi\)
\(18\) −88.0538 −1.15303
\(19\) 39.5147 0.477121 0.238560 0.971128i \(-0.423324\pi\)
0.238560 + 0.971128i \(0.423324\pi\)
\(20\) 43.1716 0.482673
\(21\) 14.0000 0.145479
\(22\) 0 0
\(23\) −78.9117 −0.715401 −0.357701 0.933836i \(-0.616439\pi\)
−0.357701 + 0.933836i \(0.616439\pi\)
\(24\) 10.2843 0.0874695
\(25\) −82.9411 −0.663529
\(26\) 174.794 1.31846
\(27\) 100.000 0.712778
\(28\) −46.5980 −0.314507
\(29\) −256.558 −1.64282 −0.821409 0.570340i \(-0.806811\pi\)
−0.821409 + 0.570340i \(0.806811\pi\)
\(30\) −49.6569 −0.302202
\(31\) −170.818 −0.989673 −0.494837 0.868986i \(-0.664772\pi\)
−0.494837 + 0.868986i \(0.664772\pi\)
\(32\) −238.113 −1.31540
\(33\) 0 0
\(34\) 243.799 1.22974
\(35\) −45.3970 −0.219243
\(36\) −153.108 −0.708832
\(37\) −223.941 −0.995019 −0.497509 0.867459i \(-0.665752\pi\)
−0.497509 + 0.867459i \(0.665752\pi\)
\(38\) 151.279 0.645809
\(39\) −91.3137 −0.374920
\(40\) −33.3482 −0.131820
\(41\) −307.730 −1.17218 −0.586090 0.810246i \(-0.699333\pi\)
−0.586090 + 0.810246i \(0.699333\pi\)
\(42\) 53.5980 0.196913
\(43\) 316.000 1.12069 0.560344 0.828260i \(-0.310669\pi\)
0.560344 + 0.828260i \(0.310669\pi\)
\(44\) 0 0
\(45\) −149.161 −0.494126
\(46\) −302.108 −0.968334
\(47\) −576.357 −1.78873 −0.894366 0.447337i \(-0.852373\pi\)
−0.894366 + 0.447337i \(0.852373\pi\)
\(48\) 145.882 0.438673
\(49\) 49.0000 0.142857
\(50\) −317.534 −0.898122
\(51\) −127.362 −0.349692
\(52\) 303.931 0.810532
\(53\) 173.951 0.450831 0.225415 0.974263i \(-0.427626\pi\)
0.225415 + 0.974263i \(0.427626\pi\)
\(54\) 382.843 0.964783
\(55\) 0 0
\(56\) 35.9949 0.0858933
\(57\) −79.0294 −0.183644
\(58\) −982.215 −2.22364
\(59\) −82.6375 −0.182347 −0.0911736 0.995835i \(-0.529062\pi\)
−0.0911736 + 0.995835i \(0.529062\pi\)
\(60\) −86.3431 −0.185781
\(61\) 63.1472 0.132544 0.0662719 0.997802i \(-0.478890\pi\)
0.0662719 + 0.997802i \(0.478890\pi\)
\(62\) −653.966 −1.33958
\(63\) 161.000 0.321970
\(64\) −328.068 −0.640758
\(65\) 296.098 0.565021
\(66\) 0 0
\(67\) −349.726 −0.637699 −0.318849 0.947805i \(-0.603296\pi\)
−0.318849 + 0.947805i \(0.603296\pi\)
\(68\) 423.917 0.755992
\(69\) 157.823 0.275358
\(70\) −173.799 −0.296756
\(71\) −119.050 −0.198994 −0.0994971 0.995038i \(-0.531723\pi\)
−0.0994971 + 0.995038i \(0.531723\pi\)
\(72\) 118.269 0.193585
\(73\) −573.318 −0.919203 −0.459601 0.888125i \(-0.652008\pi\)
−0.459601 + 0.888125i \(0.652008\pi\)
\(74\) −857.342 −1.34681
\(75\) 165.882 0.255392
\(76\) 263.044 0.397016
\(77\) 0 0
\(78\) −349.588 −0.507475
\(79\) −568.362 −0.809439 −0.404719 0.914441i \(-0.632631\pi\)
−0.404719 + 0.914441i \(0.632631\pi\)
\(80\) −473.044 −0.661099
\(81\) 421.000 0.577503
\(82\) −1178.12 −1.58661
\(83\) −510.447 −0.675046 −0.337523 0.941317i \(-0.609589\pi\)
−0.337523 + 0.941317i \(0.609589\pi\)
\(84\) 93.1960 0.121054
\(85\) 412.991 0.527002
\(86\) 1209.78 1.51691
\(87\) 513.117 0.632321
\(88\) 0 0
\(89\) 1090.10 1.29832 0.649158 0.760654i \(-0.275121\pi\)
0.649158 + 0.760654i \(0.275121\pi\)
\(90\) −571.054 −0.668826
\(91\) −319.598 −0.368165
\(92\) −525.304 −0.595290
\(93\) 341.637 0.380925
\(94\) −2206.54 −2.42114
\(95\) 256.264 0.276759
\(96\) 476.225 0.506297
\(97\) 396.530 0.415067 0.207534 0.978228i \(-0.433456\pi\)
0.207534 + 0.978228i \(0.433456\pi\)
\(98\) 187.593 0.193365
\(99\) 0 0
\(100\) −552.127 −0.552127
\(101\) −825.844 −0.813609 −0.406804 0.913515i \(-0.633357\pi\)
−0.406804 + 0.913515i \(0.633357\pi\)
\(102\) −487.598 −0.473327
\(103\) 1246.19 1.19214 0.596071 0.802932i \(-0.296728\pi\)
0.596071 + 0.802932i \(0.296728\pi\)
\(104\) −234.774 −0.221360
\(105\) 90.7939 0.0843865
\(106\) 665.960 0.610224
\(107\) 1368.24 1.23620 0.618099 0.786100i \(-0.287903\pi\)
0.618099 + 0.786100i \(0.287903\pi\)
\(108\) 665.685 0.593107
\(109\) 1312.80 1.15361 0.576806 0.816881i \(-0.304299\pi\)
0.576806 + 0.816881i \(0.304299\pi\)
\(110\) 0 0
\(111\) 447.882 0.382983
\(112\) 510.588 0.430768
\(113\) −312.607 −0.260244 −0.130122 0.991498i \(-0.541537\pi\)
−0.130122 + 0.991498i \(0.541537\pi\)
\(114\) −302.558 −0.248572
\(115\) −511.765 −0.414976
\(116\) −1707.87 −1.36700
\(117\) −1050.11 −0.829765
\(118\) −316.372 −0.246817
\(119\) −445.769 −0.343391
\(120\) 66.6964 0.0507377
\(121\) 0 0
\(122\) 241.754 0.179405
\(123\) 615.460 0.451172
\(124\) −1137.11 −0.823514
\(125\) −1348.56 −0.964949
\(126\) 616.377 0.435803
\(127\) 1592.65 1.11280 0.556398 0.830916i \(-0.312183\pi\)
0.556398 + 0.830916i \(0.312183\pi\)
\(128\) 648.917 0.448099
\(129\) −632.000 −0.431353
\(130\) 1133.59 0.764786
\(131\) −1291.43 −0.861321 −0.430661 0.902514i \(-0.641719\pi\)
−0.430661 + 0.902514i \(0.641719\pi\)
\(132\) 0 0
\(133\) −276.603 −0.180335
\(134\) −1338.90 −0.863159
\(135\) 648.528 0.413455
\(136\) −327.458 −0.206465
\(137\) −2107.76 −1.31444 −0.657220 0.753699i \(-0.728268\pi\)
−0.657220 + 0.753699i \(0.728268\pi\)
\(138\) 604.215 0.372712
\(139\) −2318.30 −1.41464 −0.707321 0.706892i \(-0.750097\pi\)
−0.707321 + 0.706892i \(0.750097\pi\)
\(140\) −302.201 −0.182433
\(141\) 1152.71 0.688483
\(142\) −455.773 −0.269349
\(143\) 0 0
\(144\) 1677.65 0.970860
\(145\) −1663.85 −0.952935
\(146\) −2194.91 −1.24419
\(147\) −98.0000 −0.0549857
\(148\) −1490.74 −0.827962
\(149\) −602.061 −0.331025 −0.165513 0.986208i \(-0.552928\pi\)
−0.165513 + 0.986208i \(0.552928\pi\)
\(150\) 635.068 0.345687
\(151\) 1928.20 1.03917 0.519584 0.854420i \(-0.326087\pi\)
0.519584 + 0.854420i \(0.326087\pi\)
\(152\) −203.190 −0.108427
\(153\) −1464.67 −0.773931
\(154\) 0 0
\(155\) −1107.80 −0.574071
\(156\) −607.862 −0.311974
\(157\) 2476.45 1.25887 0.629434 0.777054i \(-0.283287\pi\)
0.629434 + 0.777054i \(0.283287\pi\)
\(158\) −2175.93 −1.09562
\(159\) −347.902 −0.173525
\(160\) −1544.23 −0.763012
\(161\) 552.382 0.270396
\(162\) 1611.77 0.781682
\(163\) −1063.06 −0.510829 −0.255415 0.966832i \(-0.582212\pi\)
−0.255415 + 0.966832i \(0.582212\pi\)
\(164\) −2048.51 −0.975378
\(165\) 0 0
\(166\) −1954.21 −0.913710
\(167\) 3720.65 1.72403 0.862015 0.506883i \(-0.169203\pi\)
0.862015 + 0.506883i \(0.169203\pi\)
\(168\) −71.9899 −0.0330604
\(169\) −112.452 −0.0511842
\(170\) 1581.11 0.713325
\(171\) −908.839 −0.406436
\(172\) 2103.57 0.932531
\(173\) 909.421 0.399665 0.199832 0.979830i \(-0.435960\pi\)
0.199832 + 0.979830i \(0.435960\pi\)
\(174\) 1964.43 0.855880
\(175\) 580.588 0.250790
\(176\) 0 0
\(177\) 165.275 0.0701855
\(178\) 4173.36 1.75734
\(179\) 1349.80 0.563626 0.281813 0.959469i \(-0.409064\pi\)
0.281813 + 0.959469i \(0.409064\pi\)
\(180\) −992.946 −0.411166
\(181\) −4559.47 −1.87239 −0.936196 0.351479i \(-0.885679\pi\)
−0.936196 + 0.351479i \(0.885679\pi\)
\(182\) −1223.56 −0.498330
\(183\) −126.294 −0.0510161
\(184\) 405.775 0.162577
\(185\) −1452.32 −0.577172
\(186\) 1307.93 0.515603
\(187\) 0 0
\(188\) −3836.73 −1.48842
\(189\) −700.000 −0.269405
\(190\) 981.088 0.374609
\(191\) −2238.60 −0.848061 −0.424031 0.905648i \(-0.639385\pi\)
−0.424031 + 0.905648i \(0.639385\pi\)
\(192\) 656.136 0.246628
\(193\) −2966.36 −1.10634 −0.553169 0.833069i \(-0.686582\pi\)
−0.553169 + 0.833069i \(0.686582\pi\)
\(194\) 1518.09 0.561815
\(195\) −592.195 −0.217477
\(196\) 326.186 0.118872
\(197\) −3982.18 −1.44020 −0.720099 0.693872i \(-0.755903\pi\)
−0.720099 + 0.693872i \(0.755903\pi\)
\(198\) 0 0
\(199\) 1895.03 0.675052 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(200\) 426.495 0.150789
\(201\) 699.452 0.245450
\(202\) −3161.68 −1.10126
\(203\) 1795.91 0.620927
\(204\) −847.833 −0.290981
\(205\) −1995.72 −0.679936
\(206\) 4770.94 1.61363
\(207\) 1814.97 0.609416
\(208\) −3330.26 −1.11015
\(209\) 0 0
\(210\) 347.598 0.114222
\(211\) 1506.79 0.491621 0.245810 0.969318i \(-0.420946\pi\)
0.245810 + 0.969318i \(0.420946\pi\)
\(212\) 1157.97 0.375139
\(213\) 238.099 0.0765929
\(214\) 5238.22 1.67326
\(215\) 2049.35 0.650067
\(216\) −514.214 −0.161981
\(217\) 1195.73 0.374061
\(218\) 5025.97 1.56147
\(219\) 1146.64 0.353801
\(220\) 0 0
\(221\) 2907.49 0.884971
\(222\) 1714.68 0.518388
\(223\) 4289.51 1.28810 0.644051 0.764983i \(-0.277252\pi\)
0.644051 + 0.764983i \(0.277252\pi\)
\(224\) 1666.79 0.497174
\(225\) 1907.65 0.565228
\(226\) −1196.79 −0.352255
\(227\) 2848.72 0.832934 0.416467 0.909151i \(-0.363268\pi\)
0.416467 + 0.909151i \(0.363268\pi\)
\(228\) −526.087 −0.152811
\(229\) 3273.70 0.944681 0.472341 0.881416i \(-0.343409\pi\)
0.472341 + 0.881416i \(0.343409\pi\)
\(230\) −1959.25 −0.561693
\(231\) 0 0
\(232\) 1319.26 0.373334
\(233\) −4773.81 −1.34224 −0.671122 0.741347i \(-0.734187\pi\)
−0.671122 + 0.741347i \(0.734187\pi\)
\(234\) −4020.26 −1.12313
\(235\) −3737.84 −1.03757
\(236\) −550.106 −0.151732
\(237\) 1136.72 0.311553
\(238\) −1706.59 −0.464798
\(239\) −1976.50 −0.534934 −0.267467 0.963567i \(-0.586187\pi\)
−0.267467 + 0.963567i \(0.586187\pi\)
\(240\) 946.087 0.254457
\(241\) 2236.73 0.597845 0.298923 0.954277i \(-0.403373\pi\)
0.298923 + 0.954277i \(0.403373\pi\)
\(242\) 0 0
\(243\) −3542.00 −0.935059
\(244\) 420.362 0.110291
\(245\) 317.779 0.0828659
\(246\) 2356.24 0.610685
\(247\) 1804.12 0.464750
\(248\) 878.371 0.224906
\(249\) 1020.89 0.259825
\(250\) −5162.85 −1.30611
\(251\) −6364.56 −1.60051 −0.800254 0.599662i \(-0.795302\pi\)
−0.800254 + 0.599662i \(0.795302\pi\)
\(252\) 1071.75 0.267913
\(253\) 0 0
\(254\) 6097.36 1.50623
\(255\) −825.982 −0.202843
\(256\) 5108.88 1.24728
\(257\) 7947.46 1.92898 0.964492 0.264110i \(-0.0850783\pi\)
0.964492 + 0.264110i \(0.0850783\pi\)
\(258\) −2419.57 −0.583859
\(259\) 1567.59 0.376082
\(260\) 1971.08 0.470158
\(261\) 5900.84 1.39944
\(262\) −4944.16 −1.16584
\(263\) 7330.82 1.71877 0.859387 0.511325i \(-0.170845\pi\)
0.859387 + 0.511325i \(0.170845\pi\)
\(264\) 0 0
\(265\) 1128.12 0.261510
\(266\) −1058.95 −0.244093
\(267\) −2180.20 −0.499722
\(268\) −2328.07 −0.530633
\(269\) −3504.02 −0.794216 −0.397108 0.917772i \(-0.629986\pi\)
−0.397108 + 0.917772i \(0.629986\pi\)
\(270\) 2482.84 0.559633
\(271\) −36.4996 −0.00818152 −0.00409076 0.999992i \(-0.501302\pi\)
−0.00409076 + 0.999992i \(0.501302\pi\)
\(272\) −4644.98 −1.03545
\(273\) 639.196 0.141707
\(274\) −8069.42 −1.77917
\(275\) 0 0
\(276\) 1050.61 0.229127
\(277\) 4965.14 1.07699 0.538495 0.842629i \(-0.318993\pi\)
0.538495 + 0.842629i \(0.318993\pi\)
\(278\) −8875.43 −1.91479
\(279\) 3928.82 0.843055
\(280\) 233.437 0.0498234
\(281\) 4560.42 0.968156 0.484078 0.875025i \(-0.339155\pi\)
0.484078 + 0.875025i \(0.339155\pi\)
\(282\) 4413.08 0.931899
\(283\) 917.744 0.192771 0.0963855 0.995344i \(-0.469272\pi\)
0.0963855 + 0.995344i \(0.469272\pi\)
\(284\) −792.496 −0.165584
\(285\) −512.528 −0.106525
\(286\) 0 0
\(287\) 2154.11 0.443042
\(288\) 5476.59 1.12053
\(289\) −857.700 −0.174578
\(290\) −6369.94 −1.28985
\(291\) −793.060 −0.159759
\(292\) −3816.49 −0.764875
\(293\) 3983.97 0.794355 0.397177 0.917742i \(-0.369990\pi\)
0.397177 + 0.917742i \(0.369990\pi\)
\(294\) −375.186 −0.0744261
\(295\) −535.928 −0.105773
\(296\) 1151.54 0.226120
\(297\) 0 0
\(298\) −2304.95 −0.448060
\(299\) −3602.86 −0.696852
\(300\) 1104.25 0.212514
\(301\) −2212.00 −0.423580
\(302\) 7381.95 1.40657
\(303\) 1651.69 0.313158
\(304\) −2882.25 −0.543777
\(305\) 409.527 0.0768835
\(306\) −5607.38 −1.04756
\(307\) 7992.52 1.48585 0.742927 0.669372i \(-0.233437\pi\)
0.742927 + 0.669372i \(0.233437\pi\)
\(308\) 0 0
\(309\) −2492.38 −0.458856
\(310\) −4241.15 −0.777036
\(311\) 7217.65 1.31600 0.657999 0.753019i \(-0.271403\pi\)
0.657999 + 0.753019i \(0.271403\pi\)
\(312\) 469.547 0.0852016
\(313\) −8415.62 −1.51974 −0.759871 0.650074i \(-0.774738\pi\)
−0.759871 + 0.650074i \(0.774738\pi\)
\(314\) 9480.91 1.70395
\(315\) 1044.13 0.186762
\(316\) −3783.50 −0.673540
\(317\) 632.365 0.112041 0.0560207 0.998430i \(-0.482159\pi\)
0.0560207 + 0.998430i \(0.482159\pi\)
\(318\) −1331.92 −0.234875
\(319\) 0 0
\(320\) −2127.61 −0.371679
\(321\) −2736.49 −0.475813
\(322\) 2114.75 0.365996
\(323\) 2516.35 0.433478
\(324\) 2802.54 0.480545
\(325\) −3786.83 −0.646325
\(326\) −4069.84 −0.691434
\(327\) −2625.60 −0.444025
\(328\) 1582.39 0.266381
\(329\) 4034.50 0.676077
\(330\) 0 0
\(331\) 425.759 0.0707004 0.0353502 0.999375i \(-0.488745\pi\)
0.0353502 + 0.999375i \(0.488745\pi\)
\(332\) −3397.97 −0.561710
\(333\) 5150.65 0.847609
\(334\) 14244.3 2.33357
\(335\) −2268.07 −0.369904
\(336\) −1021.18 −0.165803
\(337\) −1369.56 −0.221379 −0.110689 0.993855i \(-0.535306\pi\)
−0.110689 + 0.993855i \(0.535306\pi\)
\(338\) −430.513 −0.0692805
\(339\) 625.214 0.100168
\(340\) 2749.22 0.438522
\(341\) 0 0
\(342\) −3479.42 −0.550133
\(343\) −343.000 −0.0539949
\(344\) −1624.91 −0.254679
\(345\) 1023.53 0.159724
\(346\) 3481.65 0.540968
\(347\) 5531.76 0.855794 0.427897 0.903827i \(-0.359255\pi\)
0.427897 + 0.903827i \(0.359255\pi\)
\(348\) 3415.74 0.526158
\(349\) −10171.7 −1.56011 −0.780055 0.625711i \(-0.784809\pi\)
−0.780055 + 0.625711i \(0.784809\pi\)
\(350\) 2222.74 0.339458
\(351\) 4565.69 0.694297
\(352\) 0 0
\(353\) 9626.38 1.45145 0.725723 0.687987i \(-0.241505\pi\)
0.725723 + 0.687987i \(0.241505\pi\)
\(354\) 632.743 0.0949998
\(355\) −772.070 −0.115429
\(356\) 7256.62 1.08034
\(357\) 891.537 0.132171
\(358\) 5167.62 0.762898
\(359\) −8491.00 −1.24829 −0.624147 0.781307i \(-0.714553\pi\)
−0.624147 + 0.781307i \(0.714553\pi\)
\(360\) 767.009 0.112291
\(361\) −5297.59 −0.772356
\(362\) −17455.6 −2.53438
\(363\) 0 0
\(364\) −2127.52 −0.306352
\(365\) −3718.13 −0.533194
\(366\) −483.509 −0.0690530
\(367\) 2948.02 0.419307 0.209653 0.977776i \(-0.432766\pi\)
0.209653 + 0.977776i \(0.432766\pi\)
\(368\) 5755.91 0.815346
\(369\) 7077.79 0.998523
\(370\) −5560.11 −0.781233
\(371\) −1217.66 −0.170398
\(372\) 2274.23 0.316971
\(373\) 8295.57 1.15155 0.575775 0.817608i \(-0.304700\pi\)
0.575775 + 0.817608i \(0.304700\pi\)
\(374\) 0 0
\(375\) 2697.11 0.371409
\(376\) 2963.71 0.406494
\(377\) −11713.7 −1.60022
\(378\) −2679.90 −0.364654
\(379\) −12137.3 −1.64499 −0.822495 0.568773i \(-0.807418\pi\)
−0.822495 + 0.568773i \(0.807418\pi\)
\(380\) 1705.91 0.230293
\(381\) −3185.31 −0.428316
\(382\) −8570.33 −1.14790
\(383\) −9053.44 −1.20786 −0.603929 0.797038i \(-0.706399\pi\)
−0.603929 + 0.797038i \(0.706399\pi\)
\(384\) −1297.83 −0.172473
\(385\) 0 0
\(386\) −11356.5 −1.49749
\(387\) −7268.00 −0.954659
\(388\) 2639.64 0.345380
\(389\) −1130.94 −0.147406 −0.0737030 0.997280i \(-0.523482\pi\)
−0.0737030 + 0.997280i \(0.523482\pi\)
\(390\) −2267.18 −0.294366
\(391\) −5025.19 −0.649962
\(392\) −251.965 −0.0324646
\(393\) 2582.87 0.331523
\(394\) −15245.5 −1.94938
\(395\) −3685.98 −0.469524
\(396\) 0 0
\(397\) −13113.4 −1.65779 −0.828896 0.559403i \(-0.811030\pi\)
−0.828896 + 0.559403i \(0.811030\pi\)
\(398\) 7255.00 0.913719
\(399\) 553.206 0.0694109
\(400\) 6049.82 0.756227
\(401\) 12805.1 1.59465 0.797327 0.603548i \(-0.206247\pi\)
0.797327 + 0.603548i \(0.206247\pi\)
\(402\) 2677.80 0.332230
\(403\) −7799.03 −0.964013
\(404\) −5497.52 −0.677010
\(405\) 2730.30 0.334987
\(406\) 6875.51 0.840457
\(407\) 0 0
\(408\) 654.915 0.0794685
\(409\) −9184.62 −1.11039 −0.555196 0.831720i \(-0.687357\pi\)
−0.555196 + 0.831720i \(0.687357\pi\)
\(410\) −7640.45 −0.920329
\(411\) 4215.53 0.505928
\(412\) 8295.70 0.991990
\(413\) 578.463 0.0689208
\(414\) 6948.48 0.824877
\(415\) −3310.39 −0.391568
\(416\) −10871.5 −1.28129
\(417\) 4636.59 0.544496
\(418\) 0 0
\(419\) −6249.25 −0.728629 −0.364315 0.931276i \(-0.618697\pi\)
−0.364315 + 0.931276i \(0.618697\pi\)
\(420\) 604.402 0.0702186
\(421\) 4703.21 0.544467 0.272233 0.962231i \(-0.412238\pi\)
0.272233 + 0.962231i \(0.412238\pi\)
\(422\) 5768.65 0.665435
\(423\) 13256.2 1.52373
\(424\) −894.481 −0.102452
\(425\) −5281.79 −0.602834
\(426\) 911.546 0.103673
\(427\) −442.030 −0.0500968
\(428\) 9108.20 1.02865
\(429\) 0 0
\(430\) 7845.78 0.879901
\(431\) −7554.41 −0.844276 −0.422138 0.906532i \(-0.638720\pi\)
−0.422138 + 0.906532i \(0.638720\pi\)
\(432\) −7294.11 −0.812357
\(433\) 2631.98 0.292113 0.146057 0.989276i \(-0.453342\pi\)
0.146057 + 0.989276i \(0.453342\pi\)
\(434\) 4577.76 0.506312
\(435\) 3327.71 0.366785
\(436\) 8739.13 0.959928
\(437\) −3118.17 −0.341333
\(438\) 4389.81 0.478889
\(439\) −12551.2 −1.36455 −0.682274 0.731097i \(-0.739009\pi\)
−0.682274 + 0.731097i \(0.739009\pi\)
\(440\) 0 0
\(441\) −1127.00 −0.121693
\(442\) 11131.1 1.19786
\(443\) 11226.2 1.20400 0.602000 0.798496i \(-0.294371\pi\)
0.602000 + 0.798496i \(0.294371\pi\)
\(444\) 2981.49 0.318683
\(445\) 7069.59 0.753103
\(446\) 16422.1 1.74351
\(447\) 1204.12 0.127412
\(448\) 2296.48 0.242184
\(449\) −11177.4 −1.17482 −0.587410 0.809289i \(-0.699853\pi\)
−0.587410 + 0.809289i \(0.699853\pi\)
\(450\) 7303.28 0.765067
\(451\) 0 0
\(452\) −2080.98 −0.216551
\(453\) −3856.39 −0.399976
\(454\) 10906.1 1.12742
\(455\) −2072.68 −0.213558
\(456\) 406.380 0.0417335
\(457\) −7040.35 −0.720643 −0.360321 0.932828i \(-0.617333\pi\)
−0.360321 + 0.932828i \(0.617333\pi\)
\(458\) 12533.1 1.27868
\(459\) 6368.12 0.647579
\(460\) −3406.74 −0.345305
\(461\) 1483.35 0.149862 0.0749312 0.997189i \(-0.476126\pi\)
0.0749312 + 0.997189i \(0.476126\pi\)
\(462\) 0 0
\(463\) −3106.19 −0.311786 −0.155893 0.987774i \(-0.549826\pi\)
−0.155893 + 0.987774i \(0.549826\pi\)
\(464\) 18713.7 1.87233
\(465\) 2215.61 0.220960
\(466\) −18276.2 −1.81680
\(467\) −9605.04 −0.951752 −0.475876 0.879512i \(-0.657869\pi\)
−0.475876 + 0.879512i \(0.657869\pi\)
\(468\) −6990.41 −0.690453
\(469\) 2448.08 0.241027
\(470\) −14310.0 −1.40441
\(471\) −4952.90 −0.484539
\(472\) 424.933 0.0414389
\(473\) 0 0
\(474\) 4351.86 0.421704
\(475\) −3277.40 −0.316584
\(476\) −2967.42 −0.285738
\(477\) −4000.88 −0.384041
\(478\) −7566.88 −0.724061
\(479\) −9118.53 −0.869805 −0.434902 0.900478i \(-0.643217\pi\)
−0.434902 + 0.900478i \(0.643217\pi\)
\(480\) 3088.46 0.293683
\(481\) −10224.4 −0.969220
\(482\) 8563.17 0.809215
\(483\) −1104.76 −0.104076
\(484\) 0 0
\(485\) 2571.61 0.240764
\(486\) −13560.3 −1.26565
\(487\) 14045.1 1.30687 0.653434 0.756983i \(-0.273328\pi\)
0.653434 + 0.756983i \(0.273328\pi\)
\(488\) −324.711 −0.0301209
\(489\) 2126.12 0.196618
\(490\) 1216.59 0.112163
\(491\) 1034.26 0.0950620 0.0475310 0.998870i \(-0.484865\pi\)
0.0475310 + 0.998870i \(0.484865\pi\)
\(492\) 4097.03 0.375423
\(493\) −16338.0 −1.49255
\(494\) 6906.93 0.629064
\(495\) 0 0
\(496\) 12459.7 1.12794
\(497\) 833.347 0.0752128
\(498\) 3908.42 0.351687
\(499\) −14332.3 −1.28577 −0.642886 0.765962i \(-0.722263\pi\)
−0.642886 + 0.765962i \(0.722263\pi\)
\(500\) −8977.15 −0.802940
\(501\) −7441.31 −0.663579
\(502\) −24366.2 −2.16637
\(503\) 5007.72 0.443903 0.221951 0.975058i \(-0.428757\pi\)
0.221951 + 0.975058i \(0.428757\pi\)
\(504\) −827.884 −0.0731684
\(505\) −5355.83 −0.471943
\(506\) 0 0
\(507\) 224.903 0.0197008
\(508\) 10602.1 0.925966
\(509\) −9234.40 −0.804140 −0.402070 0.915609i \(-0.631709\pi\)
−0.402070 + 0.915609i \(0.631709\pi\)
\(510\) −3162.21 −0.274559
\(511\) 4013.23 0.347426
\(512\) 14367.6 1.24017
\(513\) 3951.47 0.340081
\(514\) 30426.3 2.61098
\(515\) 8081.89 0.691516
\(516\) −4207.13 −0.358932
\(517\) 0 0
\(518\) 6001.40 0.509047
\(519\) −1818.84 −0.153831
\(520\) −1522.57 −0.128402
\(521\) −5141.26 −0.432328 −0.216164 0.976357i \(-0.569355\pi\)
−0.216164 + 0.976357i \(0.569355\pi\)
\(522\) 22591.0 1.89421
\(523\) 19766.3 1.65262 0.826308 0.563218i \(-0.190437\pi\)
0.826308 + 0.563218i \(0.190437\pi\)
\(524\) −8596.89 −0.716711
\(525\) −1161.18 −0.0965293
\(526\) 28065.5 2.32645
\(527\) −10877.9 −0.899146
\(528\) 0 0
\(529\) −5939.95 −0.488201
\(530\) 4318.94 0.353967
\(531\) 1900.66 0.155333
\(532\) −1841.31 −0.150058
\(533\) −14050.0 −1.14179
\(534\) −8346.72 −0.676400
\(535\) 8873.45 0.717070
\(536\) 1798.34 0.144919
\(537\) −2699.61 −0.216940
\(538\) −13414.9 −1.07501
\(539\) 0 0
\(540\) 4317.16 0.344039
\(541\) 16805.9 1.33556 0.667782 0.744356i \(-0.267244\pi\)
0.667782 + 0.744356i \(0.267244\pi\)
\(542\) −139.736 −0.0110741
\(543\) 9118.95 0.720684
\(544\) −15163.3 −1.19508
\(545\) 8513.89 0.669165
\(546\) 2447.12 0.191807
\(547\) −16284.0 −1.27286 −0.636428 0.771336i \(-0.719589\pi\)
−0.636428 + 0.771336i \(0.719589\pi\)
\(548\) −14031.1 −1.09375
\(549\) −1452.39 −0.112908
\(550\) 0 0
\(551\) −10137.8 −0.783823
\(552\) −811.549 −0.0625758
\(553\) 3978.53 0.305939
\(554\) 19008.7 1.45776
\(555\) 2904.64 0.222154
\(556\) −15432.6 −1.17713
\(557\) 13972.6 1.06291 0.531454 0.847087i \(-0.321646\pi\)
0.531454 + 0.847087i \(0.321646\pi\)
\(558\) 15041.2 1.14112
\(559\) 14427.6 1.09163
\(560\) 3311.31 0.249872
\(561\) 0 0
\(562\) 17459.2 1.31045
\(563\) −6396.33 −0.478816 −0.239408 0.970919i \(-0.576953\pi\)
−0.239408 + 0.970919i \(0.576953\pi\)
\(564\) 7673.45 0.572891
\(565\) −2027.35 −0.150958
\(566\) 3513.51 0.260926
\(567\) −2947.00 −0.218276
\(568\) 612.169 0.0452219
\(569\) 15320.3 1.12876 0.564378 0.825517i \(-0.309116\pi\)
0.564378 + 0.825517i \(0.309116\pi\)
\(570\) −1962.18 −0.144187
\(571\) 14347.1 1.05150 0.525750 0.850639i \(-0.323785\pi\)
0.525750 + 0.850639i \(0.323785\pi\)
\(572\) 0 0
\(573\) 4477.21 0.326419
\(574\) 8246.85 0.599681
\(575\) 6545.02 0.474689
\(576\) 7545.57 0.545831
\(577\) −19882.3 −1.43451 −0.717256 0.696810i \(-0.754602\pi\)
−0.717256 + 0.696810i \(0.754602\pi\)
\(578\) −3283.64 −0.236300
\(579\) 5932.72 0.425829
\(580\) −11076.0 −0.792943
\(581\) 3573.13 0.255143
\(582\) −3036.17 −0.216243
\(583\) 0 0
\(584\) 2948.08 0.208891
\(585\) −6810.24 −0.481314
\(586\) 15252.3 1.07520
\(587\) 17868.5 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(588\) −652.372 −0.0457540
\(589\) −6749.84 −0.472194
\(590\) −2051.76 −0.143169
\(591\) 7964.37 0.554332
\(592\) 16334.5 1.13403
\(593\) −24594.0 −1.70312 −0.851562 0.524253i \(-0.824344\pi\)
−0.851562 + 0.524253i \(0.824344\pi\)
\(594\) 0 0
\(595\) −2890.94 −0.199188
\(596\) −4007.83 −0.275448
\(597\) −3790.07 −0.259828
\(598\) −13793.3 −0.943226
\(599\) 13645.6 0.930789 0.465394 0.885103i \(-0.345913\pi\)
0.465394 + 0.885103i \(0.345913\pi\)
\(600\) −852.989 −0.0580386
\(601\) 23143.9 1.57081 0.785407 0.618980i \(-0.212454\pi\)
0.785407 + 0.618980i \(0.212454\pi\)
\(602\) −8468.48 −0.573338
\(603\) 8043.69 0.543225
\(604\) 12835.7 0.864698
\(605\) 0 0
\(606\) 6323.36 0.423876
\(607\) 11968.7 0.800321 0.400160 0.916445i \(-0.368954\pi\)
0.400160 + 0.916445i \(0.368954\pi\)
\(608\) −9408.96 −0.627605
\(609\) −3591.82 −0.238995
\(610\) 1567.85 0.104066
\(611\) −26314.7 −1.74235
\(612\) −9750.08 −0.643993
\(613\) −7079.21 −0.466438 −0.233219 0.972424i \(-0.574926\pi\)
−0.233219 + 0.972424i \(0.574926\pi\)
\(614\) 30598.8 2.01118
\(615\) 3991.43 0.261707
\(616\) 0 0
\(617\) −24592.0 −1.60460 −0.802300 0.596921i \(-0.796390\pi\)
−0.802300 + 0.596921i \(0.796390\pi\)
\(618\) −9541.89 −0.621086
\(619\) −5460.23 −0.354548 −0.177274 0.984162i \(-0.556728\pi\)
−0.177274 + 0.984162i \(0.556728\pi\)
\(620\) −7374.50 −0.477689
\(621\) −7891.17 −0.509922
\(622\) 27632.3 1.78127
\(623\) −7630.68 −0.490717
\(624\) 6660.52 0.427299
\(625\) 1621.87 0.103800
\(626\) −32218.6 −2.05705
\(627\) 0 0
\(628\) 16485.4 1.04751
\(629\) −14260.8 −0.904002
\(630\) 3997.38 0.252793
\(631\) −23358.4 −1.47367 −0.736833 0.676075i \(-0.763680\pi\)
−0.736833 + 0.676075i \(0.763680\pi\)
\(632\) 2922.59 0.183947
\(633\) −3013.59 −0.189225
\(634\) 2420.96 0.151654
\(635\) 10328.8 0.645490
\(636\) −2315.94 −0.144391
\(637\) 2237.19 0.139153
\(638\) 0 0
\(639\) 2738.14 0.169514
\(640\) 4208.41 0.259925
\(641\) 9328.68 0.574822 0.287411 0.957807i \(-0.407205\pi\)
0.287411 + 0.957807i \(0.407205\pi\)
\(642\) −10476.4 −0.644038
\(643\) −267.859 −0.0164282 −0.00821409 0.999966i \(-0.502615\pi\)
−0.00821409 + 0.999966i \(0.502615\pi\)
\(644\) 3677.13 0.224998
\(645\) −4098.70 −0.250211
\(646\) 9633.65 0.586735
\(647\) 11518.0 0.699877 0.349939 0.936773i \(-0.386202\pi\)
0.349939 + 0.936773i \(0.386202\pi\)
\(648\) −2164.84 −0.131239
\(649\) 0 0
\(650\) −14497.6 −0.874835
\(651\) −2391.46 −0.143976
\(652\) −7076.62 −0.425064
\(653\) −12565.0 −0.752994 −0.376497 0.926418i \(-0.622871\pi\)
−0.376497 + 0.926418i \(0.622871\pi\)
\(654\) −10051.9 −0.601012
\(655\) −8375.31 −0.499619
\(656\) 22446.2 1.33594
\(657\) 13186.3 0.783024
\(658\) 15445.8 0.915106
\(659\) 4020.26 0.237643 0.118822 0.992916i \(-0.462088\pi\)
0.118822 + 0.992916i \(0.462088\pi\)
\(660\) 0 0
\(661\) −2080.20 −0.122406 −0.0612031 0.998125i \(-0.519494\pi\)
−0.0612031 + 0.998125i \(0.519494\pi\)
\(662\) 1629.99 0.0956968
\(663\) −5814.97 −0.340626
\(664\) 2624.79 0.153406
\(665\) −1793.85 −0.104605
\(666\) 19718.9 1.14728
\(667\) 20245.5 1.17527
\(668\) 24767.9 1.43458
\(669\) −8579.02 −0.495791
\(670\) −8683.14 −0.500685
\(671\) 0 0
\(672\) −3333.58 −0.191362
\(673\) 17535.3 1.00436 0.502182 0.864762i \(-0.332531\pi\)
0.502182 + 0.864762i \(0.332531\pi\)
\(674\) −5243.26 −0.299648
\(675\) −8294.11 −0.472949
\(676\) −748.574 −0.0425907
\(677\) −12560.8 −0.713074 −0.356537 0.934281i \(-0.616043\pi\)
−0.356537 + 0.934281i \(0.616043\pi\)
\(678\) 2393.59 0.135583
\(679\) −2775.71 −0.156881
\(680\) −2123.65 −0.119762
\(681\) −5697.43 −0.320596
\(682\) 0 0
\(683\) −4961.51 −0.277961 −0.138980 0.990295i \(-0.544382\pi\)
−0.138980 + 0.990295i \(0.544382\pi\)
\(684\) −6050.01 −0.338198
\(685\) −13669.4 −0.762456
\(686\) −1313.15 −0.0730850
\(687\) −6547.40 −0.363608
\(688\) −23049.4 −1.27725
\(689\) 7942.07 0.439142
\(690\) 3918.51 0.216196
\(691\) −15429.4 −0.849441 −0.424720 0.905325i \(-0.639628\pi\)
−0.424720 + 0.905325i \(0.639628\pi\)
\(692\) 6053.89 0.332564
\(693\) 0 0
\(694\) 21178.0 1.15836
\(695\) −15034.8 −0.820579
\(696\) −2638.52 −0.143696
\(697\) −19596.6 −1.06496
\(698\) −38941.6 −2.11169
\(699\) 9547.62 0.516630
\(700\) 3864.89 0.208684
\(701\) −20446.3 −1.10163 −0.550817 0.834626i \(-0.685684\pi\)
−0.550817 + 0.834626i \(0.685684\pi\)
\(702\) 17479.4 0.939768
\(703\) −8848.97 −0.474744
\(704\) 0 0
\(705\) 7475.68 0.399362
\(706\) 36853.9 1.96461
\(707\) 5780.91 0.307515
\(708\) 1100.21 0.0584018
\(709\) −28090.1 −1.48794 −0.743968 0.668216i \(-0.767058\pi\)
−0.743968 + 0.668216i \(0.767058\pi\)
\(710\) −2955.82 −0.156239
\(711\) 13072.3 0.689522
\(712\) −5605.43 −0.295045
\(713\) 13479.6 0.708013
\(714\) 3413.19 0.178901
\(715\) 0 0
\(716\) 8985.44 0.468997
\(717\) 3953.00 0.205896
\(718\) −32507.2 −1.68963
\(719\) 24923.7 1.29277 0.646383 0.763013i \(-0.276281\pi\)
0.646383 + 0.763013i \(0.276281\pi\)
\(720\) 10880.0 0.563158
\(721\) −8723.32 −0.450587
\(722\) −20281.4 −1.04542
\(723\) −4473.47 −0.230111
\(724\) −30351.7 −1.55803
\(725\) 21279.2 1.09006
\(726\) 0 0
\(727\) −24025.9 −1.22568 −0.612842 0.790205i \(-0.709974\pi\)
−0.612842 + 0.790205i \(0.709974\pi\)
\(728\) 1643.42 0.0836663
\(729\) −4283.00 −0.217599
\(730\) −14234.6 −0.721706
\(731\) 20123.3 1.01818
\(732\) −840.723 −0.0424509
\(733\) −31004.0 −1.56229 −0.781145 0.624350i \(-0.785364\pi\)
−0.781145 + 0.624350i \(0.785364\pi\)
\(734\) 11286.3 0.567554
\(735\) −635.558 −0.0318951
\(736\) 18789.9 0.941038
\(737\) 0 0
\(738\) 27096.8 1.35155
\(739\) 5542.14 0.275874 0.137937 0.990441i \(-0.455953\pi\)
0.137937 + 0.990441i \(0.455953\pi\)
\(740\) −9667.89 −0.480269
\(741\) −3608.24 −0.178882
\(742\) −4661.72 −0.230643
\(743\) −35227.3 −1.73939 −0.869694 0.493591i \(-0.835684\pi\)
−0.869694 + 0.493591i \(0.835684\pi\)
\(744\) −1756.74 −0.0865662
\(745\) −3904.53 −0.192015
\(746\) 31759.0 1.55868
\(747\) 11740.3 0.575039
\(748\) 0 0
\(749\) −9577.71 −0.467239
\(750\) 10325.7 0.502722
\(751\) 19148.6 0.930415 0.465207 0.885202i \(-0.345980\pi\)
0.465207 + 0.885202i \(0.345980\pi\)
\(752\) 42040.2 2.03863
\(753\) 12729.1 0.616036
\(754\) −44844.9 −2.16599
\(755\) 12504.9 0.602781
\(756\) −4659.80 −0.224174
\(757\) 12899.6 0.619345 0.309673 0.950843i \(-0.399781\pi\)
0.309673 + 0.950843i \(0.399781\pi\)
\(758\) −46466.7 −2.22658
\(759\) 0 0
\(760\) −1317.74 −0.0628942
\(761\) −4568.70 −0.217628 −0.108814 0.994062i \(-0.534705\pi\)
−0.108814 + 0.994062i \(0.534705\pi\)
\(762\) −12194.7 −0.579748
\(763\) −9189.62 −0.436024
\(764\) −14902.1 −0.705677
\(765\) −9498.79 −0.448927
\(766\) −34660.4 −1.63490
\(767\) −3772.97 −0.177619
\(768\) −10217.8 −0.480080
\(769\) −6294.43 −0.295166 −0.147583 0.989050i \(-0.547149\pi\)
−0.147583 + 0.989050i \(0.547149\pi\)
\(770\) 0 0
\(771\) −15894.9 −0.742467
\(772\) −19746.6 −0.920591
\(773\) −4218.70 −0.196295 −0.0981475 0.995172i \(-0.531292\pi\)
−0.0981475 + 0.995172i \(0.531292\pi\)
\(774\) −27825.0 −1.29218
\(775\) 14167.9 0.656677
\(776\) −2039.01 −0.0943250
\(777\) −3135.18 −0.144754
\(778\) −4329.72 −0.199522
\(779\) −12159.9 −0.559271
\(780\) −3942.16 −0.180964
\(781\) 0 0
\(782\) −19238.6 −0.879758
\(783\) −25655.8 −1.17096
\(784\) −3574.12 −0.162815
\(785\) 16060.5 0.730221
\(786\) 9888.32 0.448734
\(787\) −10453.6 −0.473482 −0.236741 0.971573i \(-0.576079\pi\)
−0.236741 + 0.971573i \(0.576079\pi\)
\(788\) −26508.8 −1.19840
\(789\) −14661.6 −0.661557
\(790\) −14111.5 −0.635526
\(791\) 2188.25 0.0983631
\(792\) 0 0
\(793\) 2883.10 0.129107
\(794\) −50203.7 −2.24391
\(795\) −2256.25 −0.100655
\(796\) 12615.0 0.561715
\(797\) 2131.75 0.0947436 0.0473718 0.998877i \(-0.484915\pi\)
0.0473718 + 0.998877i \(0.484915\pi\)
\(798\) 2117.91 0.0939513
\(799\) −36703.2 −1.62511
\(800\) 19749.3 0.872806
\(801\) −25072.2 −1.10597
\(802\) 49023.4 2.15845
\(803\) 0 0
\(804\) 4656.15 0.204241
\(805\) 3582.35 0.156846
\(806\) −29858.0 −1.30484
\(807\) 7008.05 0.305694
\(808\) 4246.60 0.184895
\(809\) 35641.7 1.54894 0.774472 0.632608i \(-0.218016\pi\)
0.774472 + 0.632608i \(0.218016\pi\)
\(810\) 10452.8 0.453423
\(811\) 8034.96 0.347898 0.173949 0.984755i \(-0.444347\pi\)
0.173949 + 0.984755i \(0.444347\pi\)
\(812\) 11955.1 0.516677
\(813\) 72.9991 0.00314907
\(814\) 0 0
\(815\) −6894.23 −0.296312
\(816\) 9289.96 0.398546
\(817\) 12486.7 0.534703
\(818\) −35162.6 −1.50297
\(819\) 7350.75 0.313622
\(820\) −13285.2 −0.565779
\(821\) −37824.5 −1.60790 −0.803950 0.594697i \(-0.797272\pi\)
−0.803950 + 0.594697i \(0.797272\pi\)
\(822\) 16138.8 0.684801
\(823\) 19245.1 0.815118 0.407559 0.913179i \(-0.366380\pi\)
0.407559 + 0.913179i \(0.366380\pi\)
\(824\) −6408.07 −0.270917
\(825\) 0 0
\(826\) 2214.60 0.0932880
\(827\) 31294.1 1.31584 0.657921 0.753087i \(-0.271436\pi\)
0.657921 + 0.753087i \(0.271436\pi\)
\(828\) 12082.0 0.507099
\(829\) −13121.7 −0.549740 −0.274870 0.961481i \(-0.588635\pi\)
−0.274870 + 0.961481i \(0.588635\pi\)
\(830\) −12673.6 −0.530008
\(831\) −9930.27 −0.414533
\(832\) −14978.6 −0.624144
\(833\) 3120.38 0.129790
\(834\) 17750.9 0.737005
\(835\) 24129.5 1.00004
\(836\) 0 0
\(837\) −17081.8 −0.705418
\(838\) −23924.8 −0.986239
\(839\) −5784.11 −0.238009 −0.119005 0.992894i \(-0.537970\pi\)
−0.119005 + 0.992894i \(0.537970\pi\)
\(840\) −466.875 −0.0191770
\(841\) 41433.2 1.69885
\(842\) 18005.9 0.736965
\(843\) −9120.84 −0.372643
\(844\) 10030.5 0.409081
\(845\) −729.281 −0.0296900
\(846\) 50750.5 2.06246
\(847\) 0 0
\(848\) −12688.2 −0.513814
\(849\) −1835.49 −0.0741976
\(850\) −20221.0 −0.815969
\(851\) 17671.6 0.711837
\(852\) 1584.99 0.0637335
\(853\) −39103.1 −1.56959 −0.784797 0.619753i \(-0.787233\pi\)
−0.784797 + 0.619753i \(0.787233\pi\)
\(854\) −1692.28 −0.0678087
\(855\) −5894.07 −0.235758
\(856\) −7035.70 −0.280929
\(857\) −5793.14 −0.230910 −0.115455 0.993313i \(-0.536833\pi\)
−0.115455 + 0.993313i \(0.536833\pi\)
\(858\) 0 0
\(859\) 16365.8 0.650049 0.325025 0.945706i \(-0.394627\pi\)
0.325025 + 0.945706i \(0.394627\pi\)
\(860\) 13642.2 0.540925
\(861\) −4308.22 −0.170527
\(862\) −28921.5 −1.14277
\(863\) −20999.3 −0.828303 −0.414151 0.910208i \(-0.635922\pi\)
−0.414151 + 0.910208i \(0.635922\pi\)
\(864\) −23811.3 −0.937588
\(865\) 5897.85 0.231830
\(866\) 10076.3 0.395391
\(867\) 1715.40 0.0671949
\(868\) 7959.79 0.311259
\(869\) 0 0
\(870\) 12739.9 0.496463
\(871\) −15967.4 −0.621164
\(872\) −6750.61 −0.262161
\(873\) −9120.19 −0.353576
\(874\) −11937.7 −0.462012
\(875\) 9439.90 0.364716
\(876\) 7632.99 0.294400
\(877\) −22042.8 −0.848727 −0.424364 0.905492i \(-0.639502\pi\)
−0.424364 + 0.905492i \(0.639502\pi\)
\(878\) −48051.4 −1.84699
\(879\) −7967.94 −0.305747
\(880\) 0 0
\(881\) −7746.91 −0.296254 −0.148127 0.988968i \(-0.547324\pi\)
−0.148127 + 0.988968i \(0.547324\pi\)
\(882\) −4314.64 −0.164718
\(883\) −12901.9 −0.491715 −0.245857 0.969306i \(-0.579070\pi\)
−0.245857 + 0.969306i \(0.579070\pi\)
\(884\) 19354.7 0.736390
\(885\) 1071.86 0.0407119
\(886\) 42978.6 1.62968
\(887\) 22230.9 0.841532 0.420766 0.907169i \(-0.361761\pi\)
0.420766 + 0.907169i \(0.361761\pi\)
\(888\) −2303.07 −0.0870338
\(889\) −11148.6 −0.420598
\(890\) 27065.4 1.01936
\(891\) 0 0
\(892\) 28554.6 1.07184
\(893\) −22774.6 −0.853441
\(894\) 4609.89 0.172458
\(895\) 8753.85 0.326937
\(896\) −4542.42 −0.169366
\(897\) 7205.72 0.268218
\(898\) −42791.9 −1.59018
\(899\) 43824.9 1.62585
\(900\) 12698.9 0.470330
\(901\) 11077.4 0.409592
\(902\) 0 0
\(903\) 4424.00 0.163036
\(904\) 1607.47 0.0591412
\(905\) −29569.5 −1.08610
\(906\) −14763.9 −0.541389
\(907\) −35025.3 −1.28225 −0.641123 0.767438i \(-0.721531\pi\)
−0.641123 + 0.767438i \(0.721531\pi\)
\(908\) 18963.5 0.693090
\(909\) 18994.4 0.693074
\(910\) −7935.12 −0.289062
\(911\) 9605.98 0.349353 0.174676 0.984626i \(-0.444112\pi\)
0.174676 + 0.984626i \(0.444112\pi\)
\(912\) 5764.50 0.209300
\(913\) 0 0
\(914\) −26953.5 −0.975428
\(915\) −819.055 −0.0295925
\(916\) 21792.5 0.786076
\(917\) 9040.04 0.325549
\(918\) 24379.9 0.876532
\(919\) 791.576 0.0284132 0.0142066 0.999899i \(-0.495478\pi\)
0.0142066 + 0.999899i \(0.495478\pi\)
\(920\) 2631.56 0.0943044
\(921\) −15985.0 −0.571906
\(922\) 5678.90 0.202847
\(923\) −5435.43 −0.193835
\(924\) 0 0
\(925\) 18573.9 0.660224
\(926\) −11891.8 −0.422019
\(927\) −28662.4 −1.01553
\(928\) 61089.8 2.16096
\(929\) 25050.6 0.884695 0.442348 0.896844i \(-0.354146\pi\)
0.442348 + 0.896844i \(0.354146\pi\)
\(930\) 8482.30 0.299081
\(931\) 1936.22 0.0681601
\(932\) −31778.6 −1.11689
\(933\) −14435.3 −0.506528
\(934\) −36772.2 −1.28825
\(935\) 0 0
\(936\) 5399.80 0.188566
\(937\) −14769.7 −0.514948 −0.257474 0.966285i \(-0.582890\pi\)
−0.257474 + 0.966285i \(0.582890\pi\)
\(938\) 9372.30 0.326244
\(939\) 16831.2 0.584949
\(940\) −24882.3 −0.863372
\(941\) −678.921 −0.0235199 −0.0117599 0.999931i \(-0.503743\pi\)
−0.0117599 + 0.999931i \(0.503743\pi\)
\(942\) −18961.8 −0.655849
\(943\) 24283.5 0.838578
\(944\) 6027.67 0.207822
\(945\) −4539.70 −0.156271
\(946\) 0 0
\(947\) −21354.7 −0.732772 −0.366386 0.930463i \(-0.619405\pi\)
−0.366386 + 0.930463i \(0.619405\pi\)
\(948\) 7567.00 0.259246
\(949\) −26175.9 −0.895369
\(950\) −12547.3 −0.428513
\(951\) −1264.73 −0.0431248
\(952\) 2292.20 0.0780365
\(953\) 3942.06 0.133994 0.0669968 0.997753i \(-0.478658\pi\)
0.0669968 + 0.997753i \(0.478658\pi\)
\(954\) −15317.1 −0.519820
\(955\) −14518.0 −0.491927
\(956\) −13157.3 −0.445122
\(957\) 0 0
\(958\) −34909.6 −1.17733
\(959\) 14754.3 0.496812
\(960\) 4255.23 0.143059
\(961\) −612.100 −0.0205465
\(962\) −39143.6 −1.31189
\(963\) −31469.6 −1.05306
\(964\) 14889.6 0.497471
\(965\) −19237.7 −0.641743
\(966\) −4229.51 −0.140872
\(967\) 27117.9 0.901813 0.450907 0.892571i \(-0.351101\pi\)
0.450907 + 0.892571i \(0.351101\pi\)
\(968\) 0 0
\(969\) −5032.69 −0.166846
\(970\) 9845.21 0.325887
\(971\) −28536.2 −0.943120 −0.471560 0.881834i \(-0.656309\pi\)
−0.471560 + 0.881834i \(0.656309\pi\)
\(972\) −23578.6 −0.778069
\(973\) 16228.1 0.534685
\(974\) 53770.7 1.76892
\(975\) 7573.66 0.248771
\(976\) −4606.03 −0.151061
\(977\) 24692.4 0.808577 0.404288 0.914632i \(-0.367519\pi\)
0.404288 + 0.914632i \(0.367519\pi\)
\(978\) 8139.68 0.266133
\(979\) 0 0
\(980\) 2115.41 0.0689533
\(981\) −30194.5 −0.982706
\(982\) 3959.58 0.128672
\(983\) 26814.7 0.870047 0.435024 0.900419i \(-0.356740\pi\)
0.435024 + 0.900419i \(0.356740\pi\)
\(984\) −3164.78 −0.102530
\(985\) −25825.6 −0.835402
\(986\) −62548.7 −2.02024
\(987\) −8069.00 −0.260222
\(988\) 12009.7 0.386722
\(989\) −24936.1 −0.801741
\(990\) 0 0
\(991\) 46160.9 1.47967 0.739833 0.672790i \(-0.234904\pi\)
0.739833 + 0.672790i \(0.234904\pi\)
\(992\) 40674.0 1.30182
\(993\) −851.519 −0.0272126
\(994\) 3190.41 0.101804
\(995\) 12289.8 0.391572
\(996\) 6795.94 0.216202
\(997\) 43200.4 1.37229 0.686143 0.727467i \(-0.259302\pi\)
0.686143 + 0.727467i \(0.259302\pi\)
\(998\) −54870.0 −1.74036
\(999\) −22394.1 −0.709228
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.4.a.c.1.2 2
11.10 odd 2 77.4.a.b.1.1 2
33.32 even 2 693.4.a.i.1.2 2
44.43 even 2 1232.4.a.m.1.2 2
55.54 odd 2 1925.4.a.l.1.2 2
77.76 even 2 539.4.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.b.1.1 2 11.10 odd 2
539.4.a.d.1.1 2 77.76 even 2
693.4.a.i.1.2 2 33.32 even 2
847.4.a.c.1.2 2 1.1 even 1 trivial
1232.4.a.m.1.2 2 44.43 even 2
1925.4.a.l.1.2 2 55.54 odd 2