Properties

Label 1925.4.a.l.1.2
Level $1925$
Weight $4$
Character 1925.1
Self dual yes
Analytic conductor $113.579$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,4,Mod(1,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,4,2,0,4,-14,18,-46,0,-22,4,80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.578676761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.82843 q^{2} +2.00000 q^{3} +6.65685 q^{4} +7.65685 q^{6} -7.00000 q^{7} -5.14214 q^{8} -23.0000 q^{9} -11.0000 q^{11} +13.3137 q^{12} +45.6569 q^{13} -26.7990 q^{14} -72.9411 q^{16} +63.6812 q^{17} -88.0538 q^{18} -39.5147 q^{19} -14.0000 q^{21} -42.1127 q^{22} +78.9117 q^{23} -10.2843 q^{24} +174.794 q^{26} -100.000 q^{27} -46.5980 q^{28} +256.558 q^{29} -170.818 q^{31} -238.113 q^{32} -22.0000 q^{33} +243.799 q^{34} -153.108 q^{36} +223.941 q^{37} -151.279 q^{38} +91.3137 q^{39} +307.730 q^{41} -53.5980 q^{42} +316.000 q^{43} -73.2254 q^{44} +302.108 q^{46} +576.357 q^{47} -145.882 q^{48} +49.0000 q^{49} +127.362 q^{51} +303.931 q^{52} -173.951 q^{53} -382.843 q^{54} +35.9949 q^{56} -79.0294 q^{57} +982.215 q^{58} -82.6375 q^{59} -63.1472 q^{61} -653.966 q^{62} +161.000 q^{63} -328.068 q^{64} -84.2254 q^{66} +349.726 q^{67} +423.917 q^{68} +157.823 q^{69} -119.050 q^{71} +118.269 q^{72} -573.318 q^{73} +857.342 q^{74} -263.044 q^{76} +77.0000 q^{77} +349.588 q^{78} +568.362 q^{79} +421.000 q^{81} +1178.12 q^{82} -510.447 q^{83} -93.1960 q^{84} +1209.78 q^{86} +513.117 q^{87} +56.5635 q^{88} +1090.10 q^{89} -319.598 q^{91} +525.304 q^{92} -341.637 q^{93} +2206.54 q^{94} -476.225 q^{96} -396.530 q^{97} +187.593 q^{98} +253.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 4 q^{3} + 2 q^{4} + 4 q^{6} - 14 q^{7} + 18 q^{8} - 46 q^{9} - 22 q^{11} + 4 q^{12} + 80 q^{13} - 14 q^{14} - 78 q^{16} - 48 q^{17} - 46 q^{18} - 96 q^{19} - 28 q^{21} - 22 q^{22} + 56 q^{23}+ \cdots + 506 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.82843 1.35355 0.676777 0.736188i \(-0.263376\pi\)
0.676777 + 0.736188i \(0.263376\pi\)
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) 6.65685 0.832107
\(5\) 0 0
\(6\) 7.65685 0.520983
\(7\) −7.00000 −0.377964
\(8\) −5.14214 −0.227252
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 13.3137 0.320278
\(13\) 45.6569 0.974072 0.487036 0.873382i \(-0.338078\pi\)
0.487036 + 0.873382i \(0.338078\pi\)
\(14\) −26.7990 −0.511595
\(15\) 0 0
\(16\) −72.9411 −1.13971
\(17\) 63.6812 0.908528 0.454264 0.890867i \(-0.349902\pi\)
0.454264 + 0.890867i \(0.349902\pi\)
\(18\) −88.0538 −1.15303
\(19\) −39.5147 −0.477121 −0.238560 0.971128i \(-0.576676\pi\)
−0.238560 + 0.971128i \(0.576676\pi\)
\(20\) 0 0
\(21\) −14.0000 −0.145479
\(22\) −42.1127 −0.408112
\(23\) 78.9117 0.715401 0.357701 0.933836i \(-0.383561\pi\)
0.357701 + 0.933836i \(0.383561\pi\)
\(24\) −10.2843 −0.0874695
\(25\) 0 0
\(26\) 174.794 1.31846
\(27\) −100.000 −0.712778
\(28\) −46.5980 −0.314507
\(29\) 256.558 1.64282 0.821409 0.570340i \(-0.193189\pi\)
0.821409 + 0.570340i \(0.193189\pi\)
\(30\) 0 0
\(31\) −170.818 −0.989673 −0.494837 0.868986i \(-0.664772\pi\)
−0.494837 + 0.868986i \(0.664772\pi\)
\(32\) −238.113 −1.31540
\(33\) −22.0000 −0.116052
\(34\) 243.799 1.22974
\(35\) 0 0
\(36\) −153.108 −0.708832
\(37\) 223.941 0.995019 0.497509 0.867459i \(-0.334248\pi\)
0.497509 + 0.867459i \(0.334248\pi\)
\(38\) −151.279 −0.645809
\(39\) 91.3137 0.374920
\(40\) 0 0
\(41\) 307.730 1.17218 0.586090 0.810246i \(-0.300667\pi\)
0.586090 + 0.810246i \(0.300667\pi\)
\(42\) −53.5980 −0.196913
\(43\) 316.000 1.12069 0.560344 0.828260i \(-0.310669\pi\)
0.560344 + 0.828260i \(0.310669\pi\)
\(44\) −73.2254 −0.250890
\(45\) 0 0
\(46\) 302.108 0.968334
\(47\) 576.357 1.78873 0.894366 0.447337i \(-0.147627\pi\)
0.894366 + 0.447337i \(0.147627\pi\)
\(48\) −145.882 −0.438673
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 127.362 0.349692
\(52\) 303.931 0.810532
\(53\) −173.951 −0.450831 −0.225415 0.974263i \(-0.572374\pi\)
−0.225415 + 0.974263i \(0.572374\pi\)
\(54\) −382.843 −0.964783
\(55\) 0 0
\(56\) 35.9949 0.0858933
\(57\) −79.0294 −0.183644
\(58\) 982.215 2.22364
\(59\) −82.6375 −0.182347 −0.0911736 0.995835i \(-0.529062\pi\)
−0.0911736 + 0.995835i \(0.529062\pi\)
\(60\) 0 0
\(61\) −63.1472 −0.132544 −0.0662719 0.997802i \(-0.521110\pi\)
−0.0662719 + 0.997802i \(0.521110\pi\)
\(62\) −653.966 −1.33958
\(63\) 161.000 0.321970
\(64\) −328.068 −0.640758
\(65\) 0 0
\(66\) −84.2254 −0.157082
\(67\) 349.726 0.637699 0.318849 0.947805i \(-0.396704\pi\)
0.318849 + 0.947805i \(0.396704\pi\)
\(68\) 423.917 0.755992
\(69\) 157.823 0.275358
\(70\) 0 0
\(71\) −119.050 −0.198994 −0.0994971 0.995038i \(-0.531723\pi\)
−0.0994971 + 0.995038i \(0.531723\pi\)
\(72\) 118.269 0.193585
\(73\) −573.318 −0.919203 −0.459601 0.888125i \(-0.652008\pi\)
−0.459601 + 0.888125i \(0.652008\pi\)
\(74\) 857.342 1.34681
\(75\) 0 0
\(76\) −263.044 −0.397016
\(77\) 77.0000 0.113961
\(78\) 349.588 0.507475
\(79\) 568.362 0.809439 0.404719 0.914441i \(-0.367369\pi\)
0.404719 + 0.914441i \(0.367369\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) 1178.12 1.58661
\(83\) −510.447 −0.675046 −0.337523 0.941317i \(-0.609589\pi\)
−0.337523 + 0.941317i \(0.609589\pi\)
\(84\) −93.1960 −0.121054
\(85\) 0 0
\(86\) 1209.78 1.51691
\(87\) 513.117 0.632321
\(88\) 56.5635 0.0685192
\(89\) 1090.10 1.29832 0.649158 0.760654i \(-0.275121\pi\)
0.649158 + 0.760654i \(0.275121\pi\)
\(90\) 0 0
\(91\) −319.598 −0.368165
\(92\) 525.304 0.595290
\(93\) −341.637 −0.380925
\(94\) 2206.54 2.42114
\(95\) 0 0
\(96\) −476.225 −0.506297
\(97\) −396.530 −0.415067 −0.207534 0.978228i \(-0.566544\pi\)
−0.207534 + 0.978228i \(0.566544\pi\)
\(98\) 187.593 0.193365
\(99\) 253.000 0.256843
\(100\) 0 0
\(101\) 825.844 0.813609 0.406804 0.913515i \(-0.366643\pi\)
0.406804 + 0.913515i \(0.366643\pi\)
\(102\) 487.598 0.473327
\(103\) −1246.19 −1.19214 −0.596071 0.802932i \(-0.703272\pi\)
−0.596071 + 0.802932i \(0.703272\pi\)
\(104\) −234.774 −0.221360
\(105\) 0 0
\(106\) −665.960 −0.610224
\(107\) 1368.24 1.23620 0.618099 0.786100i \(-0.287903\pi\)
0.618099 + 0.786100i \(0.287903\pi\)
\(108\) −665.685 −0.593107
\(109\) −1312.80 −1.15361 −0.576806 0.816881i \(-0.695701\pi\)
−0.576806 + 0.816881i \(0.695701\pi\)
\(110\) 0 0
\(111\) 447.882 0.382983
\(112\) 510.588 0.430768
\(113\) 312.607 0.260244 0.130122 0.991498i \(-0.458463\pi\)
0.130122 + 0.991498i \(0.458463\pi\)
\(114\) −302.558 −0.248572
\(115\) 0 0
\(116\) 1707.87 1.36700
\(117\) −1050.11 −0.829765
\(118\) −316.372 −0.246817
\(119\) −445.769 −0.343391
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −241.754 −0.179405
\(123\) 615.460 0.451172
\(124\) −1137.11 −0.823514
\(125\) 0 0
\(126\) 616.377 0.435803
\(127\) 1592.65 1.11280 0.556398 0.830916i \(-0.312183\pi\)
0.556398 + 0.830916i \(0.312183\pi\)
\(128\) 648.917 0.448099
\(129\) 632.000 0.431353
\(130\) 0 0
\(131\) 1291.43 0.861321 0.430661 0.902514i \(-0.358281\pi\)
0.430661 + 0.902514i \(0.358281\pi\)
\(132\) −146.451 −0.0965675
\(133\) 276.603 0.180335
\(134\) 1338.90 0.863159
\(135\) 0 0
\(136\) −327.458 −0.206465
\(137\) 2107.76 1.31444 0.657220 0.753699i \(-0.271732\pi\)
0.657220 + 0.753699i \(0.271732\pi\)
\(138\) 604.215 0.372712
\(139\) 2318.30 1.41464 0.707321 0.706892i \(-0.249903\pi\)
0.707321 + 0.706892i \(0.249903\pi\)
\(140\) 0 0
\(141\) 1152.71 0.688483
\(142\) −455.773 −0.269349
\(143\) −502.225 −0.293694
\(144\) 1677.65 0.970860
\(145\) 0 0
\(146\) −2194.91 −1.24419
\(147\) 98.0000 0.0549857
\(148\) 1490.74 0.827962
\(149\) 602.061 0.331025 0.165513 0.986208i \(-0.447072\pi\)
0.165513 + 0.986208i \(0.447072\pi\)
\(150\) 0 0
\(151\) −1928.20 −1.03917 −0.519584 0.854420i \(-0.673913\pi\)
−0.519584 + 0.854420i \(0.673913\pi\)
\(152\) 203.190 0.108427
\(153\) −1464.67 −0.773931
\(154\) 294.789 0.154252
\(155\) 0 0
\(156\) 607.862 0.311974
\(157\) −2476.45 −1.25887 −0.629434 0.777054i \(-0.716713\pi\)
−0.629434 + 0.777054i \(0.716713\pi\)
\(158\) 2175.93 1.09562
\(159\) −347.902 −0.173525
\(160\) 0 0
\(161\) −552.382 −0.270396
\(162\) 1611.77 0.781682
\(163\) 1063.06 0.510829 0.255415 0.966832i \(-0.417788\pi\)
0.255415 + 0.966832i \(0.417788\pi\)
\(164\) 2048.51 0.975378
\(165\) 0 0
\(166\) −1954.21 −0.913710
\(167\) 3720.65 1.72403 0.862015 0.506883i \(-0.169203\pi\)
0.862015 + 0.506883i \(0.169203\pi\)
\(168\) 71.9899 0.0330604
\(169\) −112.452 −0.0511842
\(170\) 0 0
\(171\) 908.839 0.406436
\(172\) 2103.57 0.932531
\(173\) 909.421 0.399665 0.199832 0.979830i \(-0.435960\pi\)
0.199832 + 0.979830i \(0.435960\pi\)
\(174\) 1964.43 0.855880
\(175\) 0 0
\(176\) 802.352 0.343634
\(177\) −165.275 −0.0701855
\(178\) 4173.36 1.75734
\(179\) 1349.80 0.563626 0.281813 0.959469i \(-0.409064\pi\)
0.281813 + 0.959469i \(0.409064\pi\)
\(180\) 0 0
\(181\) −4559.47 −1.87239 −0.936196 0.351479i \(-0.885679\pi\)
−0.936196 + 0.351479i \(0.885679\pi\)
\(182\) −1223.56 −0.498330
\(183\) −126.294 −0.0510161
\(184\) −405.775 −0.162577
\(185\) 0 0
\(186\) −1307.93 −0.515603
\(187\) −700.494 −0.273931
\(188\) 3836.73 1.48842
\(189\) 700.000 0.269405
\(190\) 0 0
\(191\) −2238.60 −0.848061 −0.424031 0.905648i \(-0.639385\pi\)
−0.424031 + 0.905648i \(0.639385\pi\)
\(192\) −656.136 −0.246628
\(193\) −2966.36 −1.10634 −0.553169 0.833069i \(-0.686582\pi\)
−0.553169 + 0.833069i \(0.686582\pi\)
\(194\) −1518.09 −0.561815
\(195\) 0 0
\(196\) 326.186 0.118872
\(197\) −3982.18 −1.44020 −0.720099 0.693872i \(-0.755903\pi\)
−0.720099 + 0.693872i \(0.755903\pi\)
\(198\) 968.592 0.347651
\(199\) 1895.03 0.675052 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(200\) 0 0
\(201\) 699.452 0.245450
\(202\) 3161.68 1.10126
\(203\) −1795.91 −0.620927
\(204\) 847.833 0.290981
\(205\) 0 0
\(206\) −4770.94 −1.61363
\(207\) −1814.97 −0.609416
\(208\) −3330.26 −1.11015
\(209\) 434.662 0.143857
\(210\) 0 0
\(211\) −1506.79 −0.491621 −0.245810 0.969318i \(-0.579054\pi\)
−0.245810 + 0.969318i \(0.579054\pi\)
\(212\) −1157.97 −0.375139
\(213\) −238.099 −0.0765929
\(214\) 5238.22 1.67326
\(215\) 0 0
\(216\) 514.214 0.161981
\(217\) 1195.73 0.374061
\(218\) −5025.97 −1.56147
\(219\) −1146.64 −0.353801
\(220\) 0 0
\(221\) 2907.49 0.884971
\(222\) 1714.68 0.518388
\(223\) −4289.51 −1.28810 −0.644051 0.764983i \(-0.722748\pi\)
−0.644051 + 0.764983i \(0.722748\pi\)
\(224\) 1666.79 0.497174
\(225\) 0 0
\(226\) 1196.79 0.352255
\(227\) 2848.72 0.832934 0.416467 0.909151i \(-0.363268\pi\)
0.416467 + 0.909151i \(0.363268\pi\)
\(228\) −526.087 −0.152811
\(229\) 3273.70 0.944681 0.472341 0.881416i \(-0.343409\pi\)
0.472341 + 0.881416i \(0.343409\pi\)
\(230\) 0 0
\(231\) 154.000 0.0438634
\(232\) −1319.26 −0.373334
\(233\) −4773.81 −1.34224 −0.671122 0.741347i \(-0.734187\pi\)
−0.671122 + 0.741347i \(0.734187\pi\)
\(234\) −4020.26 −1.12313
\(235\) 0 0
\(236\) −550.106 −0.151732
\(237\) 1136.72 0.311553
\(238\) −1706.59 −0.464798
\(239\) 1976.50 0.534934 0.267467 0.963567i \(-0.413813\pi\)
0.267467 + 0.963567i \(0.413813\pi\)
\(240\) 0 0
\(241\) −2236.73 −0.597845 −0.298923 0.954277i \(-0.596627\pi\)
−0.298923 + 0.954277i \(0.596627\pi\)
\(242\) 463.240 0.123050
\(243\) 3542.00 0.935059
\(244\) −420.362 −0.110291
\(245\) 0 0
\(246\) 2356.24 0.610685
\(247\) −1804.12 −0.464750
\(248\) 878.371 0.224906
\(249\) −1020.89 −0.259825
\(250\) 0 0
\(251\) −6364.56 −1.60051 −0.800254 0.599662i \(-0.795302\pi\)
−0.800254 + 0.599662i \(0.795302\pi\)
\(252\) 1071.75 0.267913
\(253\) −868.029 −0.215702
\(254\) 6097.36 1.50623
\(255\) 0 0
\(256\) 5108.88 1.24728
\(257\) −7947.46 −1.92898 −0.964492 0.264110i \(-0.914922\pi\)
−0.964492 + 0.264110i \(0.914922\pi\)
\(258\) 2419.57 0.583859
\(259\) −1567.59 −0.376082
\(260\) 0 0
\(261\) −5900.84 −1.39944
\(262\) 4944.16 1.16584
\(263\) 7330.82 1.71877 0.859387 0.511325i \(-0.170845\pi\)
0.859387 + 0.511325i \(0.170845\pi\)
\(264\) 113.127 0.0263730
\(265\) 0 0
\(266\) 1058.95 0.244093
\(267\) 2180.20 0.499722
\(268\) 2328.07 0.530633
\(269\) −3504.02 −0.794216 −0.397108 0.917772i \(-0.629986\pi\)
−0.397108 + 0.917772i \(0.629986\pi\)
\(270\) 0 0
\(271\) 36.4996 0.00818152 0.00409076 0.999992i \(-0.498698\pi\)
0.00409076 + 0.999992i \(0.498698\pi\)
\(272\) −4644.98 −1.03545
\(273\) −639.196 −0.141707
\(274\) 8069.42 1.77917
\(275\) 0 0
\(276\) 1050.61 0.229127
\(277\) 4965.14 1.07699 0.538495 0.842629i \(-0.318993\pi\)
0.538495 + 0.842629i \(0.318993\pi\)
\(278\) 8875.43 1.91479
\(279\) 3928.82 0.843055
\(280\) 0 0
\(281\) −4560.42 −0.968156 −0.484078 0.875025i \(-0.660845\pi\)
−0.484078 + 0.875025i \(0.660845\pi\)
\(282\) 4413.08 0.931899
\(283\) 917.744 0.192771 0.0963855 0.995344i \(-0.469272\pi\)
0.0963855 + 0.995344i \(0.469272\pi\)
\(284\) −792.496 −0.165584
\(285\) 0 0
\(286\) −1922.73 −0.397530
\(287\) −2154.11 −0.443042
\(288\) 5476.59 1.12053
\(289\) −857.700 −0.174578
\(290\) 0 0
\(291\) −793.060 −0.159759
\(292\) −3816.49 −0.764875
\(293\) 3983.97 0.794355 0.397177 0.917742i \(-0.369990\pi\)
0.397177 + 0.917742i \(0.369990\pi\)
\(294\) 375.186 0.0744261
\(295\) 0 0
\(296\) −1151.54 −0.226120
\(297\) 1100.00 0.214911
\(298\) 2304.95 0.448060
\(299\) 3602.86 0.696852
\(300\) 0 0
\(301\) −2212.00 −0.423580
\(302\) −7381.95 −1.40657
\(303\) 1651.69 0.313158
\(304\) 2882.25 0.543777
\(305\) 0 0
\(306\) −5607.38 −1.04756
\(307\) 7992.52 1.48585 0.742927 0.669372i \(-0.233437\pi\)
0.742927 + 0.669372i \(0.233437\pi\)
\(308\) 512.578 0.0948274
\(309\) −2492.38 −0.458856
\(310\) 0 0
\(311\) 7217.65 1.31600 0.657999 0.753019i \(-0.271403\pi\)
0.657999 + 0.753019i \(0.271403\pi\)
\(312\) −469.547 −0.0852016
\(313\) 8415.62 1.51974 0.759871 0.650074i \(-0.225262\pi\)
0.759871 + 0.650074i \(0.225262\pi\)
\(314\) −9480.91 −1.70395
\(315\) 0 0
\(316\) 3783.50 0.673540
\(317\) −632.365 −0.112041 −0.0560207 0.998430i \(-0.517841\pi\)
−0.0560207 + 0.998430i \(0.517841\pi\)
\(318\) −1331.92 −0.234875
\(319\) −2822.14 −0.495328
\(320\) 0 0
\(321\) 2736.49 0.475813
\(322\) −2114.75 −0.365996
\(323\) −2516.35 −0.433478
\(324\) 2802.54 0.480545
\(325\) 0 0
\(326\) 4069.84 0.691434
\(327\) −2625.60 −0.444025
\(328\) −1582.39 −0.266381
\(329\) −4034.50 −0.676077
\(330\) 0 0
\(331\) 425.759 0.0707004 0.0353502 0.999375i \(-0.488745\pi\)
0.0353502 + 0.999375i \(0.488745\pi\)
\(332\) −3397.97 −0.561710
\(333\) −5150.65 −0.847609
\(334\) 14244.3 2.33357
\(335\) 0 0
\(336\) 1021.18 0.165803
\(337\) −1369.56 −0.221379 −0.110689 0.993855i \(-0.535306\pi\)
−0.110689 + 0.993855i \(0.535306\pi\)
\(338\) −430.513 −0.0692805
\(339\) 625.214 0.100168
\(340\) 0 0
\(341\) 1879.00 0.298398
\(342\) 3479.42 0.550133
\(343\) −343.000 −0.0539949
\(344\) −1624.91 −0.254679
\(345\) 0 0
\(346\) 3481.65 0.540968
\(347\) 5531.76 0.855794 0.427897 0.903827i \(-0.359255\pi\)
0.427897 + 0.903827i \(0.359255\pi\)
\(348\) 3415.74 0.526158
\(349\) 10171.7 1.56011 0.780055 0.625711i \(-0.215191\pi\)
0.780055 + 0.625711i \(0.215191\pi\)
\(350\) 0 0
\(351\) −4565.69 −0.694297
\(352\) 2619.24 0.396608
\(353\) −9626.38 −1.45145 −0.725723 0.687987i \(-0.758495\pi\)
−0.725723 + 0.687987i \(0.758495\pi\)
\(354\) −632.743 −0.0949998
\(355\) 0 0
\(356\) 7256.62 1.08034
\(357\) −891.537 −0.132171
\(358\) 5167.62 0.762898
\(359\) 8491.00 1.24829 0.624147 0.781307i \(-0.285447\pi\)
0.624147 + 0.781307i \(0.285447\pi\)
\(360\) 0 0
\(361\) −5297.59 −0.772356
\(362\) −17455.6 −2.53438
\(363\) 242.000 0.0349909
\(364\) −2127.52 −0.306352
\(365\) 0 0
\(366\) −483.509 −0.0690530
\(367\) −2948.02 −0.419307 −0.209653 0.977776i \(-0.567234\pi\)
−0.209653 + 0.977776i \(0.567234\pi\)
\(368\) −5755.91 −0.815346
\(369\) −7077.79 −0.998523
\(370\) 0 0
\(371\) 1217.66 0.170398
\(372\) −2274.23 −0.316971
\(373\) 8295.57 1.15155 0.575775 0.817608i \(-0.304700\pi\)
0.575775 + 0.817608i \(0.304700\pi\)
\(374\) −2681.79 −0.370781
\(375\) 0 0
\(376\) −2963.71 −0.406494
\(377\) 11713.7 1.60022
\(378\) 2679.90 0.364654
\(379\) −12137.3 −1.64499 −0.822495 0.568773i \(-0.807418\pi\)
−0.822495 + 0.568773i \(0.807418\pi\)
\(380\) 0 0
\(381\) 3185.31 0.428316
\(382\) −8570.33 −1.14790
\(383\) 9053.44 1.20786 0.603929 0.797038i \(-0.293601\pi\)
0.603929 + 0.797038i \(0.293601\pi\)
\(384\) 1297.83 0.172473
\(385\) 0 0
\(386\) −11356.5 −1.49749
\(387\) −7268.00 −0.954659
\(388\) −2639.64 −0.345380
\(389\) −1130.94 −0.147406 −0.0737030 0.997280i \(-0.523482\pi\)
−0.0737030 + 0.997280i \(0.523482\pi\)
\(390\) 0 0
\(391\) 5025.19 0.649962
\(392\) −251.965 −0.0324646
\(393\) 2582.87 0.331523
\(394\) −15245.5 −1.94938
\(395\) 0 0
\(396\) 1684.18 0.213721
\(397\) 13113.4 1.65779 0.828896 0.559403i \(-0.188970\pi\)
0.828896 + 0.559403i \(0.188970\pi\)
\(398\) 7255.00 0.913719
\(399\) 553.206 0.0694109
\(400\) 0 0
\(401\) 12805.1 1.59465 0.797327 0.603548i \(-0.206247\pi\)
0.797327 + 0.603548i \(0.206247\pi\)
\(402\) 2677.80 0.332230
\(403\) −7799.03 −0.964013
\(404\) 5497.52 0.677010
\(405\) 0 0
\(406\) −6875.51 −0.840457
\(407\) −2463.35 −0.300009
\(408\) −654.915 −0.0794685
\(409\) 9184.62 1.11039 0.555196 0.831720i \(-0.312643\pi\)
0.555196 + 0.831720i \(0.312643\pi\)
\(410\) 0 0
\(411\) 4215.53 0.505928
\(412\) −8295.70 −0.991990
\(413\) 578.463 0.0689208
\(414\) −6948.48 −0.824877
\(415\) 0 0
\(416\) −10871.5 −1.28129
\(417\) 4636.59 0.544496
\(418\) 1664.07 0.194719
\(419\) −6249.25 −0.728629 −0.364315 0.931276i \(-0.618697\pi\)
−0.364315 + 0.931276i \(0.618697\pi\)
\(420\) 0 0
\(421\) 4703.21 0.544467 0.272233 0.962231i \(-0.412238\pi\)
0.272233 + 0.962231i \(0.412238\pi\)
\(422\) −5768.65 −0.665435
\(423\) −13256.2 −1.52373
\(424\) 894.481 0.102452
\(425\) 0 0
\(426\) −911.546 −0.103673
\(427\) 442.030 0.0500968
\(428\) 9108.20 1.02865
\(429\) −1004.45 −0.113043
\(430\) 0 0
\(431\) 7554.41 0.844276 0.422138 0.906532i \(-0.361280\pi\)
0.422138 + 0.906532i \(0.361280\pi\)
\(432\) 7294.11 0.812357
\(433\) −2631.98 −0.292113 −0.146057 0.989276i \(-0.546658\pi\)
−0.146057 + 0.989276i \(0.546658\pi\)
\(434\) 4577.76 0.506312
\(435\) 0 0
\(436\) −8739.13 −0.959928
\(437\) −3118.17 −0.341333
\(438\) −4389.81 −0.478889
\(439\) 12551.2 1.36455 0.682274 0.731097i \(-0.260991\pi\)
0.682274 + 0.731097i \(0.260991\pi\)
\(440\) 0 0
\(441\) −1127.00 −0.121693
\(442\) 11131.1 1.19786
\(443\) −11226.2 −1.20400 −0.602000 0.798496i \(-0.705629\pi\)
−0.602000 + 0.798496i \(0.705629\pi\)
\(444\) 2981.49 0.318683
\(445\) 0 0
\(446\) −16422.1 −1.74351
\(447\) 1204.12 0.127412
\(448\) 2296.48 0.242184
\(449\) −11177.4 −1.17482 −0.587410 0.809289i \(-0.699853\pi\)
−0.587410 + 0.809289i \(0.699853\pi\)
\(450\) 0 0
\(451\) −3385.03 −0.353425
\(452\) 2080.98 0.216551
\(453\) −3856.39 −0.399976
\(454\) 10906.1 1.12742
\(455\) 0 0
\(456\) 406.380 0.0417335
\(457\) −7040.35 −0.720643 −0.360321 0.932828i \(-0.617333\pi\)
−0.360321 + 0.932828i \(0.617333\pi\)
\(458\) 12533.1 1.27868
\(459\) −6368.12 −0.647579
\(460\) 0 0
\(461\) −1483.35 −0.149862 −0.0749312 0.997189i \(-0.523874\pi\)
−0.0749312 + 0.997189i \(0.523874\pi\)
\(462\) 589.578 0.0593715
\(463\) 3106.19 0.311786 0.155893 0.987774i \(-0.450174\pi\)
0.155893 + 0.987774i \(0.450174\pi\)
\(464\) −18713.7 −1.87233
\(465\) 0 0
\(466\) −18276.2 −1.81680
\(467\) 9605.04 0.951752 0.475876 0.879512i \(-0.342131\pi\)
0.475876 + 0.879512i \(0.342131\pi\)
\(468\) −6990.41 −0.690453
\(469\) −2448.08 −0.241027
\(470\) 0 0
\(471\) −4952.90 −0.484539
\(472\) 424.933 0.0414389
\(473\) −3476.00 −0.337900
\(474\) 4351.86 0.421704
\(475\) 0 0
\(476\) −2967.42 −0.285738
\(477\) 4000.88 0.384041
\(478\) 7566.88 0.724061
\(479\) 9118.53 0.869805 0.434902 0.900478i \(-0.356783\pi\)
0.434902 + 0.900478i \(0.356783\pi\)
\(480\) 0 0
\(481\) 10224.4 0.969220
\(482\) −8563.17 −0.809215
\(483\) −1104.76 −0.104076
\(484\) 805.479 0.0756461
\(485\) 0 0
\(486\) 13560.3 1.26565
\(487\) −14045.1 −1.30687 −0.653434 0.756983i \(-0.726672\pi\)
−0.653434 + 0.756983i \(0.726672\pi\)
\(488\) 324.711 0.0301209
\(489\) 2126.12 0.196618
\(490\) 0 0
\(491\) −1034.26 −0.0950620 −0.0475310 0.998870i \(-0.515135\pi\)
−0.0475310 + 0.998870i \(0.515135\pi\)
\(492\) 4097.03 0.375423
\(493\) 16338.0 1.49255
\(494\) −6906.93 −0.629064
\(495\) 0 0
\(496\) 12459.7 1.12794
\(497\) 833.347 0.0752128
\(498\) −3908.42 −0.351687
\(499\) −14332.3 −1.28577 −0.642886 0.765962i \(-0.722263\pi\)
−0.642886 + 0.765962i \(0.722263\pi\)
\(500\) 0 0
\(501\) 7441.31 0.663579
\(502\) −24366.2 −2.16637
\(503\) 5007.72 0.443903 0.221951 0.975058i \(-0.428757\pi\)
0.221951 + 0.975058i \(0.428757\pi\)
\(504\) −827.884 −0.0731684
\(505\) 0 0
\(506\) −3323.18 −0.291964
\(507\) −224.903 −0.0197008
\(508\) 10602.1 0.925966
\(509\) −9234.40 −0.804140 −0.402070 0.915609i \(-0.631709\pi\)
−0.402070 + 0.915609i \(0.631709\pi\)
\(510\) 0 0
\(511\) 4013.23 0.347426
\(512\) 14367.6 1.24017
\(513\) 3951.47 0.340081
\(514\) −30426.3 −2.61098
\(515\) 0 0
\(516\) 4207.13 0.358932
\(517\) −6339.93 −0.539323
\(518\) −6001.40 −0.509047
\(519\) 1818.84 0.153831
\(520\) 0 0
\(521\) −5141.26 −0.432328 −0.216164 0.976357i \(-0.569355\pi\)
−0.216164 + 0.976357i \(0.569355\pi\)
\(522\) −22591.0 −1.89421
\(523\) 19766.3 1.65262 0.826308 0.563218i \(-0.190437\pi\)
0.826308 + 0.563218i \(0.190437\pi\)
\(524\) 8596.89 0.716711
\(525\) 0 0
\(526\) 28065.5 2.32645
\(527\) −10877.9 −0.899146
\(528\) 1604.70 0.132265
\(529\) −5939.95 −0.488201
\(530\) 0 0
\(531\) 1900.66 0.155333
\(532\) 1841.31 0.150058
\(533\) 14050.0 1.14179
\(534\) 8346.72 0.676400
\(535\) 0 0
\(536\) −1798.34 −0.144919
\(537\) 2699.61 0.216940
\(538\) −13414.9 −1.07501
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −16805.9 −1.33556 −0.667782 0.744356i \(-0.732756\pi\)
−0.667782 + 0.744356i \(0.732756\pi\)
\(542\) 139.736 0.0110741
\(543\) −9118.95 −0.720684
\(544\) −15163.3 −1.19508
\(545\) 0 0
\(546\) −2447.12 −0.191807
\(547\) −16284.0 −1.27286 −0.636428 0.771336i \(-0.719589\pi\)
−0.636428 + 0.771336i \(0.719589\pi\)
\(548\) 14031.1 1.09375
\(549\) 1452.39 0.112908
\(550\) 0 0
\(551\) −10137.8 −0.783823
\(552\) −811.549 −0.0625758
\(553\) −3978.53 −0.305939
\(554\) 19008.7 1.45776
\(555\) 0 0
\(556\) 15432.6 1.17713
\(557\) 13972.6 1.06291 0.531454 0.847087i \(-0.321646\pi\)
0.531454 + 0.847087i \(0.321646\pi\)
\(558\) 15041.2 1.14112
\(559\) 14427.6 1.09163
\(560\) 0 0
\(561\) −1400.99 −0.105436
\(562\) −17459.2 −1.31045
\(563\) −6396.33 −0.478816 −0.239408 0.970919i \(-0.576953\pi\)
−0.239408 + 0.970919i \(0.576953\pi\)
\(564\) 7673.45 0.572891
\(565\) 0 0
\(566\) 3513.51 0.260926
\(567\) −2947.00 −0.218276
\(568\) 612.169 0.0452219
\(569\) −15320.3 −1.12876 −0.564378 0.825517i \(-0.690884\pi\)
−0.564378 + 0.825517i \(0.690884\pi\)
\(570\) 0 0
\(571\) −14347.1 −1.05150 −0.525750 0.850639i \(-0.676215\pi\)
−0.525750 + 0.850639i \(0.676215\pi\)
\(572\) −3343.24 −0.244385
\(573\) −4477.21 −0.326419
\(574\) −8246.85 −0.599681
\(575\) 0 0
\(576\) 7545.57 0.545831
\(577\) 19882.3 1.43451 0.717256 0.696810i \(-0.245398\pi\)
0.717256 + 0.696810i \(0.245398\pi\)
\(578\) −3283.64 −0.236300
\(579\) −5932.72 −0.425829
\(580\) 0 0
\(581\) 3573.13 0.255143
\(582\) −3036.17 −0.216243
\(583\) 1913.46 0.135931
\(584\) 2948.08 0.208891
\(585\) 0 0
\(586\) 15252.3 1.07520
\(587\) −17868.5 −1.25641 −0.628204 0.778048i \(-0.716210\pi\)
−0.628204 + 0.778048i \(0.716210\pi\)
\(588\) 652.372 0.0457540
\(589\) 6749.84 0.472194
\(590\) 0 0
\(591\) −7964.37 −0.554332
\(592\) −16334.5 −1.13403
\(593\) −24594.0 −1.70312 −0.851562 0.524253i \(-0.824344\pi\)
−0.851562 + 0.524253i \(0.824344\pi\)
\(594\) 4211.27 0.290893
\(595\) 0 0
\(596\) 4007.83 0.275448
\(597\) 3790.07 0.259828
\(598\) 13793.3 0.943226
\(599\) 13645.6 0.930789 0.465394 0.885103i \(-0.345913\pi\)
0.465394 + 0.885103i \(0.345913\pi\)
\(600\) 0 0
\(601\) −23143.9 −1.57081 −0.785407 0.618980i \(-0.787546\pi\)
−0.785407 + 0.618980i \(0.787546\pi\)
\(602\) −8468.48 −0.573338
\(603\) −8043.69 −0.543225
\(604\) −12835.7 −0.864698
\(605\) 0 0
\(606\) 6323.36 0.423876
\(607\) 11968.7 0.800321 0.400160 0.916445i \(-0.368954\pi\)
0.400160 + 0.916445i \(0.368954\pi\)
\(608\) 9408.96 0.627605
\(609\) −3591.82 −0.238995
\(610\) 0 0
\(611\) 26314.7 1.74235
\(612\) −9750.08 −0.643993
\(613\) −7079.21 −0.466438 −0.233219 0.972424i \(-0.574926\pi\)
−0.233219 + 0.972424i \(0.574926\pi\)
\(614\) 30598.8 2.01118
\(615\) 0 0
\(616\) −395.944 −0.0258978
\(617\) 24592.0 1.60460 0.802300 0.596921i \(-0.203610\pi\)
0.802300 + 0.596921i \(0.203610\pi\)
\(618\) −9541.89 −0.621086
\(619\) −5460.23 −0.354548 −0.177274 0.984162i \(-0.556728\pi\)
−0.177274 + 0.984162i \(0.556728\pi\)
\(620\) 0 0
\(621\) −7891.17 −0.509922
\(622\) 27632.3 1.78127
\(623\) −7630.68 −0.490717
\(624\) −6660.52 −0.427299
\(625\) 0 0
\(626\) 32218.6 2.05705
\(627\) 869.324 0.0553707
\(628\) −16485.4 −1.04751
\(629\) 14260.8 0.904002
\(630\) 0 0
\(631\) −23358.4 −1.47367 −0.736833 0.676075i \(-0.763680\pi\)
−0.736833 + 0.676075i \(0.763680\pi\)
\(632\) −2922.59 −0.183947
\(633\) −3013.59 −0.189225
\(634\) −2420.96 −0.151654
\(635\) 0 0
\(636\) −2315.94 −0.144391
\(637\) 2237.19 0.139153
\(638\) −10804.4 −0.670453
\(639\) 2738.14 0.169514
\(640\) 0 0
\(641\) 9328.68 0.574822 0.287411 0.957807i \(-0.407205\pi\)
0.287411 + 0.957807i \(0.407205\pi\)
\(642\) 10476.4 0.644038
\(643\) 267.859 0.0164282 0.00821409 0.999966i \(-0.497385\pi\)
0.00821409 + 0.999966i \(0.497385\pi\)
\(644\) −3677.13 −0.224998
\(645\) 0 0
\(646\) −9633.65 −0.586735
\(647\) −11518.0 −0.699877 −0.349939 0.936773i \(-0.613798\pi\)
−0.349939 + 0.936773i \(0.613798\pi\)
\(648\) −2164.84 −0.131239
\(649\) 909.013 0.0549798
\(650\) 0 0
\(651\) 2391.46 0.143976
\(652\) 7076.62 0.425064
\(653\) 12565.0 0.752994 0.376497 0.926418i \(-0.377129\pi\)
0.376497 + 0.926418i \(0.377129\pi\)
\(654\) −10051.9 −0.601012
\(655\) 0 0
\(656\) −22446.2 −1.33594
\(657\) 13186.3 0.783024
\(658\) −15445.8 −0.915106
\(659\) −4020.26 −0.237643 −0.118822 0.992916i \(-0.537912\pi\)
−0.118822 + 0.992916i \(0.537912\pi\)
\(660\) 0 0
\(661\) −2080.20 −0.122406 −0.0612031 0.998125i \(-0.519494\pi\)
−0.0612031 + 0.998125i \(0.519494\pi\)
\(662\) 1629.99 0.0956968
\(663\) 5814.97 0.340626
\(664\) 2624.79 0.153406
\(665\) 0 0
\(666\) −19718.9 −1.14728
\(667\) 20245.5 1.17527
\(668\) 24767.9 1.43458
\(669\) −8579.02 −0.495791
\(670\) 0 0
\(671\) 694.619 0.0399634
\(672\) 3333.58 0.191362
\(673\) 17535.3 1.00436 0.502182 0.864762i \(-0.332531\pi\)
0.502182 + 0.864762i \(0.332531\pi\)
\(674\) −5243.26 −0.299648
\(675\) 0 0
\(676\) −748.574 −0.0425907
\(677\) −12560.8 −0.713074 −0.356537 0.934281i \(-0.616043\pi\)
−0.356537 + 0.934281i \(0.616043\pi\)
\(678\) 2393.59 0.135583
\(679\) 2775.71 0.156881
\(680\) 0 0
\(681\) 5697.43 0.320596
\(682\) 7193.62 0.403897
\(683\) 4961.51 0.277961 0.138980 0.990295i \(-0.455618\pi\)
0.138980 + 0.990295i \(0.455618\pi\)
\(684\) 6050.01 0.338198
\(685\) 0 0
\(686\) −1313.15 −0.0730850
\(687\) 6547.40 0.363608
\(688\) −23049.4 −1.27725
\(689\) −7942.07 −0.439142
\(690\) 0 0
\(691\) −15429.4 −0.849441 −0.424720 0.905325i \(-0.639628\pi\)
−0.424720 + 0.905325i \(0.639628\pi\)
\(692\) 6053.89 0.332564
\(693\) −1771.00 −0.0970775
\(694\) 21178.0 1.15836
\(695\) 0 0
\(696\) −2638.52 −0.143696
\(697\) 19596.6 1.06496
\(698\) 38941.6 2.11169
\(699\) −9547.62 −0.516630
\(700\) 0 0
\(701\) 20446.3 1.10163 0.550817 0.834626i \(-0.314316\pi\)
0.550817 + 0.834626i \(0.314316\pi\)
\(702\) −17479.4 −0.939768
\(703\) −8848.97 −0.474744
\(704\) 3608.75 0.193196
\(705\) 0 0
\(706\) −36853.9 −1.96461
\(707\) −5780.91 −0.307515
\(708\) −1100.21 −0.0584018
\(709\) −28090.1 −1.48794 −0.743968 0.668216i \(-0.767058\pi\)
−0.743968 + 0.668216i \(0.767058\pi\)
\(710\) 0 0
\(711\) −13072.3 −0.689522
\(712\) −5605.43 −0.295045
\(713\) −13479.6 −0.708013
\(714\) −3413.19 −0.178901
\(715\) 0 0
\(716\) 8985.44 0.468997
\(717\) 3953.00 0.205896
\(718\) 32507.2 1.68963
\(719\) 24923.7 1.29277 0.646383 0.763013i \(-0.276281\pi\)
0.646383 + 0.763013i \(0.276281\pi\)
\(720\) 0 0
\(721\) 8723.32 0.450587
\(722\) −20281.4 −1.04542
\(723\) −4473.47 −0.230111
\(724\) −30351.7 −1.55803
\(725\) 0 0
\(726\) 926.479 0.0473621
\(727\) 24025.9 1.22568 0.612842 0.790205i \(-0.290026\pi\)
0.612842 + 0.790205i \(0.290026\pi\)
\(728\) 1643.42 0.0836663
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) 20123.3 1.01818
\(732\) −840.723 −0.0424509
\(733\) −31004.0 −1.56229 −0.781145 0.624350i \(-0.785364\pi\)
−0.781145 + 0.624350i \(0.785364\pi\)
\(734\) −11286.3 −0.567554
\(735\) 0 0
\(736\) −18789.9 −0.941038
\(737\) −3846.98 −0.192273
\(738\) −27096.8 −1.35155
\(739\) −5542.14 −0.275874 −0.137937 0.990441i \(-0.544047\pi\)
−0.137937 + 0.990441i \(0.544047\pi\)
\(740\) 0 0
\(741\) −3608.24 −0.178882
\(742\) 4661.72 0.230643
\(743\) −35227.3 −1.73939 −0.869694 0.493591i \(-0.835684\pi\)
−0.869694 + 0.493591i \(0.835684\pi\)
\(744\) 1756.74 0.0865662
\(745\) 0 0
\(746\) 31759.0 1.55868
\(747\) 11740.3 0.575039
\(748\) −4663.08 −0.227940
\(749\) −9577.71 −0.467239
\(750\) 0 0
\(751\) 19148.6 0.930415 0.465207 0.885202i \(-0.345980\pi\)
0.465207 + 0.885202i \(0.345980\pi\)
\(752\) −42040.2 −2.03863
\(753\) −12729.1 −0.616036
\(754\) 44844.9 2.16599
\(755\) 0 0
\(756\) 4659.80 0.224174
\(757\) −12899.6 −0.619345 −0.309673 0.950843i \(-0.600219\pi\)
−0.309673 + 0.950843i \(0.600219\pi\)
\(758\) −46466.7 −2.22658
\(759\) −1736.06 −0.0830236
\(760\) 0 0
\(761\) 4568.70 0.217628 0.108814 0.994062i \(-0.465295\pi\)
0.108814 + 0.994062i \(0.465295\pi\)
\(762\) 12194.7 0.579748
\(763\) 9189.62 0.436024
\(764\) −14902.1 −0.705677
\(765\) 0 0
\(766\) 34660.4 1.63490
\(767\) −3772.97 −0.177619
\(768\) 10217.8 0.480080
\(769\) 6294.43 0.295166 0.147583 0.989050i \(-0.452851\pi\)
0.147583 + 0.989050i \(0.452851\pi\)
\(770\) 0 0
\(771\) −15894.9 −0.742467
\(772\) −19746.6 −0.920591
\(773\) 4218.70 0.196295 0.0981475 0.995172i \(-0.468708\pi\)
0.0981475 + 0.995172i \(0.468708\pi\)
\(774\) −27825.0 −1.29218
\(775\) 0 0
\(776\) 2039.01 0.0943250
\(777\) −3135.18 −0.144754
\(778\) −4329.72 −0.199522
\(779\) −12159.9 −0.559271
\(780\) 0 0
\(781\) 1309.55 0.0599990
\(782\) 19238.6 0.879758
\(783\) −25655.8 −1.17096
\(784\) −3574.12 −0.162815
\(785\) 0 0
\(786\) 9888.32 0.448734
\(787\) −10453.6 −0.473482 −0.236741 0.971573i \(-0.576079\pi\)
−0.236741 + 0.971573i \(0.576079\pi\)
\(788\) −26508.8 −1.19840
\(789\) 14661.6 0.661557
\(790\) 0 0
\(791\) −2188.25 −0.0983631
\(792\) −1300.96 −0.0583682
\(793\) −2883.10 −0.129107
\(794\) 50203.7 2.24391
\(795\) 0 0
\(796\) 12615.0 0.561715
\(797\) −2131.75 −0.0947436 −0.0473718 0.998877i \(-0.515085\pi\)
−0.0473718 + 0.998877i \(0.515085\pi\)
\(798\) 2117.91 0.0939513
\(799\) 36703.2 1.62511
\(800\) 0 0
\(801\) −25072.2 −1.10597
\(802\) 49023.4 2.15845
\(803\) 6306.50 0.277150
\(804\) 4656.15 0.204241
\(805\) 0 0
\(806\) −29858.0 −1.30484
\(807\) −7008.05 −0.305694
\(808\) −4246.60 −0.184895
\(809\) −35641.7 −1.54894 −0.774472 0.632608i \(-0.781984\pi\)
−0.774472 + 0.632608i \(0.781984\pi\)
\(810\) 0 0
\(811\) −8034.96 −0.347898 −0.173949 0.984755i \(-0.555653\pi\)
−0.173949 + 0.984755i \(0.555653\pi\)
\(812\) −11955.1 −0.516677
\(813\) 72.9991 0.00314907
\(814\) −9430.77 −0.406079
\(815\) 0 0
\(816\) −9289.96 −0.398546
\(817\) −12486.7 −0.534703
\(818\) 35162.6 1.50297
\(819\) 7350.75 0.313622
\(820\) 0 0
\(821\) 37824.5 1.60790 0.803950 0.594697i \(-0.202728\pi\)
0.803950 + 0.594697i \(0.202728\pi\)
\(822\) 16138.8 0.684801
\(823\) −19245.1 −0.815118 −0.407559 0.913179i \(-0.633620\pi\)
−0.407559 + 0.913179i \(0.633620\pi\)
\(824\) 6408.07 0.270917
\(825\) 0 0
\(826\) 2214.60 0.0932880
\(827\) 31294.1 1.31584 0.657921 0.753087i \(-0.271436\pi\)
0.657921 + 0.753087i \(0.271436\pi\)
\(828\) −12082.0 −0.507099
\(829\) −13121.7 −0.549740 −0.274870 0.961481i \(-0.588635\pi\)
−0.274870 + 0.961481i \(0.588635\pi\)
\(830\) 0 0
\(831\) 9930.27 0.414533
\(832\) −14978.6 −0.624144
\(833\) 3120.38 0.129790
\(834\) 17750.9 0.737005
\(835\) 0 0
\(836\) 2893.48 0.119705
\(837\) 17081.8 0.705418
\(838\) −23924.8 −0.986239
\(839\) −5784.11 −0.238009 −0.119005 0.992894i \(-0.537970\pi\)
−0.119005 + 0.992894i \(0.537970\pi\)
\(840\) 0 0
\(841\) 41433.2 1.69885
\(842\) 18005.9 0.736965
\(843\) −9120.84 −0.372643
\(844\) −10030.5 −0.409081
\(845\) 0 0
\(846\) −50750.5 −2.06246
\(847\) −847.000 −0.0343604
\(848\) 12688.2 0.513814
\(849\) 1835.49 0.0741976
\(850\) 0 0
\(851\) 17671.6 0.711837
\(852\) −1584.99 −0.0637335
\(853\) −39103.1 −1.56959 −0.784797 0.619753i \(-0.787233\pi\)
−0.784797 + 0.619753i \(0.787233\pi\)
\(854\) 1692.28 0.0678087
\(855\) 0 0
\(856\) −7035.70 −0.280929
\(857\) −5793.14 −0.230910 −0.115455 0.993313i \(-0.536833\pi\)
−0.115455 + 0.993313i \(0.536833\pi\)
\(858\) −3845.47 −0.153009
\(859\) 16365.8 0.650049 0.325025 0.945706i \(-0.394627\pi\)
0.325025 + 0.945706i \(0.394627\pi\)
\(860\) 0 0
\(861\) −4308.22 −0.170527
\(862\) 28921.5 1.14277
\(863\) 20999.3 0.828303 0.414151 0.910208i \(-0.364078\pi\)
0.414151 + 0.910208i \(0.364078\pi\)
\(864\) 23811.3 0.937588
\(865\) 0 0
\(866\) −10076.3 −0.395391
\(867\) −1715.40 −0.0671949
\(868\) 7959.79 0.311259
\(869\) −6251.98 −0.244055
\(870\) 0 0
\(871\) 15967.4 0.621164
\(872\) 6750.61 0.262161
\(873\) 9120.19 0.353576
\(874\) −11937.7 −0.462012
\(875\) 0 0
\(876\) −7632.99 −0.294400
\(877\) −22042.8 −0.848727 −0.424364 0.905492i \(-0.639502\pi\)
−0.424364 + 0.905492i \(0.639502\pi\)
\(878\) 48051.4 1.84699
\(879\) 7967.94 0.305747
\(880\) 0 0
\(881\) −7746.91 −0.296254 −0.148127 0.988968i \(-0.547324\pi\)
−0.148127 + 0.988968i \(0.547324\pi\)
\(882\) −4314.64 −0.164718
\(883\) 12901.9 0.491715 0.245857 0.969306i \(-0.420930\pi\)
0.245857 + 0.969306i \(0.420930\pi\)
\(884\) 19354.7 0.736390
\(885\) 0 0
\(886\) −42978.6 −1.62968
\(887\) 22230.9 0.841532 0.420766 0.907169i \(-0.361761\pi\)
0.420766 + 0.907169i \(0.361761\pi\)
\(888\) −2303.07 −0.0870338
\(889\) −11148.6 −0.420598
\(890\) 0 0
\(891\) −4631.00 −0.174124
\(892\) −28554.6 −1.07184
\(893\) −22774.6 −0.853441
\(894\) 4609.89 0.172458
\(895\) 0 0
\(896\) −4542.42 −0.169366
\(897\) 7205.72 0.268218
\(898\) −42791.9 −1.59018
\(899\) −43824.9 −1.62585
\(900\) 0 0
\(901\) −11077.4 −0.409592
\(902\) −12959.3 −0.478380
\(903\) −4424.00 −0.163036
\(904\) −1607.47 −0.0591412
\(905\) 0 0
\(906\) −14763.9 −0.541389
\(907\) 35025.3 1.28225 0.641123 0.767438i \(-0.278469\pi\)
0.641123 + 0.767438i \(0.278469\pi\)
\(908\) 18963.5 0.693090
\(909\) −18994.4 −0.693074
\(910\) 0 0
\(911\) 9605.98 0.349353 0.174676 0.984626i \(-0.444112\pi\)
0.174676 + 0.984626i \(0.444112\pi\)
\(912\) 5764.50 0.209300
\(913\) 5614.91 0.203534
\(914\) −26953.5 −0.975428
\(915\) 0 0
\(916\) 21792.5 0.786076
\(917\) −9040.04 −0.325549
\(918\) −24379.9 −0.876532
\(919\) −791.576 −0.0284132 −0.0142066 0.999899i \(-0.504522\pi\)
−0.0142066 + 0.999899i \(0.504522\pi\)
\(920\) 0 0
\(921\) 15985.0 0.571906
\(922\) −5678.90 −0.202847
\(923\) −5435.43 −0.193835
\(924\) 1025.16 0.0364991
\(925\) 0 0
\(926\) 11891.8 0.422019
\(927\) 28662.4 1.01553
\(928\) −61089.8 −2.16096
\(929\) 25050.6 0.884695 0.442348 0.896844i \(-0.354146\pi\)
0.442348 + 0.896844i \(0.354146\pi\)
\(930\) 0 0
\(931\) −1936.22 −0.0681601
\(932\) −31778.6 −1.11689
\(933\) 14435.3 0.506528
\(934\) 36772.2 1.28825
\(935\) 0 0
\(936\) 5399.80 0.188566
\(937\) −14769.7 −0.514948 −0.257474 0.966285i \(-0.582890\pi\)
−0.257474 + 0.966285i \(0.582890\pi\)
\(938\) −9372.30 −0.326244
\(939\) 16831.2 0.584949
\(940\) 0 0
\(941\) 678.921 0.0235199 0.0117599 0.999931i \(-0.496257\pi\)
0.0117599 + 0.999931i \(0.496257\pi\)
\(942\) −18961.8 −0.655849
\(943\) 24283.5 0.838578
\(944\) 6027.67 0.207822
\(945\) 0 0
\(946\) −13307.6 −0.457366
\(947\) 21354.7 0.732772 0.366386 0.930463i \(-0.380595\pi\)
0.366386 + 0.930463i \(0.380595\pi\)
\(948\) 7567.00 0.259246
\(949\) −26175.9 −0.895369
\(950\) 0 0
\(951\) −1264.73 −0.0431248
\(952\) 2292.20 0.0780365
\(953\) 3942.06 0.133994 0.0669968 0.997753i \(-0.478658\pi\)
0.0669968 + 0.997753i \(0.478658\pi\)
\(954\) 15317.1 0.519820
\(955\) 0 0
\(956\) 13157.3 0.445122
\(957\) −5644.29 −0.190652
\(958\) 34909.6 1.17733
\(959\) −14754.3 −0.496812
\(960\) 0 0
\(961\) −612.100 −0.0205465
\(962\) 39143.6 1.31189
\(963\) −31469.6 −1.05306
\(964\) −14889.6 −0.497471
\(965\) 0 0
\(966\) −4229.51 −0.140872
\(967\) 27117.9 0.901813 0.450907 0.892571i \(-0.351101\pi\)
0.450907 + 0.892571i \(0.351101\pi\)
\(968\) −622.198 −0.0206593
\(969\) −5032.69 −0.166846
\(970\) 0 0
\(971\) −28536.2 −0.943120 −0.471560 0.881834i \(-0.656309\pi\)
−0.471560 + 0.881834i \(0.656309\pi\)
\(972\) 23578.6 0.778069
\(973\) −16228.1 −0.534685
\(974\) −53770.7 −1.76892
\(975\) 0 0
\(976\) 4606.03 0.151061
\(977\) −24692.4 −0.808577 −0.404288 0.914632i \(-0.632481\pi\)
−0.404288 + 0.914632i \(0.632481\pi\)
\(978\) 8139.68 0.266133
\(979\) −11991.1 −0.391457
\(980\) 0 0
\(981\) 30194.5 0.982706
\(982\) −3959.58 −0.128672
\(983\) −26814.7 −0.870047 −0.435024 0.900419i \(-0.643260\pi\)
−0.435024 + 0.900419i \(0.643260\pi\)
\(984\) −3164.78 −0.102530
\(985\) 0 0
\(986\) 62548.7 2.02024
\(987\) −8069.00 −0.260222
\(988\) −12009.7 −0.386722
\(989\) 24936.1 0.801741
\(990\) 0 0
\(991\) 46160.9 1.47967 0.739833 0.672790i \(-0.234904\pi\)
0.739833 + 0.672790i \(0.234904\pi\)
\(992\) 40674.0 1.30182
\(993\) 851.519 0.0272126
\(994\) 3190.41 0.101804
\(995\) 0 0
\(996\) −6795.94 −0.216202
\(997\) 43200.4 1.37229 0.686143 0.727467i \(-0.259302\pi\)
0.686143 + 0.727467i \(0.259302\pi\)
\(998\) −54870.0 −1.74036
\(999\) −22394.1 −0.709228
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.4.a.l.1.2 2
5.4 even 2 77.4.a.b.1.1 2
15.14 odd 2 693.4.a.i.1.2 2
20.19 odd 2 1232.4.a.m.1.2 2
35.34 odd 2 539.4.a.d.1.1 2
55.54 odd 2 847.4.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.4.a.b.1.1 2 5.4 even 2
539.4.a.d.1.1 2 35.34 odd 2
693.4.a.i.1.2 2 15.14 odd 2
847.4.a.c.1.2 2 55.54 odd 2
1232.4.a.m.1.2 2 20.19 odd 2
1925.4.a.l.1.2 2 1.1 even 1 trivial