Defining parameters
| Level: | \( N \) | \(=\) | \( 847 = 7 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 847.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(352\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(847))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 276 | 163 | 113 |
| Cusp forms | 252 | 163 | 89 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(72\) | \(41\) | \(31\) | \(66\) | \(41\) | \(25\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(67\) | \(40\) | \(27\) | \(61\) | \(40\) | \(21\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(66\) | \(37\) | \(29\) | \(60\) | \(37\) | \(23\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(71\) | \(45\) | \(26\) | \(65\) | \(45\) | \(20\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(143\) | \(86\) | \(57\) | \(131\) | \(86\) | \(45\) | \(12\) | \(0\) | \(12\) | ||||
| Minus space | \(-\) | \(133\) | \(77\) | \(56\) | \(121\) | \(77\) | \(44\) | \(12\) | \(0\) | \(12\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(847))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(847))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(847)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)