Properties

Label 1232.4.a.m
Level $1232$
Weight $4$
Character orbit 1232.a
Self dual yes
Analytic conductor $72.690$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1232,4,Mod(1,1232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1232.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.6903531271\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{3} + ( - 3 \beta - 2) q^{5} - 7 q^{7} - 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{3} + ( - 3 \beta - 2) q^{5} - 7 q^{7} - 23 q^{9} + 11 q^{11} + (2 \beta - 40) q^{13} + ( - 6 \beta - 4) q^{15} + (31 \beta + 24) q^{17} + (3 \beta + 48) q^{19} - 14 q^{21} + ( - 18 \beta + 28) q^{23} + (12 \beta - 49) q^{25} - 100 q^{27} + ( - 90 \beta + 2) q^{29} + ( - 71 \beta - 30) q^{31} + 22 q^{33} + (21 \beta + 14) q^{35} + (12 \beta - 190) q^{37} + (4 \beta - 80) q^{39} + ( - 89 \beta + 56) q^{41} + 316 q^{43} + (69 \beta + 46) q^{45} + ( - 97 \beta + 302) q^{47} + 49 q^{49} + (62 \beta + 48) q^{51} + (58 \beta + 338) q^{53} + ( - 33 \beta - 22) q^{55} + (6 \beta + 96) q^{57} + (62 \beta + 258) q^{59} + ( - 30 \beta - 148) q^{61} + 161 q^{63} + (116 \beta + 32) q^{65} + (80 \beta + 576) q^{67} + ( - 36 \beta + 56) q^{69} + (146 \beta + 532) q^{71} + ( - 173 \beta + 84) q^{73} + (24 \beta - 98) q^{75} - 77 q^{77} + (266 \beta + 184) q^{79} + 421 q^{81} + ( - 125 \beta - 864) q^{83} + ( - 134 \beta - 792) q^{85} + ( - 180 \beta + 4) q^{87} + ( - 116 \beta + 762) q^{89} + ( - 14 \beta + 280) q^{91} + ( - 142 \beta - 60) q^{93} + ( - 150 \beta - 168) q^{95} + (108 \beta + 702) q^{97} - 253 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 4 q^{5} - 14 q^{7} - 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{3} - 4 q^{5} - 14 q^{7} - 46 q^{9} + 22 q^{11} - 80 q^{13} - 8 q^{15} + 48 q^{17} + 96 q^{19} - 28 q^{21} + 56 q^{23} - 98 q^{25} - 200 q^{27} + 4 q^{29} - 60 q^{31} + 44 q^{33} + 28 q^{35} - 380 q^{37} - 160 q^{39} + 112 q^{41} + 632 q^{43} + 92 q^{45} + 604 q^{47} + 98 q^{49} + 96 q^{51} + 676 q^{53} - 44 q^{55} + 192 q^{57} + 516 q^{59} - 296 q^{61} + 322 q^{63} + 64 q^{65} + 1152 q^{67} + 112 q^{69} + 1064 q^{71} + 168 q^{73} - 196 q^{75} - 154 q^{77} + 368 q^{79} + 842 q^{81} - 1728 q^{83} - 1584 q^{85} + 8 q^{87} + 1524 q^{89} + 560 q^{91} - 120 q^{93} - 336 q^{95} + 1404 q^{97} - 506 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.41421
−1.41421
0 2.00000 0 −10.4853 0 −7.00000 0 −23.0000 0
1.2 0 2.00000 0 6.48528 0 −7.00000 0 −23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1232.4.a.m 2
4.b odd 2 1 77.4.a.b 2
12.b even 2 1 693.4.a.i 2
20.d odd 2 1 1925.4.a.l 2
28.d even 2 1 539.4.a.d 2
44.c even 2 1 847.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
77.4.a.b 2 4.b odd 2 1
539.4.a.d 2 28.d even 2 1
693.4.a.i 2 12.b even 2 1
847.4.a.c 2 44.c even 2 1
1232.4.a.m 2 1.a even 1 1 trivial
1925.4.a.l 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1232))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} + 4T_{5} - 68 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T - 68 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 80T + 1568 \) Copy content Toggle raw display
$17$ \( T^{2} - 48T - 7112 \) Copy content Toggle raw display
$19$ \( T^{2} - 96T + 2232 \) Copy content Toggle raw display
$23$ \( T^{2} - 56T - 1808 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 64796 \) Copy content Toggle raw display
$31$ \( T^{2} + 60T - 39428 \) Copy content Toggle raw display
$37$ \( T^{2} + 380T + 34948 \) Copy content Toggle raw display
$41$ \( T^{2} - 112T - 60232 \) Copy content Toggle raw display
$43$ \( (T - 316)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 604T + 15932 \) Copy content Toggle raw display
$53$ \( T^{2} - 676T + 87332 \) Copy content Toggle raw display
$59$ \( T^{2} - 516T + 35812 \) Copy content Toggle raw display
$61$ \( T^{2} + 296T + 14704 \) Copy content Toggle raw display
$67$ \( T^{2} - 1152 T + 280576 \) Copy content Toggle raw display
$71$ \( T^{2} - 1064 T + 112496 \) Copy content Toggle raw display
$73$ \( T^{2} - 168T - 232376 \) Copy content Toggle raw display
$79$ \( T^{2} - 368T - 532192 \) Copy content Toggle raw display
$83$ \( T^{2} + 1728 T + 621496 \) Copy content Toggle raw display
$89$ \( T^{2} - 1524 T + 472996 \) Copy content Toggle raw display
$97$ \( T^{2} - 1404 T + 399492 \) Copy content Toggle raw display
show more
show less