Properties

Label 1232.4
Level 1232
Weight 4
Dimension 72872
Nonzero newspaces 32
Sturm bound 368640
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 32 \)
Sturm bound: \(368640\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1232))\).

Total New Old
Modular forms 139920 73684 66236
Cusp forms 136560 72872 63688
Eisenstein series 3360 812 2548

Trace form

\( 72872 q - 64 q^{2} - 34 q^{3} - 24 q^{4} - 86 q^{5} - 184 q^{6} - 105 q^{7} - 328 q^{8} - 58 q^{9} - 328 q^{10} + 73 q^{11} + 264 q^{12} + 16 q^{13} + 300 q^{14} - 642 q^{15} + 1064 q^{16} + 58 q^{17} + 640 q^{18}+ \cdots + 3218 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1232))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1232.4.a \(\chi_{1232}(1, \cdot)\) 1232.4.a.a 1 1
1232.4.a.b 1
1232.4.a.c 1
1232.4.a.d 1
1232.4.a.e 1
1232.4.a.f 1
1232.4.a.g 1
1232.4.a.h 1
1232.4.a.i 1
1232.4.a.j 2
1232.4.a.k 2
1232.4.a.l 2
1232.4.a.m 2
1232.4.a.n 2
1232.4.a.o 2
1232.4.a.p 2
1232.4.a.q 3
1232.4.a.r 3
1232.4.a.s 4
1232.4.a.t 4
1232.4.a.u 4
1232.4.a.v 4
1232.4.a.w 4
1232.4.a.x 5
1232.4.a.y 5
1232.4.a.z 5
1232.4.a.ba 6
1232.4.a.bb 6
1232.4.a.bc 7
1232.4.a.bd 7
1232.4.c \(\chi_{1232}(617, \cdot)\) None 0 1
1232.4.e \(\chi_{1232}(769, \cdot)\) n/a 142 1
1232.4.f \(\chi_{1232}(351, \cdot)\) n/a 108 1
1232.4.h \(\chi_{1232}(727, \cdot)\) None 0 1
1232.4.j \(\chi_{1232}(111, \cdot)\) n/a 120 1
1232.4.l \(\chi_{1232}(967, \cdot)\) None 0 1
1232.4.o \(\chi_{1232}(153, \cdot)\) None 0 1
1232.4.q \(\chi_{1232}(177, \cdot)\) n/a 240 2
1232.4.r \(\chi_{1232}(43, \cdot)\) n/a 864 2
1232.4.s \(\chi_{1232}(419, \cdot)\) n/a 960 2
1232.4.x \(\chi_{1232}(461, \cdot)\) n/a 1144 2
1232.4.y \(\chi_{1232}(309, \cdot)\) n/a 720 2
1232.4.z \(\chi_{1232}(113, \cdot)\) n/a 432 4
1232.4.ba \(\chi_{1232}(857, \cdot)\) None 0 2
1232.4.be \(\chi_{1232}(815, \cdot)\) n/a 240 2
1232.4.bg \(\chi_{1232}(263, \cdot)\) None 0 2
1232.4.bi \(\chi_{1232}(527, \cdot)\) n/a 288 2
1232.4.bk \(\chi_{1232}(199, \cdot)\) None 0 2
1232.4.bl \(\chi_{1232}(793, \cdot)\) None 0 2
1232.4.bn \(\chi_{1232}(241, \cdot)\) n/a 284 2
1232.4.bq \(\chi_{1232}(41, \cdot)\) None 0 4
1232.4.bt \(\chi_{1232}(183, \cdot)\) None 0 4
1232.4.bv \(\chi_{1232}(223, \cdot)\) n/a 576 4
1232.4.bx \(\chi_{1232}(279, \cdot)\) None 0 4
1232.4.bz \(\chi_{1232}(127, \cdot)\) n/a 432 4
1232.4.ca \(\chi_{1232}(321, \cdot)\) n/a 568 4
1232.4.cc \(\chi_{1232}(169, \cdot)\) None 0 4
1232.4.cg \(\chi_{1232}(243, \cdot)\) n/a 1920 4
1232.4.ch \(\chi_{1232}(219, \cdot)\) n/a 2288 4
1232.4.ci \(\chi_{1232}(221, \cdot)\) n/a 1920 4
1232.4.cj \(\chi_{1232}(285, \cdot)\) n/a 2288 4
1232.4.cm \(\chi_{1232}(81, \cdot)\) n/a 1136 8
1232.4.cn \(\chi_{1232}(141, \cdot)\) n/a 3456 8
1232.4.co \(\chi_{1232}(13, \cdot)\) n/a 4576 8
1232.4.ct \(\chi_{1232}(27, \cdot)\) n/a 4576 8
1232.4.cu \(\chi_{1232}(211, \cdot)\) n/a 3456 8
1232.4.cw \(\chi_{1232}(17, \cdot)\) n/a 1136 8
1232.4.cy \(\chi_{1232}(9, \cdot)\) None 0 8
1232.4.cz \(\chi_{1232}(103, \cdot)\) None 0 8
1232.4.db \(\chi_{1232}(79, \cdot)\) n/a 1152 8
1232.4.dd \(\chi_{1232}(39, \cdot)\) None 0 8
1232.4.df \(\chi_{1232}(31, \cdot)\) n/a 1152 8
1232.4.dj \(\chi_{1232}(73, \cdot)\) None 0 8
1232.4.dm \(\chi_{1232}(61, \cdot)\) n/a 9152 16
1232.4.dn \(\chi_{1232}(37, \cdot)\) n/a 9152 16
1232.4.do \(\chi_{1232}(51, \cdot)\) n/a 9152 16
1232.4.dp \(\chi_{1232}(3, \cdot)\) n/a 9152 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1232))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1232)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(308))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(616))\)\(^{\oplus 2}\)