Properties

Label 1170.2.q.c.359.8
Level $1170$
Weight $2$
Character 1170.359
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 359.8
Character \(\chi\) \(=\) 1170.359
Dual form 1170.2.q.c.629.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(2.23186 - 0.137134i) q^{5} +(1.96562 + 1.96562i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(1.67513 + 1.48119i) q^{10} +(2.64510 + 2.64510i) q^{11} +(0.770380 + 3.52229i) q^{13} +2.77980i q^{14} -1.00000 q^{16} -5.46226i q^{17} +(-5.64075 - 5.64075i) q^{19} +(0.137134 + 2.23186i) q^{20} +3.74074i q^{22} +6.48642i q^{23} +(4.96239 - 0.612127i) q^{25} +(-1.94589 + 3.03537i) q^{26} +(-1.96562 + 1.96562i) q^{28} -2.74241i q^{29} +(0.945844 + 0.945844i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(3.86240 - 3.86240i) q^{34} +(4.65654 + 4.11743i) q^{35} +(-6.10217 - 6.10217i) q^{37} -7.97722i q^{38} +(-1.48119 + 1.67513i) q^{40} +(-5.19926 + 5.19926i) q^{41} +1.08404 q^{43} +(-2.64510 + 2.64510i) q^{44} +(-4.58659 + 4.58659i) q^{46} +(-0.108579 + 0.108579i) q^{47} +0.727313i q^{49} +(3.94178 + 3.07610i) q^{50} +(-3.52229 + 0.770380i) q^{52} +12.5009 q^{53} +(6.26623 + 5.54076i) q^{55} -2.77980 q^{56} +(1.93918 - 1.93918i) q^{58} +(9.67063 + 9.67063i) q^{59} -11.6006 q^{61} +1.33763i q^{62} -1.00000i q^{64} +(2.20241 + 7.75561i) q^{65} +(4.45889 - 4.45889i) q^{67} +5.46226 q^{68} +(0.381205 + 6.20413i) q^{70} +(8.97120 - 8.97120i) q^{71} +(7.14966 + 7.14966i) q^{73} -8.62977i q^{74} +(5.64075 - 5.64075i) q^{76} +10.3985i q^{77} -17.7477 q^{79} +(-2.23186 + 0.137134i) q^{80} -7.35287 q^{82} +(1.82503 + 1.82503i) q^{83} +(-0.749061 - 12.1910i) q^{85} +(0.766529 + 0.766529i) q^{86} -3.74074 q^{88} +(2.49913 + 2.49913i) q^{89} +(-5.40920 + 8.43775i) q^{91} -6.48642 q^{92} -0.153554 q^{94} +(-13.3629 - 11.8158i) q^{95} +(0.837007 - 0.837007i) q^{97} +(-0.514288 + 0.514288i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{13} - 24 q^{16} - 48 q^{19} + 32 q^{25} - 8 q^{31} + 16 q^{34} - 32 q^{37} + 8 q^{40} + 80 q^{43} + 8 q^{46} - 12 q^{52} + 16 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 24 q^{70} + 48 q^{73}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 2.23186 0.137134i 0.998118 0.0613281i
\(6\) 0 0
\(7\) 1.96562 + 1.96562i 0.742934 + 0.742934i 0.973142 0.230208i \(-0.0739405\pi\)
−0.230208 + 0.973142i \(0.573941\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.67513 + 1.48119i 0.529723 + 0.468395i
\(11\) 2.64510 + 2.64510i 0.797528 + 0.797528i 0.982705 0.185177i \(-0.0592859\pi\)
−0.185177 + 0.982705i \(0.559286\pi\)
\(12\) 0 0
\(13\) 0.770380 + 3.52229i 0.213665 + 0.976907i
\(14\) 2.77980i 0.742934i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.46226i 1.32479i −0.749154 0.662396i \(-0.769540\pi\)
0.749154 0.662396i \(-0.230460\pi\)
\(18\) 0 0
\(19\) −5.64075 5.64075i −1.29408 1.29408i −0.932242 0.361834i \(-0.882151\pi\)
−0.361834 0.932242i \(-0.617849\pi\)
\(20\) 0.137134 + 2.23186i 0.0306641 + 0.499059i
\(21\) 0 0
\(22\) 3.74074i 0.797528i
\(23\) 6.48642i 1.35251i 0.736666 + 0.676256i \(0.236399\pi\)
−0.736666 + 0.676256i \(0.763601\pi\)
\(24\) 0 0
\(25\) 4.96239 0.612127i 0.992478 0.122425i
\(26\) −1.94589 + 3.03537i −0.381621 + 0.595286i
\(27\) 0 0
\(28\) −1.96562 + 1.96562i −0.371467 + 0.371467i
\(29\) 2.74241i 0.509253i −0.967040 0.254626i \(-0.918048\pi\)
0.967040 0.254626i \(-0.0819525\pi\)
\(30\) 0 0
\(31\) 0.945844 + 0.945844i 0.169879 + 0.169879i 0.786926 0.617047i \(-0.211671\pi\)
−0.617047 + 0.786926i \(0.711671\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 3.86240 3.86240i 0.662396 0.662396i
\(35\) 4.65654 + 4.11743i 0.787098 + 0.695973i
\(36\) 0 0
\(37\) −6.10217 6.10217i −1.00319 1.00319i −0.999995 0.00319562i \(-0.998983\pi\)
−0.00319562 0.999995i \(-0.501017\pi\)
\(38\) 7.97722i 1.29408i
\(39\) 0 0
\(40\) −1.48119 + 1.67513i −0.234197 + 0.264861i
\(41\) −5.19926 + 5.19926i −0.811988 + 0.811988i −0.984932 0.172944i \(-0.944672\pi\)
0.172944 + 0.984932i \(0.444672\pi\)
\(42\) 0 0
\(43\) 1.08404 0.165314 0.0826569 0.996578i \(-0.473659\pi\)
0.0826569 + 0.996578i \(0.473659\pi\)
\(44\) −2.64510 + 2.64510i −0.398764 + 0.398764i
\(45\) 0 0
\(46\) −4.58659 + 4.58659i −0.676256 + 0.676256i
\(47\) −0.108579 + 0.108579i −0.0158379 + 0.0158379i −0.714981 0.699143i \(-0.753565\pi\)
0.699143 + 0.714981i \(0.253565\pi\)
\(48\) 0 0
\(49\) 0.727313i 0.103902i
\(50\) 3.94178 + 3.07610i 0.557452 + 0.435026i
\(51\) 0 0
\(52\) −3.52229 + 0.770380i −0.488453 + 0.106833i
\(53\) 12.5009 1.71713 0.858565 0.512704i \(-0.171356\pi\)
0.858565 + 0.512704i \(0.171356\pi\)
\(54\) 0 0
\(55\) 6.26623 + 5.54076i 0.844938 + 0.747116i
\(56\) −2.77980 −0.371467
\(57\) 0 0
\(58\) 1.93918 1.93918i 0.254626 0.254626i
\(59\) 9.67063 + 9.67063i 1.25901 + 1.25901i 0.951567 + 0.307442i \(0.0994730\pi\)
0.307442 + 0.951567i \(0.400527\pi\)
\(60\) 0 0
\(61\) −11.6006 −1.48531 −0.742653 0.669677i \(-0.766433\pi\)
−0.742653 + 0.669677i \(0.766433\pi\)
\(62\) 1.33763i 0.169879i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 2.20241 + 7.75561i 0.273175 + 0.961964i
\(66\) 0 0
\(67\) 4.45889 4.45889i 0.544740 0.544740i −0.380174 0.924915i \(-0.624136\pi\)
0.924915 + 0.380174i \(0.124136\pi\)
\(68\) 5.46226 0.662396
\(69\) 0 0
\(70\) 0.381205 + 6.20413i 0.0455628 + 0.741536i
\(71\) 8.97120 8.97120i 1.06469 1.06469i 0.0669273 0.997758i \(-0.478680\pi\)
0.997758 0.0669273i \(-0.0213196\pi\)
\(72\) 0 0
\(73\) 7.14966 + 7.14966i 0.836804 + 0.836804i 0.988437 0.151633i \(-0.0484531\pi\)
−0.151633 + 0.988437i \(0.548453\pi\)
\(74\) 8.62977i 1.00319i
\(75\) 0 0
\(76\) 5.64075 5.64075i 0.647038 0.647038i
\(77\) 10.3985i 1.18502i
\(78\) 0 0
\(79\) −17.7477 −1.99677 −0.998386 0.0567868i \(-0.981914\pi\)
−0.998386 + 0.0567868i \(0.981914\pi\)
\(80\) −2.23186 + 0.137134i −0.249529 + 0.0153320i
\(81\) 0 0
\(82\) −7.35287 −0.811988
\(83\) 1.82503 + 1.82503i 0.200323 + 0.200323i 0.800138 0.599816i \(-0.204759\pi\)
−0.599816 + 0.800138i \(0.704759\pi\)
\(84\) 0 0
\(85\) −0.749061 12.1910i −0.0812470 1.32230i
\(86\) 0.766529 + 0.766529i 0.0826569 + 0.0826569i
\(87\) 0 0
\(88\) −3.74074 −0.398764
\(89\) 2.49913 + 2.49913i 0.264907 + 0.264907i 0.827044 0.562137i \(-0.190021\pi\)
−0.562137 + 0.827044i \(0.690021\pi\)
\(90\) 0 0
\(91\) −5.40920 + 8.43775i −0.567038 + 0.884516i
\(92\) −6.48642 −0.676256
\(93\) 0 0
\(94\) −0.153554 −0.0158379
\(95\) −13.3629 11.8158i −1.37100 1.21228i
\(96\) 0 0
\(97\) 0.837007 0.837007i 0.0849852 0.0849852i −0.663336 0.748321i \(-0.730860\pi\)
0.748321 + 0.663336i \(0.230860\pi\)
\(98\) −0.514288 + 0.514288i −0.0519510 + 0.0519510i
\(99\) 0 0
\(100\) 0.612127 + 4.96239i 0.0612127 + 0.496239i
\(101\) −12.7572 −1.26939 −0.634694 0.772763i \(-0.718874\pi\)
−0.634694 + 0.772763i \(0.718874\pi\)
\(102\) 0 0
\(103\) −3.99740 −0.393875 −0.196938 0.980416i \(-0.563100\pi\)
−0.196938 + 0.980416i \(0.563100\pi\)
\(104\) −3.03537 1.94589i −0.297643 0.190810i
\(105\) 0 0
\(106\) 8.83947 + 8.83947i 0.858565 + 0.858565i
\(107\) −4.67233 −0.451691 −0.225846 0.974163i \(-0.572515\pi\)
−0.225846 + 0.974163i \(0.572515\pi\)
\(108\) 0 0
\(109\) −10.2433 10.2433i −0.981130 0.981130i 0.0186953 0.999825i \(-0.494049\pi\)
−0.999825 + 0.0186953i \(0.994049\pi\)
\(110\) 0.512982 + 8.34880i 0.0489109 + 0.796027i
\(111\) 0 0
\(112\) −1.96562 1.96562i −0.185734 0.185734i
\(113\) 2.65269 0.249544 0.124772 0.992185i \(-0.460180\pi\)
0.124772 + 0.992185i \(0.460180\pi\)
\(114\) 0 0
\(115\) 0.889508 + 14.4768i 0.0829471 + 1.34997i
\(116\) 2.74241 0.254626
\(117\) 0 0
\(118\) 13.6763i 1.25901i
\(119\) 10.7367 10.7367i 0.984233 0.984233i
\(120\) 0 0
\(121\) 2.99312i 0.272102i
\(122\) −8.20287 8.20287i −0.742653 0.742653i
\(123\) 0 0
\(124\) −0.945844 + 0.945844i −0.0849393 + 0.0849393i
\(125\) 10.9914 2.04669i 0.983101 0.183062i
\(126\) 0 0
\(127\) 0.680223 0.0603600 0.0301800 0.999544i \(-0.490392\pi\)
0.0301800 + 0.999544i \(0.490392\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −3.92671 + 7.04138i −0.344395 + 0.617570i
\(131\) 5.94995i 0.519850i −0.965629 0.259925i \(-0.916302\pi\)
0.965629 0.259925i \(-0.0836978\pi\)
\(132\) 0 0
\(133\) 22.1751i 1.92283i
\(134\) 6.30582 0.544740
\(135\) 0 0
\(136\) 3.86240 + 3.86240i 0.331198 + 0.331198i
\(137\) 6.79720 6.79720i 0.580724 0.580724i −0.354378 0.935102i \(-0.615307\pi\)
0.935102 + 0.354378i \(0.115307\pi\)
\(138\) 0 0
\(139\) 9.52103 0.807563 0.403781 0.914855i \(-0.367696\pi\)
0.403781 + 0.914855i \(0.367696\pi\)
\(140\) −4.11743 + 4.65654i −0.347986 + 0.393549i
\(141\) 0 0
\(142\) 12.6872 1.06469
\(143\) −7.27908 + 11.3545i −0.608707 + 0.949515i
\(144\) 0 0
\(145\) −0.376077 6.12067i −0.0312315 0.508294i
\(146\) 10.1111i 0.836804i
\(147\) 0 0
\(148\) 6.10217 6.10217i 0.501595 0.501595i
\(149\) 6.89267 6.89267i 0.564669 0.564669i −0.365961 0.930630i \(-0.619260\pi\)
0.930630 + 0.365961i \(0.119260\pi\)
\(150\) 0 0
\(151\) 13.8330 13.8330i 1.12571 1.12571i 0.134848 0.990866i \(-0.456945\pi\)
0.990866 0.134848i \(-0.0430547\pi\)
\(152\) 7.97722 0.647038
\(153\) 0 0
\(154\) −7.35287 + 7.35287i −0.592511 + 0.592511i
\(155\) 2.24070 + 1.98128i 0.179977 + 0.159141i
\(156\) 0 0
\(157\) 0.454032i 0.0362357i 0.999836 + 0.0181179i \(0.00576741\pi\)
−0.999836 + 0.0181179i \(0.994233\pi\)
\(158\) −12.5495 12.5495i −0.998386 0.998386i
\(159\) 0 0
\(160\) −1.67513 1.48119i −0.132431 0.117099i
\(161\) −12.7498 + 12.7498i −1.00483 + 1.00483i
\(162\) 0 0
\(163\) 1.75837 + 1.75837i 0.137726 + 0.137726i 0.772609 0.634883i \(-0.218952\pi\)
−0.634883 + 0.772609i \(0.718952\pi\)
\(164\) −5.19926 5.19926i −0.405994 0.405994i
\(165\) 0 0
\(166\) 2.58098i 0.200323i
\(167\) −7.24838 + 7.24838i −0.560897 + 0.560897i −0.929562 0.368665i \(-0.879815\pi\)
0.368665 + 0.929562i \(0.379815\pi\)
\(168\) 0 0
\(169\) −11.8130 + 5.42700i −0.908694 + 0.417462i
\(170\) 8.09067 9.15000i 0.620526 0.701773i
\(171\) 0 0
\(172\) 1.08404i 0.0826569i
\(173\) 1.44733i 0.110039i −0.998485 0.0550194i \(-0.982478\pi\)
0.998485 0.0550194i \(-0.0175221\pi\)
\(174\) 0 0
\(175\) 10.9574 + 8.55096i 0.828299 + 0.646391i
\(176\) −2.64510 2.64510i −0.199382 0.199382i
\(177\) 0 0
\(178\) 3.53430i 0.264907i
\(179\) 1.75078 0.130859 0.0654296 0.997857i \(-0.479158\pi\)
0.0654296 + 0.997857i \(0.479158\pi\)
\(180\) 0 0
\(181\) 8.25471i 0.613568i 0.951779 + 0.306784i \(0.0992529\pi\)
−0.951779 + 0.306784i \(0.900747\pi\)
\(182\) −9.79127 + 2.14151i −0.725777 + 0.158739i
\(183\) 0 0
\(184\) −4.58659 4.58659i −0.338128 0.338128i
\(185\) −14.4560 12.7824i −1.06283 0.939778i
\(186\) 0 0
\(187\) 14.4482 14.4482i 1.05656 1.05656i
\(188\) −0.108579 0.108579i −0.00791895 0.00791895i
\(189\) 0 0
\(190\) −1.09395 17.8040i −0.0793633 1.29164i
\(191\) 0.580127i 0.0419765i 0.999780 + 0.0209883i \(0.00668127\pi\)
−0.999780 + 0.0209883i \(0.993319\pi\)
\(192\) 0 0
\(193\) −16.1005 16.1005i −1.15894 1.15894i −0.984704 0.174238i \(-0.944254\pi\)
−0.174238 0.984704i \(-0.555746\pi\)
\(194\) 1.18371 0.0849852
\(195\) 0 0
\(196\) −0.727313 −0.0519510
\(197\) −16.9646 16.9646i −1.20868 1.20868i −0.971455 0.237224i \(-0.923762\pi\)
−0.237224 0.971455i \(-0.576238\pi\)
\(198\) 0 0
\(199\) 14.1566i 1.00353i −0.865003 0.501767i \(-0.832684\pi\)
0.865003 0.501767i \(-0.167316\pi\)
\(200\) −3.07610 + 3.94178i −0.217513 + 0.278726i
\(201\) 0 0
\(202\) −9.02070 9.02070i −0.634694 0.634694i
\(203\) 5.39053 5.39053i 0.378341 0.378341i
\(204\) 0 0
\(205\) −10.8910 + 12.3170i −0.760662 + 0.860257i
\(206\) −2.82659 2.82659i −0.196938 0.196938i
\(207\) 0 0
\(208\) −0.770380 3.52229i −0.0534163 0.244227i
\(209\) 29.8407i 2.06413i
\(210\) 0 0
\(211\) 7.57960 0.521801 0.260901 0.965366i \(-0.415980\pi\)
0.260901 + 0.965366i \(0.415980\pi\)
\(212\) 12.5009i 0.858565i
\(213\) 0 0
\(214\) −3.30384 3.30384i −0.225846 0.225846i
\(215\) 2.41941 0.148658i 0.165003 0.0101384i
\(216\) 0 0
\(217\) 3.71834i 0.252417i
\(218\) 14.4862i 0.981130i
\(219\) 0 0
\(220\) −5.54076 + 6.26623i −0.373558 + 0.422469i
\(221\) 19.2396 4.20802i 1.29420 0.283062i
\(222\) 0 0
\(223\) −19.2433 + 19.2433i −1.28862 + 1.28862i −0.353001 + 0.935623i \(0.614839\pi\)
−0.935623 + 0.353001i \(0.885161\pi\)
\(224\) 2.77980i 0.185734i
\(225\) 0 0
\(226\) 1.87574 + 1.87574i 0.124772 + 0.124772i
\(227\) 12.3895 + 12.3895i 0.822322 + 0.822322i 0.986441 0.164119i \(-0.0524780\pi\)
−0.164119 + 0.986441i \(0.552478\pi\)
\(228\) 0 0
\(229\) 6.78591 6.78591i 0.448425 0.448425i −0.446406 0.894831i \(-0.647296\pi\)
0.894831 + 0.446406i \(0.147296\pi\)
\(230\) −9.60765 + 10.8656i −0.633510 + 0.716457i
\(231\) 0 0
\(232\) 1.93918 + 1.93918i 0.127313 + 0.127313i
\(233\) 9.03392i 0.591832i −0.955214 0.295916i \(-0.904375\pi\)
0.955214 0.295916i \(-0.0956248\pi\)
\(234\) 0 0
\(235\) −0.227443 + 0.257223i −0.0148368 + 0.0167794i
\(236\) −9.67063 + 9.67063i −0.629504 + 0.629504i
\(237\) 0 0
\(238\) 15.1840 0.984233
\(239\) 2.52590 2.52590i 0.163387 0.163387i −0.620678 0.784065i \(-0.713143\pi\)
0.784065 + 0.620678i \(0.213143\pi\)
\(240\) 0 0
\(241\) 8.17058 8.17058i 0.526314 0.526314i −0.393158 0.919471i \(-0.628617\pi\)
0.919471 + 0.393158i \(0.128617\pi\)
\(242\) −2.11646 + 2.11646i −0.136051 + 0.136051i
\(243\) 0 0
\(244\) 11.6006i 0.742653i
\(245\) 0.0997393 + 1.62326i 0.00637211 + 0.103706i
\(246\) 0 0
\(247\) 15.5228 24.2139i 0.987694 1.54069i
\(248\) −1.33763 −0.0849393
\(249\) 0 0
\(250\) 9.21933 + 6.32487i 0.583082 + 0.400020i
\(251\) 8.23530 0.519807 0.259904 0.965635i \(-0.416309\pi\)
0.259904 + 0.965635i \(0.416309\pi\)
\(252\) 0 0
\(253\) −17.1572 + 17.1572i −1.07867 + 1.07867i
\(254\) 0.480990 + 0.480990i 0.0301800 + 0.0301800i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 22.8434i 1.42493i 0.701707 + 0.712466i \(0.252422\pi\)
−0.701707 + 0.712466i \(0.747578\pi\)
\(258\) 0 0
\(259\) 23.9891i 1.49061i
\(260\) −7.75561 + 2.20241i −0.480982 + 0.136587i
\(261\) 0 0
\(262\) 4.20725 4.20725i 0.259925 0.259925i
\(263\) 6.68091 0.411963 0.205981 0.978556i \(-0.433961\pi\)
0.205981 + 0.978556i \(0.433961\pi\)
\(264\) 0 0
\(265\) 27.9002 1.71430i 1.71390 0.105308i
\(266\) 15.6802 15.6802i 0.961414 0.961414i
\(267\) 0 0
\(268\) 4.45889 + 4.45889i 0.272370 + 0.272370i
\(269\) 27.5684i 1.68087i −0.541910 0.840436i \(-0.682299\pi\)
0.541910 0.840436i \(-0.317701\pi\)
\(270\) 0 0
\(271\) 16.1517 16.1517i 0.981146 0.981146i −0.0186793 0.999826i \(-0.505946\pi\)
0.999826 + 0.0186793i \(0.00594615\pi\)
\(272\) 5.46226i 0.331198i
\(273\) 0 0
\(274\) 9.61269 0.580724
\(275\) 14.7452 + 11.5069i 0.889167 + 0.693891i
\(276\) 0 0
\(277\) −5.66115 −0.340146 −0.170073 0.985431i \(-0.554400\pi\)
−0.170073 + 0.985431i \(0.554400\pi\)
\(278\) 6.73238 + 6.73238i 0.403781 + 0.403781i
\(279\) 0 0
\(280\) −6.20413 + 0.381205i −0.370768 + 0.0227814i
\(281\) −20.2028 20.2028i −1.20520 1.20520i −0.972564 0.232637i \(-0.925264\pi\)
−0.232637 0.972564i \(-0.574736\pi\)
\(282\) 0 0
\(283\) 11.2936 0.671334 0.335667 0.941981i \(-0.391038\pi\)
0.335667 + 0.941981i \(0.391038\pi\)
\(284\) 8.97120 + 8.97120i 0.532343 + 0.532343i
\(285\) 0 0
\(286\) −13.1760 + 2.88179i −0.779111 + 0.170404i
\(287\) −20.4395 −1.20651
\(288\) 0 0
\(289\) −12.8363 −0.755074
\(290\) 4.06204 4.59390i 0.238531 0.269763i
\(291\) 0 0
\(292\) −7.14966 + 7.14966i −0.418402 + 0.418402i
\(293\) −11.2366 + 11.2366i −0.656451 + 0.656451i −0.954539 0.298088i \(-0.903651\pi\)
0.298088 + 0.954539i \(0.403651\pi\)
\(294\) 0 0
\(295\) 22.9097 + 20.2573i 1.33385 + 1.17943i
\(296\) 8.62977 0.501595
\(297\) 0 0
\(298\) 9.74770 0.564669
\(299\) −22.8471 + 4.99701i −1.32128 + 0.288985i
\(300\) 0 0
\(301\) 2.13080 + 2.13080i 0.122817 + 0.122817i
\(302\) 19.5628 1.12571
\(303\) 0 0
\(304\) 5.64075 + 5.64075i 0.323519 + 0.323519i
\(305\) −25.8909 + 1.59084i −1.48251 + 0.0910910i
\(306\) 0 0
\(307\) 6.11744 + 6.11744i 0.349141 + 0.349141i 0.859789 0.510649i \(-0.170595\pi\)
−0.510649 + 0.859789i \(0.670595\pi\)
\(308\) −10.3985 −0.592511
\(309\) 0 0
\(310\) 0.183434 + 2.98539i 0.0104183 + 0.169559i
\(311\) −16.1716 −0.917008 −0.458504 0.888692i \(-0.651614\pi\)
−0.458504 + 0.888692i \(0.651614\pi\)
\(312\) 0 0
\(313\) 14.4637i 0.817536i −0.912638 0.408768i \(-0.865959\pi\)
0.912638 0.408768i \(-0.134041\pi\)
\(314\) −0.321049 + 0.321049i −0.0181179 + 0.0181179i
\(315\) 0 0
\(316\) 17.7477i 0.998386i
\(317\) −20.8873 20.8873i −1.17315 1.17315i −0.981455 0.191694i \(-0.938602\pi\)
−0.191694 0.981455i \(-0.561398\pi\)
\(318\) 0 0
\(319\) 7.25395 7.25395i 0.406143 0.406143i
\(320\) −0.137134 2.23186i −0.00766602 0.124765i
\(321\) 0 0
\(322\) −18.0310 −1.00483
\(323\) −30.8112 + 30.8112i −1.71438 + 1.71438i
\(324\) 0 0
\(325\) 5.97901 + 17.0074i 0.331656 + 0.943400i
\(326\) 2.48671i 0.137726i
\(327\) 0 0
\(328\) 7.35287i 0.405994i
\(329\) −0.426850 −0.0235330
\(330\) 0 0
\(331\) 11.0069 + 11.0069i 0.604993 + 0.604993i 0.941633 0.336640i \(-0.109291\pi\)
−0.336640 + 0.941633i \(0.609291\pi\)
\(332\) −1.82503 + 1.82503i −0.100161 + 0.100161i
\(333\) 0 0
\(334\) −10.2508 −0.560897
\(335\) 9.34015 10.5631i 0.510307 0.577123i
\(336\) 0 0
\(337\) −6.28780 −0.342518 −0.171259 0.985226i \(-0.554784\pi\)
−0.171259 + 0.985226i \(0.554784\pi\)
\(338\) −12.1905 4.51560i −0.663078 0.245616i
\(339\) 0 0
\(340\) 12.1910 0.749061i 0.661149 0.0406235i
\(341\) 5.00371i 0.270966i
\(342\) 0 0
\(343\) 12.3297 12.3297i 0.665742 0.665742i
\(344\) −0.766529 + 0.766529i −0.0413285 + 0.0413285i
\(345\) 0 0
\(346\) 1.02342 1.02342i 0.0550194 0.0550194i
\(347\) −23.0734 −1.23864 −0.619322 0.785137i \(-0.712592\pi\)
−0.619322 + 0.785137i \(0.712592\pi\)
\(348\) 0 0
\(349\) −7.85542 + 7.85542i −0.420491 + 0.420491i −0.885373 0.464882i \(-0.846097\pi\)
0.464882 + 0.885373i \(0.346097\pi\)
\(350\) 1.70159 + 13.7945i 0.0909540 + 0.737345i
\(351\) 0 0
\(352\) 3.74074i 0.199382i
\(353\) 5.37052 + 5.37052i 0.285844 + 0.285844i 0.835434 0.549590i \(-0.185216\pi\)
−0.549590 + 0.835434i \(0.685216\pi\)
\(354\) 0 0
\(355\) 18.7922 21.2527i 0.997386 1.12798i
\(356\) −2.49913 + 2.49913i −0.132454 + 0.132454i
\(357\) 0 0
\(358\) 1.23799 + 1.23799i 0.0654296 + 0.0654296i
\(359\) 0.806713 + 0.806713i 0.0425767 + 0.0425767i 0.728075 0.685498i \(-0.240415\pi\)
−0.685498 + 0.728075i \(0.740415\pi\)
\(360\) 0 0
\(361\) 44.6361i 2.34927i
\(362\) −5.83696 + 5.83696i −0.306784 + 0.306784i
\(363\) 0 0
\(364\) −8.43775 5.40920i −0.442258 0.283519i
\(365\) 16.9375 + 14.9766i 0.886549 + 0.783909i
\(366\) 0 0
\(367\) 30.3706i 1.58533i 0.609658 + 0.792665i \(0.291307\pi\)
−0.609658 + 0.792665i \(0.708693\pi\)
\(368\) 6.48642i 0.338128i
\(369\) 0 0
\(370\) −1.18343 19.2604i −0.0615238 1.00130i
\(371\) 24.5720 + 24.5720i 1.27571 + 1.27571i
\(372\) 0 0
\(373\) 14.3157i 0.741237i 0.928785 + 0.370619i \(0.120854\pi\)
−0.928785 + 0.370619i \(0.879146\pi\)
\(374\) 20.4329 1.05656
\(375\) 0 0
\(376\) 0.153554i 0.00791895i
\(377\) 9.65956 2.11270i 0.497493 0.108810i
\(378\) 0 0
\(379\) −24.9955 24.9955i −1.28393 1.28393i −0.938412 0.345519i \(-0.887703\pi\)
−0.345519 0.938412i \(-0.612297\pi\)
\(380\) 11.8158 13.3629i 0.606139 0.685502i
\(381\) 0 0
\(382\) −0.410212 + 0.410212i −0.0209883 + 0.0209883i
\(383\) 0.385931 + 0.385931i 0.0197201 + 0.0197201i 0.716898 0.697178i \(-0.245561\pi\)
−0.697178 + 0.716898i \(0.745561\pi\)
\(384\) 0 0
\(385\) 1.42599 + 23.2080i 0.0726752 + 1.18279i
\(386\) 22.7696i 1.15894i
\(387\) 0 0
\(388\) 0.837007 + 0.837007i 0.0424926 + 0.0424926i
\(389\) 13.6949 0.694360 0.347180 0.937798i \(-0.387139\pi\)
0.347180 + 0.937798i \(0.387139\pi\)
\(390\) 0 0
\(391\) 35.4305 1.79180
\(392\) −0.514288 0.514288i −0.0259755 0.0259755i
\(393\) 0 0
\(394\) 23.9916i 1.20868i
\(395\) −39.6104 + 2.43381i −1.99301 + 0.122458i
\(396\) 0 0
\(397\) 7.91126 + 7.91126i 0.397055 + 0.397055i 0.877193 0.480138i \(-0.159414\pi\)
−0.480138 + 0.877193i \(0.659414\pi\)
\(398\) 10.0102 10.0102i 0.501767 0.501767i
\(399\) 0 0
\(400\) −4.96239 + 0.612127i −0.248119 + 0.0306063i
\(401\) 16.8138 + 16.8138i 0.839642 + 0.839642i 0.988812 0.149169i \(-0.0476600\pi\)
−0.149169 + 0.988812i \(0.547660\pi\)
\(402\) 0 0
\(403\) −2.60288 + 4.06020i −0.129659 + 0.202253i
\(404\) 12.7572i 0.634694i
\(405\) 0 0
\(406\) 7.62336 0.378341
\(407\) 32.2817i 1.60015i
\(408\) 0 0
\(409\) −6.83881 6.83881i −0.338157 0.338157i 0.517516 0.855673i \(-0.326857\pi\)
−0.855673 + 0.517516i \(0.826857\pi\)
\(410\) −16.4106 + 1.00833i −0.810460 + 0.0497977i
\(411\) 0 0
\(412\) 3.99740i 0.196938i
\(413\) 38.0175i 1.87072i
\(414\) 0 0
\(415\) 4.32347 + 3.82293i 0.212231 + 0.187660i
\(416\) 1.94589 3.03537i 0.0954052 0.148822i
\(417\) 0 0
\(418\) 21.1006 21.1006i 1.03206 1.03206i
\(419\) 14.3477i 0.700932i −0.936576 0.350466i \(-0.886023\pi\)
0.936576 0.350466i \(-0.113977\pi\)
\(420\) 0 0
\(421\) −17.4452 17.4452i −0.850228 0.850228i 0.139933 0.990161i \(-0.455311\pi\)
−0.990161 + 0.139933i \(0.955311\pi\)
\(422\) 5.35959 + 5.35959i 0.260901 + 0.260901i
\(423\) 0 0
\(424\) −8.83947 + 8.83947i −0.429283 + 0.429283i
\(425\) −3.34359 27.1058i −0.162188 1.31483i
\(426\) 0 0
\(427\) −22.8024 22.8024i −1.10348 1.10348i
\(428\) 4.67233i 0.225846i
\(429\) 0 0
\(430\) 1.81590 + 1.60567i 0.0875705 + 0.0774321i
\(431\) −5.54989 + 5.54989i −0.267329 + 0.267329i −0.828023 0.560694i \(-0.810534\pi\)
0.560694 + 0.828023i \(0.310534\pi\)
\(432\) 0 0
\(433\) −4.13768 −0.198844 −0.0994220 0.995045i \(-0.531699\pi\)
−0.0994220 + 0.995045i \(0.531699\pi\)
\(434\) −2.62926 + 2.62926i −0.126209 + 0.126209i
\(435\) 0 0
\(436\) 10.2433 10.2433i 0.490565 0.490565i
\(437\) 36.5883 36.5883i 1.75026 1.75026i
\(438\) 0 0
\(439\) 33.0671i 1.57821i 0.614262 + 0.789103i \(0.289454\pi\)
−0.614262 + 0.789103i \(0.710546\pi\)
\(440\) −8.34880 + 0.512982i −0.398013 + 0.0244555i
\(441\) 0 0
\(442\) 16.5800 + 10.6290i 0.788630 + 0.505568i
\(443\) 23.9819 1.13941 0.569707 0.821848i \(-0.307057\pi\)
0.569707 + 0.821848i \(0.307057\pi\)
\(444\) 0 0
\(445\) 5.92042 + 5.23499i 0.280655 + 0.248162i
\(446\) −27.2141 −1.28862
\(447\) 0 0
\(448\) 1.96562 1.96562i 0.0928668 0.0928668i
\(449\) −0.714936 0.714936i −0.0337399 0.0337399i 0.690036 0.723775i \(-0.257595\pi\)
−0.723775 + 0.690036i \(0.757595\pi\)
\(450\) 0 0
\(451\) −27.5051 −1.29517
\(452\) 2.65269i 0.124772i
\(453\) 0 0
\(454\) 17.5214i 0.822322i
\(455\) −10.9155 + 19.5737i −0.511725 + 0.917627i
\(456\) 0 0
\(457\) −16.5043 + 16.5043i −0.772038 + 0.772038i −0.978462 0.206425i \(-0.933817\pi\)
0.206425 + 0.978462i \(0.433817\pi\)
\(458\) 9.59672 0.448425
\(459\) 0 0
\(460\) −14.4768 + 0.889508i −0.674983 + 0.0414735i
\(461\) −5.07529 + 5.07529i −0.236380 + 0.236380i −0.815349 0.578969i \(-0.803455\pi\)
0.578969 + 0.815349i \(0.303455\pi\)
\(462\) 0 0
\(463\) −10.7995 10.7995i −0.501895 0.501895i 0.410132 0.912026i \(-0.365483\pi\)
−0.912026 + 0.410132i \(0.865483\pi\)
\(464\) 2.74241i 0.127313i
\(465\) 0 0
\(466\) 6.38795 6.38795i 0.295916 0.295916i
\(467\) 9.77705i 0.452428i 0.974078 + 0.226214i \(0.0726349\pi\)
−0.974078 + 0.226214i \(0.927365\pi\)
\(468\) 0 0
\(469\) 17.5290 0.809412
\(470\) −0.342711 + 0.0210575i −0.0158081 + 0.000971309i
\(471\) 0 0
\(472\) −13.6763 −0.629504
\(473\) 2.86738 + 2.86738i 0.131842 + 0.131842i
\(474\) 0 0
\(475\) −31.4444 24.5387i −1.44277 1.12591i
\(476\) 10.7367 + 10.7367i 0.492117 + 0.492117i
\(477\) 0 0
\(478\) 3.57216 0.163387
\(479\) 7.77169 + 7.77169i 0.355098 + 0.355098i 0.862002 0.506904i \(-0.169210\pi\)
−0.506904 + 0.862002i \(0.669210\pi\)
\(480\) 0 0
\(481\) 16.7926 26.1946i 0.765677 1.19437i
\(482\) 11.5550 0.526314
\(483\) 0 0
\(484\) −2.99312 −0.136051
\(485\) 1.75330 1.98286i 0.0796132 0.0900372i
\(486\) 0 0
\(487\) −15.3878 + 15.3878i −0.697288 + 0.697288i −0.963825 0.266537i \(-0.914121\pi\)
0.266537 + 0.963825i \(0.414121\pi\)
\(488\) 8.20287 8.20287i 0.371326 0.371326i
\(489\) 0 0
\(490\) −1.07729 + 1.21835i −0.0486671 + 0.0550392i
\(491\) 11.3600 0.512669 0.256334 0.966588i \(-0.417485\pi\)
0.256334 + 0.966588i \(0.417485\pi\)
\(492\) 0 0
\(493\) −14.9798 −0.674654
\(494\) 28.0981 6.14550i 1.26419 0.276499i
\(495\) 0 0
\(496\) −0.945844 0.945844i −0.0424697 0.0424697i
\(497\) 35.2679 1.58198
\(498\) 0 0
\(499\) 5.53890 + 5.53890i 0.247955 + 0.247955i 0.820131 0.572176i \(-0.193901\pi\)
−0.572176 + 0.820131i \(0.693901\pi\)
\(500\) 2.04669 + 10.9914i 0.0915309 + 0.491551i
\(501\) 0 0
\(502\) 5.82323 + 5.82323i 0.259904 + 0.259904i
\(503\) 8.56557 0.381920 0.190960 0.981598i \(-0.438840\pi\)
0.190960 + 0.981598i \(0.438840\pi\)
\(504\) 0 0
\(505\) −28.4723 + 1.74944i −1.26700 + 0.0778492i
\(506\) −24.2640 −1.07867
\(507\) 0 0
\(508\) 0.680223i 0.0301800i
\(509\) −9.27756 + 9.27756i −0.411221 + 0.411221i −0.882164 0.470943i \(-0.843914\pi\)
0.470943 + 0.882164i \(0.343914\pi\)
\(510\) 0 0
\(511\) 28.1070i 1.24338i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −16.1527 + 16.1527i −0.712466 + 0.712466i
\(515\) −8.92162 + 0.548178i −0.393134 + 0.0241556i
\(516\) 0 0
\(517\) −0.574406 −0.0252623
\(518\) 16.9628 16.9628i 0.745304 0.745304i
\(519\) 0 0
\(520\) −7.04138 3.92671i −0.308785 0.172197i
\(521\) 0.281155i 0.0123176i 0.999981 + 0.00615880i \(0.00196042\pi\)
−0.999981 + 0.00615880i \(0.998040\pi\)
\(522\) 0 0
\(523\) 29.1354i 1.27400i 0.770863 + 0.637001i \(0.219825\pi\)
−0.770863 + 0.637001i \(0.780175\pi\)
\(524\) 5.94995 0.259925
\(525\) 0 0
\(526\) 4.72412 + 4.72412i 0.205981 + 0.205981i
\(527\) 5.16645 5.16645i 0.225054 0.225054i
\(528\) 0 0
\(529\) −19.0737 −0.829291
\(530\) 20.9406 + 18.5163i 0.909603 + 0.804295i
\(531\) 0 0
\(532\) 22.1751 0.961414
\(533\) −22.3187 14.3079i −0.966730 0.619743i
\(534\) 0 0
\(535\) −10.4280 + 0.640735i −0.450841 + 0.0277014i
\(536\) 6.30582i 0.272370i
\(537\) 0 0
\(538\) 19.4938 19.4938i 0.840436 0.840436i
\(539\) −1.92382 + 1.92382i −0.0828647 + 0.0828647i
\(540\) 0 0
\(541\) −19.7024 + 19.7024i −0.847074 + 0.847074i −0.989767 0.142693i \(-0.954424\pi\)
0.142693 + 0.989767i \(0.454424\pi\)
\(542\) 22.8420 0.981146
\(543\) 0 0
\(544\) −3.86240 + 3.86240i −0.165599 + 0.165599i
\(545\) −24.2663 21.4569i −1.03945 0.919112i
\(546\) 0 0
\(547\) 23.1700i 0.990679i 0.868699 + 0.495340i \(0.164956\pi\)
−0.868699 + 0.495340i \(0.835044\pi\)
\(548\) 6.79720 + 6.79720i 0.290362 + 0.290362i
\(549\) 0 0
\(550\) 2.28981 + 18.5630i 0.0976377 + 0.791529i
\(551\) −15.4692 + 15.4692i −0.659012 + 0.659012i
\(552\) 0 0
\(553\) −34.8852 34.8852i −1.48347 1.48347i
\(554\) −4.00304 4.00304i −0.170073 0.170073i
\(555\) 0 0
\(556\) 9.52103i 0.403781i
\(557\) 21.7682 21.7682i 0.922349 0.922349i −0.0748464 0.997195i \(-0.523847\pi\)
0.997195 + 0.0748464i \(0.0238466\pi\)
\(558\) 0 0
\(559\) 0.835119 + 3.81828i 0.0353218 + 0.161496i
\(560\) −4.65654 4.11743i −0.196775 0.173993i
\(561\) 0 0
\(562\) 28.5711i 1.20520i
\(563\) 19.8520i 0.836660i −0.908295 0.418330i \(-0.862616\pi\)
0.908295 0.418330i \(-0.137384\pi\)
\(564\) 0 0
\(565\) 5.92043 0.363774i 0.249074 0.0153041i
\(566\) 7.98577 + 7.98577i 0.335667 + 0.335667i
\(567\) 0 0
\(568\) 12.6872i 0.532343i
\(569\) 29.6118 1.24139 0.620696 0.784052i \(-0.286850\pi\)
0.620696 + 0.784052i \(0.286850\pi\)
\(570\) 0 0
\(571\) 2.28081i 0.0954491i −0.998861 0.0477246i \(-0.984803\pi\)
0.998861 0.0477246i \(-0.0151970\pi\)
\(572\) −11.3545 7.27908i −0.474757 0.304353i
\(573\) 0 0
\(574\) −14.4529 14.4529i −0.603254 0.603254i
\(575\) 3.97051 + 32.1882i 0.165582 + 1.34234i
\(576\) 0 0
\(577\) −14.7512 + 14.7512i −0.614100 + 0.614100i −0.944012 0.329912i \(-0.892981\pi\)
0.329912 + 0.944012i \(0.392981\pi\)
\(578\) −9.07661 9.07661i −0.377537 0.377537i
\(579\) 0 0
\(580\) 6.12067 0.376077i 0.254147 0.0156158i
\(581\) 7.17461i 0.297653i
\(582\) 0 0
\(583\) 33.0661 + 33.0661i 1.36946 + 1.36946i
\(584\) −10.1111 −0.418402
\(585\) 0 0
\(586\) −15.8910 −0.656451
\(587\) 6.03336 + 6.03336i 0.249023 + 0.249023i 0.820570 0.571546i \(-0.193656\pi\)
−0.571546 + 0.820570i \(0.693656\pi\)
\(588\) 0 0
\(589\) 10.6705i 0.439672i
\(590\) 1.87549 + 30.5237i 0.0772127 + 1.25664i
\(591\) 0 0
\(592\) 6.10217 + 6.10217i 0.250798 + 0.250798i
\(593\) −3.28068 + 3.28068i −0.134721 + 0.134721i −0.771252 0.636530i \(-0.780369\pi\)
0.636530 + 0.771252i \(0.280369\pi\)
\(594\) 0 0
\(595\) 22.4905 25.4352i 0.922019 1.04274i
\(596\) 6.89267 + 6.89267i 0.282335 + 0.282335i
\(597\) 0 0
\(598\) −19.6887 12.6219i −0.805132 0.516147i
\(599\) 5.00194i 0.204374i −0.994765 0.102187i \(-0.967416\pi\)
0.994765 0.102187i \(-0.0325840\pi\)
\(600\) 0 0
\(601\) −15.7393 −0.642021 −0.321010 0.947076i \(-0.604022\pi\)
−0.321010 + 0.947076i \(0.604022\pi\)
\(602\) 3.01341i 0.122817i
\(603\) 0 0
\(604\) 13.8330 + 13.8330i 0.562857 + 0.562857i
\(605\) 0.410459 + 6.68023i 0.0166875 + 0.271590i
\(606\) 0 0
\(607\) 0.932239i 0.0378384i 0.999821 + 0.0189192i \(0.00602253\pi\)
−0.999821 + 0.0189192i \(0.993977\pi\)
\(608\) 7.97722i 0.323519i
\(609\) 0 0
\(610\) −19.4325 17.1828i −0.786801 0.695709i
\(611\) −0.466094 0.298800i −0.0188562 0.0120881i
\(612\) 0 0
\(613\) −13.2136 + 13.2136i −0.533691 + 0.533691i −0.921669 0.387978i \(-0.873174\pi\)
0.387978 + 0.921669i \(0.373174\pi\)
\(614\) 8.65137i 0.349141i
\(615\) 0 0
\(616\) −7.35287 7.35287i −0.296255 0.296255i
\(617\) 22.6516 + 22.6516i 0.911920 + 0.911920i 0.996423 0.0845030i \(-0.0269303\pi\)
−0.0845030 + 0.996423i \(0.526930\pi\)
\(618\) 0 0
\(619\) 11.9427 11.9427i 0.480016 0.480016i −0.425120 0.905137i \(-0.639768\pi\)
0.905137 + 0.425120i \(0.139768\pi\)
\(620\) −1.98128 + 2.24070i −0.0795703 + 0.0899886i
\(621\) 0 0
\(622\) −11.4351 11.4351i −0.458504 0.458504i
\(623\) 9.82466i 0.393617i
\(624\) 0 0
\(625\) 24.2506 6.07522i 0.970024 0.243009i
\(626\) 10.2274 10.2274i 0.408768 0.408768i
\(627\) 0 0
\(628\) −0.454032 −0.0181179
\(629\) −33.3316 + 33.3316i −1.32902 + 1.32902i
\(630\) 0 0
\(631\) −1.54916 + 1.54916i −0.0616710 + 0.0616710i −0.737270 0.675599i \(-0.763885\pi\)
0.675599 + 0.737270i \(0.263885\pi\)
\(632\) 12.5495 12.5495i 0.499193 0.499193i
\(633\) 0 0
\(634\) 29.5391i 1.17315i
\(635\) 1.51816 0.0932816i 0.0602464 0.00370177i
\(636\) 0 0
\(637\) −2.56181 + 0.560308i −0.101503 + 0.0222002i
\(638\) 10.2586 0.406143
\(639\) 0 0
\(640\) 1.48119 1.67513i 0.0585493 0.0662154i
\(641\) −14.2386 −0.562389 −0.281195 0.959651i \(-0.590731\pi\)
−0.281195 + 0.959651i \(0.590731\pi\)
\(642\) 0 0
\(643\) −3.35321 + 3.35321i −0.132238 + 0.132238i −0.770128 0.637890i \(-0.779808\pi\)
0.637890 + 0.770128i \(0.279808\pi\)
\(644\) −12.7498 12.7498i −0.502414 0.502414i
\(645\) 0 0
\(646\) −43.5737 −1.71438
\(647\) 14.8434i 0.583553i 0.956487 + 0.291777i \(0.0942464\pi\)
−0.956487 + 0.291777i \(0.905754\pi\)
\(648\) 0 0
\(649\) 51.1596i 2.00819i
\(650\) −7.79824 + 16.2538i −0.305872 + 0.637528i
\(651\) 0 0
\(652\) −1.75837 + 1.75837i −0.0688630 + 0.0688630i
\(653\) −17.0479 −0.667134 −0.333567 0.942726i \(-0.608252\pi\)
−0.333567 + 0.942726i \(0.608252\pi\)
\(654\) 0 0
\(655\) −0.815940 13.2795i −0.0318814 0.518871i
\(656\) 5.19926 5.19926i 0.202997 0.202997i
\(657\) 0 0
\(658\) −0.301829 0.301829i −0.0117665 0.0117665i
\(659\) 24.7994i 0.966047i 0.875607 + 0.483023i \(0.160461\pi\)
−0.875607 + 0.483023i \(0.839539\pi\)
\(660\) 0 0
\(661\) −18.8061 + 18.8061i −0.731474 + 0.731474i −0.970912 0.239437i \(-0.923037\pi\)
0.239437 + 0.970912i \(0.423037\pi\)
\(662\) 15.5661i 0.604993i
\(663\) 0 0
\(664\) −2.58098 −0.100161
\(665\) −3.04096 49.4918i −0.117923 1.91921i
\(666\) 0 0
\(667\) 17.7884 0.688771
\(668\) −7.24838 7.24838i −0.280448 0.280448i
\(669\) 0 0
\(670\) 14.0737 0.864742i 0.543715 0.0334079i
\(671\) −30.6848 30.6848i −1.18457 1.18457i
\(672\) 0 0
\(673\) −11.7856 −0.454302 −0.227151 0.973860i \(-0.572941\pi\)
−0.227151 + 0.973860i \(0.572941\pi\)
\(674\) −4.44614 4.44614i −0.171259 0.171259i
\(675\) 0 0
\(676\) −5.42700 11.8130i −0.208731 0.454347i
\(677\) 29.8845 1.14856 0.574278 0.818661i \(-0.305283\pi\)
0.574278 + 0.818661i \(0.305283\pi\)
\(678\) 0 0
\(679\) 3.29047 0.126277
\(680\) 9.15000 + 8.09067i 0.350886 + 0.310263i
\(681\) 0 0
\(682\) −3.53816 + 3.53816i −0.135483 + 0.135483i
\(683\) 5.38081 5.38081i 0.205891 0.205891i −0.596627 0.802518i \(-0.703493\pi\)
0.802518 + 0.596627i \(0.203493\pi\)
\(684\) 0 0
\(685\) 14.2383 16.1025i 0.544016 0.615246i
\(686\) 17.4368 0.665742
\(687\) 0 0
\(688\) −1.08404 −0.0413285
\(689\) 9.63045 + 44.0318i 0.366891 + 1.67748i
\(690\) 0 0
\(691\) −28.0782 28.0782i −1.06814 1.06814i −0.997502 0.0706416i \(-0.977495\pi\)
−0.0706416 0.997502i \(-0.522505\pi\)
\(692\) 1.44733 0.0550194
\(693\) 0 0
\(694\) −16.3153 16.3153i −0.619322 0.619322i
\(695\) 21.2496 1.30565i 0.806043 0.0495263i
\(696\) 0 0
\(697\) 28.3997 + 28.3997i 1.07572 + 1.07572i
\(698\) −11.1092 −0.420491
\(699\) 0 0
\(700\) −8.55096 + 10.9574i −0.323196 + 0.414150i
\(701\) −33.9767 −1.28328 −0.641641 0.767005i \(-0.721746\pi\)
−0.641641 + 0.767005i \(0.721746\pi\)
\(702\) 0 0
\(703\) 68.8416i 2.59641i
\(704\) 2.64510 2.64510i 0.0996910 0.0996910i
\(705\) 0 0
\(706\) 7.59507i 0.285844i
\(707\) −25.0758 25.0758i −0.943072 0.943072i
\(708\) 0 0
\(709\) 14.0038 14.0038i 0.525923 0.525923i −0.393431 0.919354i \(-0.628712\pi\)
0.919354 + 0.393431i \(0.128712\pi\)
\(710\) 28.3160 1.73984i 1.06268 0.0652951i
\(711\) 0 0
\(712\) −3.53430 −0.132454
\(713\) −6.13515 + 6.13515i −0.229763 + 0.229763i
\(714\) 0 0
\(715\) −14.6888 + 26.3399i −0.549329 + 0.985058i
\(716\) 1.75078i 0.0654296i
\(717\) 0 0
\(718\) 1.14087i 0.0425767i
\(719\) −28.6769 −1.06947 −0.534734 0.845021i \(-0.679588\pi\)
−0.534734 + 0.845021i \(0.679588\pi\)
\(720\) 0 0
\(721\) −7.85736 7.85736i −0.292623 0.292623i
\(722\) −31.5625 + 31.5625i −1.17463 + 1.17463i
\(723\) 0 0
\(724\) −8.25471 −0.306784
\(725\) −1.67870 13.6089i −0.0623455 0.505422i
\(726\) 0 0
\(727\) 27.5424 1.02149 0.510746 0.859732i \(-0.329369\pi\)
0.510746 + 0.859732i \(0.329369\pi\)
\(728\) −2.14151 9.79127i −0.0793695 0.362889i
\(729\) 0 0
\(730\) 1.38658 + 22.5666i 0.0513196 + 0.835229i
\(731\) 5.92128i 0.219006i
\(732\) 0 0
\(733\) 13.4697 13.4697i 0.497515 0.497515i −0.413148 0.910664i \(-0.635571\pi\)
0.910664 + 0.413148i \(0.135571\pi\)
\(734\) −21.4752 + 21.4752i −0.792665 + 0.792665i
\(735\) 0 0
\(736\) 4.58659 4.58659i 0.169064 0.169064i
\(737\) 23.5884 0.868891
\(738\) 0 0
\(739\) 1.37770 1.37770i 0.0506797 0.0506797i −0.681313 0.731992i \(-0.738591\pi\)
0.731992 + 0.681313i \(0.238591\pi\)
\(740\) 12.7824 14.4560i 0.469889 0.531413i
\(741\) 0 0
\(742\) 34.7501i 1.27571i
\(743\) 13.8710 + 13.8710i 0.508876 + 0.508876i 0.914181 0.405305i \(-0.132835\pi\)
−0.405305 + 0.914181i \(0.632835\pi\)
\(744\) 0 0
\(745\) 14.4382 16.3287i 0.528976 0.598237i
\(746\) −10.1227 + 10.1227i −0.370619 + 0.370619i
\(747\) 0 0
\(748\) 14.4482 + 14.4482i 0.528279 + 0.528279i
\(749\) −9.18402 9.18402i −0.335577 0.335577i
\(750\) 0 0
\(751\) 38.2290i 1.39500i 0.716586 + 0.697498i \(0.245704\pi\)
−0.716586 + 0.697498i \(0.754296\pi\)
\(752\) 0.108579 0.108579i 0.00395947 0.00395947i
\(753\) 0 0
\(754\) 8.32424 + 5.33644i 0.303151 + 0.194342i
\(755\) 28.9764 32.7703i 1.05456 1.19263i
\(756\) 0 0
\(757\) 21.6549i 0.787061i −0.919311 0.393531i \(-0.871254\pi\)
0.919311 0.393531i \(-0.128746\pi\)
\(758\) 35.3489i 1.28393i
\(759\) 0 0
\(760\) 17.8040 1.09395i 0.645820 0.0396816i
\(761\) 16.0417 + 16.0417i 0.581511 + 0.581511i 0.935318 0.353807i \(-0.115113\pi\)
−0.353807 + 0.935318i \(0.615113\pi\)
\(762\) 0 0
\(763\) 40.2688i 1.45783i
\(764\) −0.580127 −0.0209883
\(765\) 0 0
\(766\) 0.545789i 0.0197201i
\(767\) −26.6127 + 41.5128i −0.960928 + 1.49894i
\(768\) 0 0
\(769\) 1.04097 + 1.04097i 0.0375384 + 0.0375384i 0.725627 0.688088i \(-0.241550\pi\)
−0.688088 + 0.725627i \(0.741550\pi\)
\(770\) −15.4022 + 17.4189i −0.555058 + 0.627733i
\(771\) 0 0
\(772\) 16.1005 16.1005i 0.579471 0.579471i
\(773\) 9.70713 + 9.70713i 0.349141 + 0.349141i 0.859790 0.510648i \(-0.170595\pi\)
−0.510648 + 0.859790i \(0.670595\pi\)
\(774\) 0 0
\(775\) 5.27262 + 4.11467i 0.189398 + 0.147803i
\(776\) 1.18371i 0.0424926i
\(777\) 0 0
\(778\) 9.68377 + 9.68377i 0.347180 + 0.347180i
\(779\) 58.6555 2.10155
\(780\) 0 0
\(781\) 47.4595 1.69823
\(782\) 25.0532 + 25.0532i 0.895899 + 0.895899i
\(783\) 0 0
\(784\) 0.727313i 0.0259755i
\(785\) 0.0622632 + 1.01334i 0.00222227 + 0.0361675i
\(786\) 0 0
\(787\) 14.1991 + 14.1991i 0.506144 + 0.506144i 0.913341 0.407196i \(-0.133494\pi\)
−0.407196 + 0.913341i \(0.633494\pi\)
\(788\) 16.9646 16.9646i 0.604339 0.604339i
\(789\) 0 0
\(790\) −29.7297 26.2878i −1.05774 0.935278i
\(791\) 5.21418 + 5.21418i 0.185395 + 0.185395i
\(792\) 0 0
\(793\) −8.93688 40.8607i −0.317358 1.45101i
\(794\) 11.1882i 0.397055i
\(795\) 0 0
\(796\) 14.1566 0.501767
\(797\) 0.200056i 0.00708635i −0.999994 0.00354318i \(-0.998872\pi\)
0.999994 0.00354318i \(-0.00112783\pi\)
\(798\) 0 0
\(799\) 0.593087 + 0.593087i 0.0209819 + 0.0209819i
\(800\) −3.94178 3.07610i −0.139363 0.108757i
\(801\) 0 0
\(802\) 23.7783i 0.839642i
\(803\) 37.8231i 1.33475i
\(804\) 0 0
\(805\) −26.7074 + 30.2043i −0.941312 + 1.06456i
\(806\) −4.71150 + 1.03048i −0.165956 + 0.0362971i
\(807\) 0 0
\(808\) 9.02070 9.02070i 0.317347 0.317347i
\(809\) 16.7938i 0.590438i 0.955430 + 0.295219i \(0.0953926\pi\)
−0.955430 + 0.295219i \(0.904607\pi\)
\(810\) 0 0
\(811\) −9.73805 9.73805i −0.341949 0.341949i 0.515151 0.857100i \(-0.327736\pi\)
−0.857100 + 0.515151i \(0.827736\pi\)
\(812\) 5.39053 + 5.39053i 0.189171 + 0.189171i
\(813\) 0 0
\(814\) 22.8266 22.8266i 0.800073 0.800073i
\(815\) 4.16556 + 3.68330i 0.145913 + 0.129020i
\(816\) 0 0
\(817\) −6.11477 6.11477i −0.213929 0.213929i
\(818\) 9.67153i 0.338157i
\(819\) 0 0
\(820\) −12.3170 10.8910i −0.430129 0.380331i
\(821\) 5.09187 5.09187i 0.177708 0.177708i −0.612648 0.790356i \(-0.709896\pi\)
0.790356 + 0.612648i \(0.209896\pi\)
\(822\) 0 0
\(823\) −38.3300 −1.33610 −0.668050 0.744116i \(-0.732871\pi\)
−0.668050 + 0.744116i \(0.732871\pi\)
\(824\) 2.82659 2.82659i 0.0984688 0.0984688i
\(825\) 0 0
\(826\) −26.8825 + 26.8825i −0.935361 + 0.935361i
\(827\) −21.1668 + 21.1668i −0.736041 + 0.736041i −0.971809 0.235768i \(-0.924239\pi\)
0.235768 + 0.971809i \(0.424239\pi\)
\(828\) 0 0
\(829\) 2.65197i 0.0921068i 0.998939 + 0.0460534i \(0.0146644\pi\)
−0.998939 + 0.0460534i \(0.985336\pi\)
\(830\) 0.353939 + 5.76037i 0.0122854 + 0.199945i
\(831\) 0 0
\(832\) 3.52229 0.770380i 0.122113 0.0267081i
\(833\) 3.97277 0.137648
\(834\) 0 0
\(835\) −15.1834 + 17.1714i −0.525442 + 0.594240i
\(836\) 29.8407 1.03206
\(837\) 0 0
\(838\) 10.1454 10.1454i 0.350466 0.350466i
\(839\) −1.62957 1.62957i −0.0562591 0.0562591i 0.678417 0.734677i \(-0.262666\pi\)
−0.734677 + 0.678417i \(0.762666\pi\)
\(840\) 0 0
\(841\) 21.4792 0.740662
\(842\) 24.6713i 0.850228i
\(843\) 0 0
\(844\) 7.57960i 0.260901i
\(845\) −25.6208 + 13.7323i −0.881382 + 0.472404i
\(846\) 0 0
\(847\) −5.88334 + 5.88334i −0.202154 + 0.202154i
\(848\) −12.5009 −0.429283
\(849\) 0 0
\(850\) 16.8024 21.5310i 0.576319 0.738507i
\(851\) 39.5813 39.5813i 1.35683 1.35683i
\(852\) 0 0
\(853\) 15.3255 + 15.3255i 0.524735 + 0.524735i 0.918998 0.394263i \(-0.129000\pi\)
−0.394263 + 0.918998i \(0.629000\pi\)
\(854\) 32.2474i 1.10348i
\(855\) 0 0
\(856\) 3.30384 3.30384i 0.112923 0.112923i
\(857\) 12.8053i 0.437422i 0.975790 + 0.218711i \(0.0701852\pi\)
−0.975790 + 0.218711i \(0.929815\pi\)
\(858\) 0 0
\(859\) 25.3058 0.863422 0.431711 0.902012i \(-0.357910\pi\)
0.431711 + 0.902012i \(0.357910\pi\)
\(860\) 0.148658 + 2.41941i 0.00506919 + 0.0825013i
\(861\) 0 0
\(862\) −7.84872 −0.267329
\(863\) −38.9537 38.9537i −1.32600 1.32600i −0.908829 0.417169i \(-0.863022\pi\)
−0.417169 0.908829i \(-0.636978\pi\)
\(864\) 0 0
\(865\) −0.198478 3.23025i −0.00674847 0.109832i
\(866\) −2.92578 2.92578i −0.0994220 0.0994220i
\(867\) 0 0
\(868\) −3.71834 −0.126209
\(869\) −46.9445 46.9445i −1.59248 1.59248i
\(870\) 0 0
\(871\) 19.1405 + 12.2705i 0.648553 + 0.415769i
\(872\) 14.4862 0.490565
\(873\) 0 0
\(874\) 51.7437 1.75026
\(875\) 25.6279 + 17.5819i 0.866382 + 0.594377i
\(876\) 0 0
\(877\) 23.8344 23.8344i 0.804831 0.804831i −0.179015 0.983846i \(-0.557291\pi\)
0.983846 + 0.179015i \(0.0572912\pi\)
\(878\) −23.3819 + 23.3819i −0.789103 + 0.789103i
\(879\) 0 0
\(880\) −6.26623 5.54076i −0.211234 0.186779i
\(881\) 30.9019 1.04111 0.520555 0.853828i \(-0.325725\pi\)
0.520555 + 0.853828i \(0.325725\pi\)
\(882\) 0 0
\(883\) 2.78159 0.0936080 0.0468040 0.998904i \(-0.485096\pi\)
0.0468040 + 0.998904i \(0.485096\pi\)
\(884\) 4.20802 + 19.2396i 0.141531 + 0.647099i
\(885\) 0 0
\(886\) 16.9577 + 16.9577i 0.569707 + 0.569707i
\(887\) 9.96887 0.334722 0.167361 0.985896i \(-0.446476\pi\)
0.167361 + 0.985896i \(0.446476\pi\)
\(888\) 0 0
\(889\) 1.33706 + 1.33706i 0.0448435 + 0.0448435i
\(890\) 0.484672 + 7.88806i 0.0162463 + 0.264408i
\(891\) 0 0
\(892\) −19.2433 19.2433i −0.644312 0.644312i
\(893\) 1.22494 0.0409909
\(894\) 0 0
\(895\) 3.90749 0.240091i 0.130613 0.00802535i
\(896\) 2.77980 0.0928668
\(897\) 0 0
\(898\) 1.01107i 0.0337399i
\(899\) 2.59389 2.59389i 0.0865112 0.0865112i
\(900\) 0 0
\(901\) 68.2831i 2.27484i
\(902\) −19.4491 19.4491i −0.647583 0.647583i
\(903\) 0 0
\(904\) −1.87574 + 1.87574i −0.0623860 + 0.0623860i
\(905\) 1.13200 + 18.4233i 0.0376290 + 0.612413i
\(906\) 0 0
\(907\) 13.0402 0.432994 0.216497 0.976283i \(-0.430537\pi\)
0.216497 + 0.976283i \(0.430537\pi\)
\(908\) −12.3895 + 12.3895i −0.411161 + 0.411161i
\(909\) 0 0
\(910\) −21.5591 + 6.12226i −0.714676 + 0.202951i
\(911\) 44.0523i 1.45952i 0.683705 + 0.729759i \(0.260368\pi\)
−0.683705 + 0.729759i \(0.739632\pi\)
\(912\) 0 0
\(913\) 9.65475i 0.319526i
\(914\) −23.3406 −0.772038
\(915\) 0 0
\(916\) 6.78591 + 6.78591i 0.224213 + 0.224213i
\(917\) 11.6953 11.6953i 0.386214 0.386214i
\(918\) 0 0
\(919\) 28.3309 0.934551 0.467275 0.884112i \(-0.345236\pi\)
0.467275 + 0.884112i \(0.345236\pi\)
\(920\) −10.8656 9.60765i −0.358228 0.316755i
\(921\) 0 0
\(922\) −7.17755 −0.236380
\(923\) 38.5104 + 24.6879i 1.26758 + 0.812612i
\(924\) 0 0
\(925\) −34.0166 26.5460i −1.11846 0.872828i
\(926\) 15.2728i 0.501895i
\(927\) 0 0
\(928\) −1.93918 + 1.93918i −0.0636566 + 0.0636566i
\(929\) −8.70178 + 8.70178i −0.285496 + 0.285496i −0.835296 0.549800i \(-0.814704\pi\)
0.549800 + 0.835296i \(0.314704\pi\)
\(930\) 0 0
\(931\) 4.10259 4.10259i 0.134457 0.134457i
\(932\) 9.03392 0.295916
\(933\) 0 0
\(934\) −6.91342 + 6.91342i −0.226214 + 0.226214i
\(935\) 30.2651 34.2277i 0.989773 1.11937i
\(936\) 0 0
\(937\) 45.8610i 1.49821i 0.662449 + 0.749107i \(0.269517\pi\)
−0.662449 + 0.749107i \(0.730483\pi\)
\(938\) 12.3948 + 12.3948i 0.404706 + 0.404706i
\(939\) 0 0
\(940\) −0.257223 0.227443i −0.00838970 0.00741839i
\(941\) 29.6637 29.6637i 0.967008 0.967008i −0.0324645 0.999473i \(-0.510336\pi\)
0.999473 + 0.0324645i \(0.0103356\pi\)
\(942\) 0 0
\(943\) −33.7246 33.7246i −1.09822 1.09822i
\(944\) −9.67063 9.67063i −0.314752 0.314752i
\(945\) 0 0
\(946\) 4.05509i 0.131842i
\(947\) 24.8855 24.8855i 0.808669 0.808669i −0.175764 0.984432i \(-0.556239\pi\)
0.984432 + 0.175764i \(0.0562394\pi\)
\(948\) 0 0
\(949\) −19.6752 + 30.6911i −0.638684 + 0.996276i
\(950\) −4.88307 39.5861i −0.158428 1.28434i
\(951\) 0 0
\(952\) 15.1840i 0.492117i
\(953\) 30.5350i 0.989127i −0.869142 0.494563i \(-0.835328\pi\)
0.869142 0.494563i \(-0.164672\pi\)
\(954\) 0 0
\(955\) 0.0795551 + 1.29476i 0.00257434 + 0.0418975i
\(956\) 2.52590 + 2.52590i 0.0816935 + 0.0816935i
\(957\) 0 0
\(958\) 10.9908i 0.355098i
\(959\) 26.7214 0.862879
\(960\) 0 0
\(961\) 29.2108i 0.942282i
\(962\) 30.3965 6.64821i 0.980024 0.214347i
\(963\) 0 0
\(964\) 8.17058 + 8.17058i 0.263157 + 0.263157i
\(965\) −38.1420 33.7262i −1.22784 1.08568i
\(966\) 0 0
\(967\) −20.6880 + 20.6880i −0.665281 + 0.665281i −0.956620 0.291339i \(-0.905899\pi\)
0.291339 + 0.956620i \(0.405899\pi\)
\(968\) −2.11646 2.11646i −0.0680256 0.0680256i
\(969\) 0 0
\(970\) 2.64187 0.162326i 0.0848252 0.00521198i
\(971\) 4.98561i 0.159996i −0.996795 0.0799979i \(-0.974509\pi\)
0.996795 0.0799979i \(-0.0254914\pi\)
\(972\) 0 0
\(973\) 18.7147 + 18.7147i 0.599966 + 0.599966i
\(974\) −21.7617 −0.697288
\(975\) 0 0
\(976\) 11.6006 0.371326
\(977\) −43.1731 43.1731i −1.38123 1.38123i −0.842440 0.538791i \(-0.818881\pi\)
−0.538791 0.842440i \(-0.681119\pi\)
\(978\) 0 0
\(979\) 13.2209i 0.422542i
\(980\) −1.62326 + 0.0997393i −0.0518532 + 0.00318605i
\(981\) 0 0
\(982\) 8.03272 + 8.03272i 0.256334 + 0.256334i
\(983\) −3.53204 + 3.53204i −0.112655 + 0.112655i −0.761187 0.648532i \(-0.775383\pi\)
0.648532 + 0.761187i \(0.275383\pi\)
\(984\) 0 0
\(985\) −40.1891 35.5362i −1.28053 1.13228i
\(986\) −10.5923 10.5923i −0.337327 0.337327i
\(987\) 0 0
\(988\) 24.2139 + 15.5228i 0.770346 + 0.493847i
\(989\) 7.03151i 0.223589i
\(990\) 0 0
\(991\) 7.85099 0.249395 0.124697 0.992195i \(-0.460204\pi\)
0.124697 + 0.992195i \(0.460204\pi\)
\(992\) 1.33763i 0.0424697i
\(993\) 0 0
\(994\) 24.9382 + 24.9382i 0.790991 + 0.790991i
\(995\) −1.94135 31.5955i −0.0615448 1.00164i
\(996\) 0 0
\(997\) 45.6170i 1.44470i −0.691525 0.722352i \(-0.743061\pi\)
0.691525 0.722352i \(-0.256939\pi\)
\(998\) 7.83319i 0.247955i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.c.359.8 yes 24
3.2 odd 2 inner 1170.2.q.c.359.4 24
5.4 even 2 1170.2.q.d.359.5 yes 24
13.5 odd 4 1170.2.q.d.629.9 yes 24
15.14 odd 2 1170.2.q.d.359.9 yes 24
39.5 even 4 1170.2.q.d.629.5 yes 24
65.44 odd 4 inner 1170.2.q.c.629.4 yes 24
195.44 even 4 inner 1170.2.q.c.629.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.4 24 3.2 odd 2 inner
1170.2.q.c.359.8 yes 24 1.1 even 1 trivial
1170.2.q.c.629.4 yes 24 65.44 odd 4 inner
1170.2.q.c.629.8 yes 24 195.44 even 4 inner
1170.2.q.d.359.5 yes 24 5.4 even 2
1170.2.q.d.359.9 yes 24 15.14 odd 2
1170.2.q.d.629.5 yes 24 39.5 even 4
1170.2.q.d.629.9 yes 24 13.5 odd 4