Newspace parameters
Level: | \( N \) | \(=\) | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1170.q (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.34249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
359.1 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.15322 | + | 1.91575i | 0 | 1.29303 | + | 1.29303i | 0.707107 | − | 0.707107i | 0 | 0.539189 | − | 2.17009i | ||||||||
359.2 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −2.23186 | + | 0.137134i | 0 | −3.64075 | − | 3.64075i | 0.707107 | − | 0.707107i | 0 | 1.67513 | + | 1.48119i | ||||||||
359.3 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.78575 | − | 1.34577i | 0 | 2.75044 | + | 2.75044i | 0.707107 | − | 0.707107i | 0 | −2.21432 | − | 0.311108i | ||||||||
359.4 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −2.23186 | + | 0.137134i | 0 | 1.96562 | + | 1.96562i | 0.707107 | − | 0.707107i | 0 | 1.67513 | + | 1.48119i | ||||||||
359.5 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.78575 | − | 1.34577i | 0 | −0.536122 | − | 0.536122i | 0.707107 | − | 0.707107i | 0 | −2.21432 | − | 0.311108i | ||||||||
359.6 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.15322 | + | 1.91575i | 0 | −1.83222 | − | 1.83222i | 0.707107 | − | 0.707107i | 0 | 0.539189 | − | 2.17009i | ||||||||
359.7 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.78575 | + | 1.34577i | 0 | 2.75044 | + | 2.75044i | −0.707107 | + | 0.707107i | 0 | −2.21432 | − | 0.311108i | ||||||||
359.8 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 2.23186 | − | 0.137134i | 0 | 1.96562 | + | 1.96562i | −0.707107 | + | 0.707107i | 0 | 1.67513 | + | 1.48119i | ||||||||
359.9 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.15322 | − | 1.91575i | 0 | 1.29303 | + | 1.29303i | −0.707107 | + | 0.707107i | 0 | 0.539189 | − | 2.17009i | ||||||||
359.10 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 2.23186 | − | 0.137134i | 0 | −3.64075 | − | 3.64075i | −0.707107 | + | 0.707107i | 0 | 1.67513 | + | 1.48119i | ||||||||
359.11 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.15322 | − | 1.91575i | 0 | −1.83222 | − | 1.83222i | −0.707107 | + | 0.707107i | 0 | 0.539189 | − | 2.17009i | ||||||||
359.12 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.78575 | + | 1.34577i | 0 | −0.536122 | − | 0.536122i | −0.707107 | + | 0.707107i | 0 | −2.21432 | − | 0.311108i | ||||||||
629.1 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 1.15322 | − | 1.91575i | 0 | 1.29303 | − | 1.29303i | 0.707107 | + | 0.707107i | 0 | 0.539189 | + | 2.17009i | |||||||
629.2 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −2.23186 | − | 0.137134i | 0 | −3.64075 | + | 3.64075i | 0.707107 | + | 0.707107i | 0 | 1.67513 | − | 1.48119i | |||||||
629.3 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 1.78575 | + | 1.34577i | 0 | 2.75044 | − | 2.75044i | 0.707107 | + | 0.707107i | 0 | −2.21432 | + | 0.311108i | |||||||
629.4 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −2.23186 | − | 0.137134i | 0 | 1.96562 | − | 1.96562i | 0.707107 | + | 0.707107i | 0 | 1.67513 | − | 1.48119i | |||||||
629.5 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 1.78575 | + | 1.34577i | 0 | −0.536122 | + | 0.536122i | 0.707107 | + | 0.707107i | 0 | −2.21432 | + | 0.311108i | |||||||
629.6 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 1.15322 | − | 1.91575i | 0 | −1.83222 | + | 1.83222i | 0.707107 | + | 0.707107i | 0 | 0.539189 | + | 2.17009i | |||||||
629.7 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | −1.78575 | − | 1.34577i | 0 | 2.75044 | − | 2.75044i | −0.707107 | − | 0.707107i | 0 | −2.21432 | + | 0.311108i | |||||||
629.8 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | 2.23186 | + | 0.137134i | 0 | 1.96562 | − | 1.96562i | −0.707107 | − | 0.707107i | 0 | 1.67513 | − | 1.48119i | |||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
65.g | odd | 4 | 1 | inner |
195.n | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1170.2.q.c | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 1170.2.q.c | ✓ | 24 |
5.b | even | 2 | 1 | 1170.2.q.d | yes | 24 | |
13.d | odd | 4 | 1 | 1170.2.q.d | yes | 24 | |
15.d | odd | 2 | 1 | 1170.2.q.d | yes | 24 | |
39.f | even | 4 | 1 | 1170.2.q.d | yes | 24 | |
65.g | odd | 4 | 1 | inner | 1170.2.q.c | ✓ | 24 |
195.n | even | 4 | 1 | inner | 1170.2.q.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1170.2.q.c | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
1170.2.q.c | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
1170.2.q.c | ✓ | 24 | 65.g | odd | 4 | 1 | inner |
1170.2.q.c | ✓ | 24 | 195.n | even | 4 | 1 | inner |
1170.2.q.d | yes | 24 | 5.b | even | 2 | 1 | |
1170.2.q.d | yes | 24 | 13.d | odd | 4 | 1 | |
1170.2.q.d | yes | 24 | 15.d | odd | 2 | 1 | |
1170.2.q.d | yes | 24 | 39.f | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1170, [\chi])\):
\( T_{7}^{12} - 32 T_{7}^{9} + 524 T_{7}^{8} - 752 T_{7}^{7} + 512 T_{7}^{6} - 224 T_{7}^{5} + 23344 T_{7}^{4} + \cdots + 40000 \)
|
\( T_{37}^{12} + 16 T_{37}^{11} + 128 T_{37}^{10} + 176 T_{37}^{9} + 1548 T_{37}^{8} + 29088 T_{37}^{7} + \cdots + 7884864 \)
|