L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (2.23 − 0.137i)5-s + (1.96 + 1.96i)7-s + (−0.707 + 0.707i)8-s + (1.67 + 1.48i)10-s + (2.64 + 2.64i)11-s + (0.770 + 3.52i)13-s + 2.77i·14-s − 1.00·16-s − 5.46i·17-s + (−5.64 − 5.64i)19-s + (0.137 + 2.23i)20-s + 3.74i·22-s + 6.48i·23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.998 − 0.0613i)5-s + (0.742 + 0.742i)7-s + (−0.250 + 0.250i)8-s + (0.529 + 0.468i)10-s + (0.797 + 0.797i)11-s + (0.213 + 0.976i)13-s + 0.742i·14-s − 0.250·16-s − 1.32i·17-s + (−1.29 − 1.29i)19-s + (0.0306 + 0.499i)20-s + 0.797i·22-s + 1.35i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.186 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.186 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.785057272\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.785057272\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.23 + 0.137i)T \) |
| 13 | \( 1 + (-0.770 - 3.52i)T \) |
good | 7 | \( 1 + (-1.96 - 1.96i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.64 - 2.64i)T + 11iT^{2} \) |
| 17 | \( 1 + 5.46iT - 17T^{2} \) |
| 19 | \( 1 + (5.64 + 5.64i)T + 19iT^{2} \) |
| 23 | \( 1 - 6.48iT - 23T^{2} \) |
| 29 | \( 1 + 2.74iT - 29T^{2} \) |
| 31 | \( 1 + (-0.945 - 0.945i)T + 31iT^{2} \) |
| 37 | \( 1 + (6.10 + 6.10i)T + 37iT^{2} \) |
| 41 | \( 1 + (5.19 - 5.19i)T - 41iT^{2} \) |
| 43 | \( 1 - 1.08T + 43T^{2} \) |
| 47 | \( 1 + (0.108 - 0.108i)T - 47iT^{2} \) |
| 53 | \( 1 - 12.5T + 53T^{2} \) |
| 59 | \( 1 + (-9.67 - 9.67i)T + 59iT^{2} \) |
| 61 | \( 1 + 11.6T + 61T^{2} \) |
| 67 | \( 1 + (-4.45 + 4.45i)T - 67iT^{2} \) |
| 71 | \( 1 + (-8.97 + 8.97i)T - 71iT^{2} \) |
| 73 | \( 1 + (-7.14 - 7.14i)T + 73iT^{2} \) |
| 79 | \( 1 + 17.7T + 79T^{2} \) |
| 83 | \( 1 + (-1.82 - 1.82i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.49 - 2.49i)T + 89iT^{2} \) |
| 97 | \( 1 + (-0.837 + 0.837i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.610872421976227775303349292839, −9.141594998861294271419588591350, −8.467286896312769225269673065503, −7.09430660143787325730890098958, −6.72848459549212877129459557982, −5.62639263174869691134361428121, −4.95120594621007727991185719462, −4.14075209447003455053241222830, −2.56804059465085655853103634058, −1.74973701358156747661828042313,
1.14738413981353760019845251894, 2.08148101028668024093911907512, 3.47174957769962860787942769740, 4.23572957015638280435398604879, 5.36601979197871661729778178803, 6.12287963652810062640645233689, 6.78359527464775112202999716697, 8.346959445826065481242215525955, 8.561992190760566902187694332983, 9.986592363490305299983018171623