Properties

Label 1170.2.q.c.629.4
Level $1170$
Weight $2$
Character 1170.629
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 629.4
Character \(\chi\) \(=\) 1170.629
Dual form 1170.2.q.c.359.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-2.23186 - 0.137134i) q^{5} +(1.96562 - 1.96562i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.67513 - 1.48119i) q^{10} +(-2.64510 + 2.64510i) q^{11} +(0.770380 - 3.52229i) q^{13} +2.77980i q^{14} -1.00000 q^{16} -5.46226i q^{17} +(-5.64075 + 5.64075i) q^{19} +(-0.137134 + 2.23186i) q^{20} -3.74074i q^{22} +6.48642i q^{23} +(4.96239 + 0.612127i) q^{25} +(1.94589 + 3.03537i) q^{26} +(-1.96562 - 1.96562i) q^{28} -2.74241i q^{29} +(0.945844 - 0.945844i) q^{31} +(0.707107 - 0.707107i) q^{32} +(3.86240 + 3.86240i) q^{34} +(-4.65654 + 4.11743i) q^{35} +(-6.10217 + 6.10217i) q^{37} -7.97722i q^{38} +(-1.48119 - 1.67513i) q^{40} +(5.19926 + 5.19926i) q^{41} +1.08404 q^{43} +(2.64510 + 2.64510i) q^{44} +(-4.58659 - 4.58659i) q^{46} +(0.108579 + 0.108579i) q^{47} -0.727313i q^{49} +(-3.94178 + 3.07610i) q^{50} +(-3.52229 - 0.770380i) q^{52} -12.5009 q^{53} +(6.26623 - 5.54076i) q^{55} +2.77980 q^{56} +(1.93918 + 1.93918i) q^{58} +(-9.67063 + 9.67063i) q^{59} -11.6006 q^{61} +1.33763i q^{62} +1.00000i q^{64} +(-2.20241 + 7.75561i) q^{65} +(4.45889 + 4.45889i) q^{67} -5.46226 q^{68} +(0.381205 - 6.20413i) q^{70} +(-8.97120 - 8.97120i) q^{71} +(7.14966 - 7.14966i) q^{73} -8.62977i q^{74} +(5.64075 + 5.64075i) q^{76} +10.3985i q^{77} -17.7477 q^{79} +(2.23186 + 0.137134i) q^{80} -7.35287 q^{82} +(-1.82503 + 1.82503i) q^{83} +(-0.749061 + 12.1910i) q^{85} +(-0.766529 + 0.766529i) q^{86} -3.74074 q^{88} +(-2.49913 + 2.49913i) q^{89} +(-5.40920 - 8.43775i) q^{91} +6.48642 q^{92} -0.153554 q^{94} +(13.3629 - 11.8158i) q^{95} +(0.837007 + 0.837007i) q^{97} +(0.514288 + 0.514288i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{13} - 24 q^{16} - 48 q^{19} + 32 q^{25} - 8 q^{31} + 16 q^{34} - 32 q^{37} + 8 q^{40} + 80 q^{43} + 8 q^{46} - 12 q^{52} + 16 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 24 q^{70} + 48 q^{73}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.23186 0.137134i −0.998118 0.0613281i
\(6\) 0 0
\(7\) 1.96562 1.96562i 0.742934 0.742934i −0.230208 0.973142i \(-0.573941\pi\)
0.973142 + 0.230208i \(0.0739405\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.67513 1.48119i 0.529723 0.468395i
\(11\) −2.64510 + 2.64510i −0.797528 + 0.797528i −0.982705 0.185177i \(-0.940714\pi\)
0.185177 + 0.982705i \(0.440714\pi\)
\(12\) 0 0
\(13\) 0.770380 3.52229i 0.213665 0.976907i
\(14\) 2.77980i 0.742934i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.46226i 1.32479i −0.749154 0.662396i \(-0.769540\pi\)
0.749154 0.662396i \(-0.230460\pi\)
\(18\) 0 0
\(19\) −5.64075 + 5.64075i −1.29408 + 1.29408i −0.361834 + 0.932242i \(0.617849\pi\)
−0.932242 + 0.361834i \(0.882151\pi\)
\(20\) −0.137134 + 2.23186i −0.0306641 + 0.499059i
\(21\) 0 0
\(22\) 3.74074i 0.797528i
\(23\) 6.48642i 1.35251i 0.736666 + 0.676256i \(0.236399\pi\)
−0.736666 + 0.676256i \(0.763601\pi\)
\(24\) 0 0
\(25\) 4.96239 + 0.612127i 0.992478 + 0.122425i
\(26\) 1.94589 + 3.03537i 0.381621 + 0.595286i
\(27\) 0 0
\(28\) −1.96562 1.96562i −0.371467 0.371467i
\(29\) 2.74241i 0.509253i −0.967040 0.254626i \(-0.918048\pi\)
0.967040 0.254626i \(-0.0819525\pi\)
\(30\) 0 0
\(31\) 0.945844 0.945844i 0.169879 0.169879i −0.617047 0.786926i \(-0.711671\pi\)
0.786926 + 0.617047i \(0.211671\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 3.86240 + 3.86240i 0.662396 + 0.662396i
\(35\) −4.65654 + 4.11743i −0.787098 + 0.695973i
\(36\) 0 0
\(37\) −6.10217 + 6.10217i −1.00319 + 1.00319i −0.00319562 + 0.999995i \(0.501017\pi\)
−0.999995 + 0.00319562i \(0.998983\pi\)
\(38\) 7.97722i 1.29408i
\(39\) 0 0
\(40\) −1.48119 1.67513i −0.234197 0.264861i
\(41\) 5.19926 + 5.19926i 0.811988 + 0.811988i 0.984932 0.172944i \(-0.0553278\pi\)
−0.172944 + 0.984932i \(0.555328\pi\)
\(42\) 0 0
\(43\) 1.08404 0.165314 0.0826569 0.996578i \(-0.473659\pi\)
0.0826569 + 0.996578i \(0.473659\pi\)
\(44\) 2.64510 + 2.64510i 0.398764 + 0.398764i
\(45\) 0 0
\(46\) −4.58659 4.58659i −0.676256 0.676256i
\(47\) 0.108579 + 0.108579i 0.0158379 + 0.0158379i 0.714981 0.699143i \(-0.246435\pi\)
−0.699143 + 0.714981i \(0.746435\pi\)
\(48\) 0 0
\(49\) 0.727313i 0.103902i
\(50\) −3.94178 + 3.07610i −0.557452 + 0.435026i
\(51\) 0 0
\(52\) −3.52229 0.770380i −0.488453 0.106833i
\(53\) −12.5009 −1.71713 −0.858565 0.512704i \(-0.828644\pi\)
−0.858565 + 0.512704i \(0.828644\pi\)
\(54\) 0 0
\(55\) 6.26623 5.54076i 0.844938 0.747116i
\(56\) 2.77980 0.371467
\(57\) 0 0
\(58\) 1.93918 + 1.93918i 0.254626 + 0.254626i
\(59\) −9.67063 + 9.67063i −1.25901 + 1.25901i −0.307442 + 0.951567i \(0.599473\pi\)
−0.951567 + 0.307442i \(0.900527\pi\)
\(60\) 0 0
\(61\) −11.6006 −1.48531 −0.742653 0.669677i \(-0.766433\pi\)
−0.742653 + 0.669677i \(0.766433\pi\)
\(62\) 1.33763i 0.169879i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.20241 + 7.75561i −0.273175 + 0.961964i
\(66\) 0 0
\(67\) 4.45889 + 4.45889i 0.544740 + 0.544740i 0.924915 0.380174i \(-0.124136\pi\)
−0.380174 + 0.924915i \(0.624136\pi\)
\(68\) −5.46226 −0.662396
\(69\) 0 0
\(70\) 0.381205 6.20413i 0.0455628 0.741536i
\(71\) −8.97120 8.97120i −1.06469 1.06469i −0.997758 0.0669273i \(-0.978680\pi\)
−0.0669273 0.997758i \(-0.521320\pi\)
\(72\) 0 0
\(73\) 7.14966 7.14966i 0.836804 0.836804i −0.151633 0.988437i \(-0.548453\pi\)
0.988437 + 0.151633i \(0.0484531\pi\)
\(74\) 8.62977i 1.00319i
\(75\) 0 0
\(76\) 5.64075 + 5.64075i 0.647038 + 0.647038i
\(77\) 10.3985i 1.18502i
\(78\) 0 0
\(79\) −17.7477 −1.99677 −0.998386 0.0567868i \(-0.981914\pi\)
−0.998386 + 0.0567868i \(0.981914\pi\)
\(80\) 2.23186 + 0.137134i 0.249529 + 0.0153320i
\(81\) 0 0
\(82\) −7.35287 −0.811988
\(83\) −1.82503 + 1.82503i −0.200323 + 0.200323i −0.800138 0.599816i \(-0.795241\pi\)
0.599816 + 0.800138i \(0.295241\pi\)
\(84\) 0 0
\(85\) −0.749061 + 12.1910i −0.0812470 + 1.32230i
\(86\) −0.766529 + 0.766529i −0.0826569 + 0.0826569i
\(87\) 0 0
\(88\) −3.74074 −0.398764
\(89\) −2.49913 + 2.49913i −0.264907 + 0.264907i −0.827044 0.562137i \(-0.809979\pi\)
0.562137 + 0.827044i \(0.309979\pi\)
\(90\) 0 0
\(91\) −5.40920 8.43775i −0.567038 0.884516i
\(92\) 6.48642 0.676256
\(93\) 0 0
\(94\) −0.153554 −0.0158379
\(95\) 13.3629 11.8158i 1.37100 1.21228i
\(96\) 0 0
\(97\) 0.837007 + 0.837007i 0.0849852 + 0.0849852i 0.748321 0.663336i \(-0.230860\pi\)
−0.663336 + 0.748321i \(0.730860\pi\)
\(98\) 0.514288 + 0.514288i 0.0519510 + 0.0519510i
\(99\) 0 0
\(100\) 0.612127 4.96239i 0.0612127 0.496239i
\(101\) 12.7572 1.26939 0.634694 0.772763i \(-0.281126\pi\)
0.634694 + 0.772763i \(0.281126\pi\)
\(102\) 0 0
\(103\) −3.99740 −0.393875 −0.196938 0.980416i \(-0.563100\pi\)
−0.196938 + 0.980416i \(0.563100\pi\)
\(104\) 3.03537 1.94589i 0.297643 0.190810i
\(105\) 0 0
\(106\) 8.83947 8.83947i 0.858565 0.858565i
\(107\) 4.67233 0.451691 0.225846 0.974163i \(-0.427485\pi\)
0.225846 + 0.974163i \(0.427485\pi\)
\(108\) 0 0
\(109\) −10.2433 + 10.2433i −0.981130 + 0.981130i −0.999825 0.0186953i \(-0.994049\pi\)
0.0186953 + 0.999825i \(0.494049\pi\)
\(110\) −0.512982 + 8.34880i −0.0489109 + 0.796027i
\(111\) 0 0
\(112\) −1.96562 + 1.96562i −0.185734 + 0.185734i
\(113\) −2.65269 −0.249544 −0.124772 0.992185i \(-0.539820\pi\)
−0.124772 + 0.992185i \(0.539820\pi\)
\(114\) 0 0
\(115\) 0.889508 14.4768i 0.0829471 1.34997i
\(116\) −2.74241 −0.254626
\(117\) 0 0
\(118\) 13.6763i 1.25901i
\(119\) −10.7367 10.7367i −0.984233 0.984233i
\(120\) 0 0
\(121\) 2.99312i 0.272102i
\(122\) 8.20287 8.20287i 0.742653 0.742653i
\(123\) 0 0
\(124\) −0.945844 0.945844i −0.0849393 0.0849393i
\(125\) −10.9914 2.04669i −0.983101 0.183062i
\(126\) 0 0
\(127\) 0.680223 0.0603600 0.0301800 0.999544i \(-0.490392\pi\)
0.0301800 + 0.999544i \(0.490392\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −3.92671 7.04138i −0.344395 0.617570i
\(131\) 5.94995i 0.519850i −0.965629 0.259925i \(-0.916302\pi\)
0.965629 0.259925i \(-0.0836978\pi\)
\(132\) 0 0
\(133\) 22.1751i 1.92283i
\(134\) −6.30582 −0.544740
\(135\) 0 0
\(136\) 3.86240 3.86240i 0.331198 0.331198i
\(137\) −6.79720 6.79720i −0.580724 0.580724i 0.354378 0.935102i \(-0.384693\pi\)
−0.935102 + 0.354378i \(0.884693\pi\)
\(138\) 0 0
\(139\) 9.52103 0.807563 0.403781 0.914855i \(-0.367696\pi\)
0.403781 + 0.914855i \(0.367696\pi\)
\(140\) 4.11743 + 4.65654i 0.347986 + 0.393549i
\(141\) 0 0
\(142\) 12.6872 1.06469
\(143\) 7.27908 + 11.3545i 0.608707 + 0.949515i
\(144\) 0 0
\(145\) −0.376077 + 6.12067i −0.0312315 + 0.508294i
\(146\) 10.1111i 0.836804i
\(147\) 0 0
\(148\) 6.10217 + 6.10217i 0.501595 + 0.501595i
\(149\) −6.89267 6.89267i −0.564669 0.564669i 0.365961 0.930630i \(-0.380740\pi\)
−0.930630 + 0.365961i \(0.880740\pi\)
\(150\) 0 0
\(151\) 13.8330 + 13.8330i 1.12571 + 1.12571i 0.990866 + 0.134848i \(0.0430547\pi\)
0.134848 + 0.990866i \(0.456945\pi\)
\(152\) −7.97722 −0.647038
\(153\) 0 0
\(154\) −7.35287 7.35287i −0.592511 0.592511i
\(155\) −2.24070 + 1.98128i −0.179977 + 0.159141i
\(156\) 0 0
\(157\) 0.454032i 0.0362357i −0.999836 0.0181179i \(-0.994233\pi\)
0.999836 0.0181179i \(-0.00576741\pi\)
\(158\) 12.5495 12.5495i 0.998386 0.998386i
\(159\) 0 0
\(160\) −1.67513 + 1.48119i −0.132431 + 0.117099i
\(161\) 12.7498 + 12.7498i 1.00483 + 1.00483i
\(162\) 0 0
\(163\) 1.75837 1.75837i 0.137726 0.137726i −0.634883 0.772609i \(-0.718952\pi\)
0.772609 + 0.634883i \(0.218952\pi\)
\(164\) 5.19926 5.19926i 0.405994 0.405994i
\(165\) 0 0
\(166\) 2.58098i 0.200323i
\(167\) 7.24838 + 7.24838i 0.560897 + 0.560897i 0.929562 0.368665i \(-0.120185\pi\)
−0.368665 + 0.929562i \(0.620185\pi\)
\(168\) 0 0
\(169\) −11.8130 5.42700i −0.908694 0.417462i
\(170\) −8.09067 9.15000i −0.620526 0.701773i
\(171\) 0 0
\(172\) 1.08404i 0.0826569i
\(173\) 1.44733i 0.110039i −0.998485 0.0550194i \(-0.982478\pi\)
0.998485 0.0550194i \(-0.0175221\pi\)
\(174\) 0 0
\(175\) 10.9574 8.55096i 0.828299 0.646391i
\(176\) 2.64510 2.64510i 0.199382 0.199382i
\(177\) 0 0
\(178\) 3.53430i 0.264907i
\(179\) −1.75078 −0.130859 −0.0654296 0.997857i \(-0.520842\pi\)
−0.0654296 + 0.997857i \(0.520842\pi\)
\(180\) 0 0
\(181\) 8.25471i 0.613568i −0.951779 0.306784i \(-0.900747\pi\)
0.951779 0.306784i \(-0.0992529\pi\)
\(182\) 9.79127 + 2.14151i 0.725777 + 0.158739i
\(183\) 0 0
\(184\) −4.58659 + 4.58659i −0.338128 + 0.338128i
\(185\) 14.4560 12.7824i 1.06283 0.939778i
\(186\) 0 0
\(187\) 14.4482 + 14.4482i 1.05656 + 1.05656i
\(188\) 0.108579 0.108579i 0.00791895 0.00791895i
\(189\) 0 0
\(190\) −1.09395 + 17.8040i −0.0793633 + 1.29164i
\(191\) 0.580127i 0.0419765i 0.999780 + 0.0209883i \(0.00668127\pi\)
−0.999780 + 0.0209883i \(0.993319\pi\)
\(192\) 0 0
\(193\) −16.1005 + 16.1005i −1.15894 + 1.15894i −0.174238 + 0.984704i \(0.555746\pi\)
−0.984704 + 0.174238i \(0.944254\pi\)
\(194\) −1.18371 −0.0849852
\(195\) 0 0
\(196\) −0.727313 −0.0519510
\(197\) 16.9646 16.9646i 1.20868 1.20868i 0.237224 0.971455i \(-0.423762\pi\)
0.971455 0.237224i \(-0.0762375\pi\)
\(198\) 0 0
\(199\) 14.1566i 1.00353i 0.865003 + 0.501767i \(0.167316\pi\)
−0.865003 + 0.501767i \(0.832684\pi\)
\(200\) 3.07610 + 3.94178i 0.217513 + 0.278726i
\(201\) 0 0
\(202\) −9.02070 + 9.02070i −0.634694 + 0.634694i
\(203\) −5.39053 5.39053i −0.378341 0.378341i
\(204\) 0 0
\(205\) −10.8910 12.3170i −0.760662 0.860257i
\(206\) 2.82659 2.82659i 0.196938 0.196938i
\(207\) 0 0
\(208\) −0.770380 + 3.52229i −0.0534163 + 0.244227i
\(209\) 29.8407i 2.06413i
\(210\) 0 0
\(211\) 7.57960 0.521801 0.260901 0.965366i \(-0.415980\pi\)
0.260901 + 0.965366i \(0.415980\pi\)
\(212\) 12.5009i 0.858565i
\(213\) 0 0
\(214\) −3.30384 + 3.30384i −0.225846 + 0.225846i
\(215\) −2.41941 0.148658i −0.165003 0.0101384i
\(216\) 0 0
\(217\) 3.71834i 0.252417i
\(218\) 14.4862i 0.981130i
\(219\) 0 0
\(220\) −5.54076 6.26623i −0.373558 0.422469i
\(221\) −19.2396 4.20802i −1.29420 0.283062i
\(222\) 0 0
\(223\) −19.2433 19.2433i −1.28862 1.28862i −0.935623 0.353001i \(-0.885161\pi\)
−0.353001 0.935623i \(-0.614839\pi\)
\(224\) 2.77980i 0.185734i
\(225\) 0 0
\(226\) 1.87574 1.87574i 0.124772 0.124772i
\(227\) −12.3895 + 12.3895i −0.822322 + 0.822322i −0.986441 0.164119i \(-0.947522\pi\)
0.164119 + 0.986441i \(0.447522\pi\)
\(228\) 0 0
\(229\) 6.78591 + 6.78591i 0.448425 + 0.448425i 0.894831 0.446406i \(-0.147296\pi\)
−0.446406 + 0.894831i \(0.647296\pi\)
\(230\) 9.60765 + 10.8656i 0.633510 + 0.716457i
\(231\) 0 0
\(232\) 1.93918 1.93918i 0.127313 0.127313i
\(233\) 9.03392i 0.591832i −0.955214 0.295916i \(-0.904375\pi\)
0.955214 0.295916i \(-0.0956248\pi\)
\(234\) 0 0
\(235\) −0.227443 0.257223i −0.0148368 0.0167794i
\(236\) 9.67063 + 9.67063i 0.629504 + 0.629504i
\(237\) 0 0
\(238\) 15.1840 0.984233
\(239\) −2.52590 2.52590i −0.163387 0.163387i 0.620678 0.784065i \(-0.286857\pi\)
−0.784065 + 0.620678i \(0.786857\pi\)
\(240\) 0 0
\(241\) 8.17058 + 8.17058i 0.526314 + 0.526314i 0.919471 0.393158i \(-0.128617\pi\)
−0.393158 + 0.919471i \(0.628617\pi\)
\(242\) 2.11646 + 2.11646i 0.136051 + 0.136051i
\(243\) 0 0
\(244\) 11.6006i 0.742653i
\(245\) −0.0997393 + 1.62326i −0.00637211 + 0.103706i
\(246\) 0 0
\(247\) 15.5228 + 24.2139i 0.987694 + 1.54069i
\(248\) 1.33763 0.0849393
\(249\) 0 0
\(250\) 9.21933 6.32487i 0.583082 0.400020i
\(251\) −8.23530 −0.519807 −0.259904 0.965635i \(-0.583691\pi\)
−0.259904 + 0.965635i \(0.583691\pi\)
\(252\) 0 0
\(253\) −17.1572 17.1572i −1.07867 1.07867i
\(254\) −0.480990 + 0.480990i −0.0301800 + 0.0301800i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 22.8434i 1.42493i 0.701707 + 0.712466i \(0.252422\pi\)
−0.701707 + 0.712466i \(0.747578\pi\)
\(258\) 0 0
\(259\) 23.9891i 1.49061i
\(260\) 7.75561 + 2.20241i 0.480982 + 0.136587i
\(261\) 0 0
\(262\) 4.20725 + 4.20725i 0.259925 + 0.259925i
\(263\) −6.68091 −0.411963 −0.205981 0.978556i \(-0.566039\pi\)
−0.205981 + 0.978556i \(0.566039\pi\)
\(264\) 0 0
\(265\) 27.9002 + 1.71430i 1.71390 + 0.105308i
\(266\) −15.6802 15.6802i −0.961414 0.961414i
\(267\) 0 0
\(268\) 4.45889 4.45889i 0.272370 0.272370i
\(269\) 27.5684i 1.68087i −0.541910 0.840436i \(-0.682299\pi\)
0.541910 0.840436i \(-0.317701\pi\)
\(270\) 0 0
\(271\) 16.1517 + 16.1517i 0.981146 + 0.981146i 0.999826 0.0186793i \(-0.00594615\pi\)
−0.0186793 + 0.999826i \(0.505946\pi\)
\(272\) 5.46226i 0.331198i
\(273\) 0 0
\(274\) 9.61269 0.580724
\(275\) −14.7452 + 11.5069i −0.889167 + 0.693891i
\(276\) 0 0
\(277\) −5.66115 −0.340146 −0.170073 0.985431i \(-0.554400\pi\)
−0.170073 + 0.985431i \(0.554400\pi\)
\(278\) −6.73238 + 6.73238i −0.403781 + 0.403781i
\(279\) 0 0
\(280\) −6.20413 0.381205i −0.370768 0.0227814i
\(281\) 20.2028 20.2028i 1.20520 1.20520i 0.232637 0.972564i \(-0.425264\pi\)
0.972564 0.232637i \(-0.0747355\pi\)
\(282\) 0 0
\(283\) 11.2936 0.671334 0.335667 0.941981i \(-0.391038\pi\)
0.335667 + 0.941981i \(0.391038\pi\)
\(284\) −8.97120 + 8.97120i −0.532343 + 0.532343i
\(285\) 0 0
\(286\) −13.1760 2.88179i −0.779111 0.170404i
\(287\) 20.4395 1.20651
\(288\) 0 0
\(289\) −12.8363 −0.755074
\(290\) −4.06204 4.59390i −0.238531 0.269763i
\(291\) 0 0
\(292\) −7.14966 7.14966i −0.418402 0.418402i
\(293\) 11.2366 + 11.2366i 0.656451 + 0.656451i 0.954539 0.298088i \(-0.0963488\pi\)
−0.298088 + 0.954539i \(0.596349\pi\)
\(294\) 0 0
\(295\) 22.9097 20.2573i 1.33385 1.17943i
\(296\) −8.62977 −0.501595
\(297\) 0 0
\(298\) 9.74770 0.564669
\(299\) 22.8471 + 4.99701i 1.32128 + 0.288985i
\(300\) 0 0
\(301\) 2.13080 2.13080i 0.122817 0.122817i
\(302\) −19.5628 −1.12571
\(303\) 0 0
\(304\) 5.64075 5.64075i 0.323519 0.323519i
\(305\) 25.8909 + 1.59084i 1.48251 + 0.0910910i
\(306\) 0 0
\(307\) 6.11744 6.11744i 0.349141 0.349141i −0.510649 0.859789i \(-0.670595\pi\)
0.859789 + 0.510649i \(0.170595\pi\)
\(308\) 10.3985 0.592511
\(309\) 0 0
\(310\) 0.183434 2.98539i 0.0104183 0.169559i
\(311\) 16.1716 0.917008 0.458504 0.888692i \(-0.348386\pi\)
0.458504 + 0.888692i \(0.348386\pi\)
\(312\) 0 0
\(313\) 14.4637i 0.817536i 0.912638 + 0.408768i \(0.134041\pi\)
−0.912638 + 0.408768i \(0.865959\pi\)
\(314\) 0.321049 + 0.321049i 0.0181179 + 0.0181179i
\(315\) 0 0
\(316\) 17.7477i 0.998386i
\(317\) 20.8873 20.8873i 1.17315 1.17315i 0.191694 0.981455i \(-0.438602\pi\)
0.981455 0.191694i \(-0.0613982\pi\)
\(318\) 0 0
\(319\) 7.25395 + 7.25395i 0.406143 + 0.406143i
\(320\) 0.137134 2.23186i 0.00766602 0.124765i
\(321\) 0 0
\(322\) −18.0310 −1.00483
\(323\) 30.8112 + 30.8112i 1.71438 + 1.71438i
\(324\) 0 0
\(325\) 5.97901 17.0074i 0.331656 0.943400i
\(326\) 2.48671i 0.137726i
\(327\) 0 0
\(328\) 7.35287i 0.405994i
\(329\) 0.426850 0.0235330
\(330\) 0 0
\(331\) 11.0069 11.0069i 0.604993 0.604993i −0.336640 0.941633i \(-0.609291\pi\)
0.941633 + 0.336640i \(0.109291\pi\)
\(332\) 1.82503 + 1.82503i 0.100161 + 0.100161i
\(333\) 0 0
\(334\) −10.2508 −0.560897
\(335\) −9.34015 10.5631i −0.510307 0.577123i
\(336\) 0 0
\(337\) −6.28780 −0.342518 −0.171259 0.985226i \(-0.554784\pi\)
−0.171259 + 0.985226i \(0.554784\pi\)
\(338\) 12.1905 4.51560i 0.663078 0.245616i
\(339\) 0 0
\(340\) 12.1910 + 0.749061i 0.661149 + 0.0406235i
\(341\) 5.00371i 0.270966i
\(342\) 0 0
\(343\) 12.3297 + 12.3297i 0.665742 + 0.665742i
\(344\) 0.766529 + 0.766529i 0.0413285 + 0.0413285i
\(345\) 0 0
\(346\) 1.02342 + 1.02342i 0.0550194 + 0.0550194i
\(347\) 23.0734 1.23864 0.619322 0.785137i \(-0.287408\pi\)
0.619322 + 0.785137i \(0.287408\pi\)
\(348\) 0 0
\(349\) −7.85542 7.85542i −0.420491 0.420491i 0.464882 0.885373i \(-0.346097\pi\)
−0.885373 + 0.464882i \(0.846097\pi\)
\(350\) −1.70159 + 13.7945i −0.0909540 + 0.737345i
\(351\) 0 0
\(352\) 3.74074i 0.199382i
\(353\) −5.37052 + 5.37052i −0.285844 + 0.285844i −0.835434 0.549590i \(-0.814784\pi\)
0.549590 + 0.835434i \(0.314784\pi\)
\(354\) 0 0
\(355\) 18.7922 + 21.2527i 0.997386 + 1.12798i
\(356\) 2.49913 + 2.49913i 0.132454 + 0.132454i
\(357\) 0 0
\(358\) 1.23799 1.23799i 0.0654296 0.0654296i
\(359\) −0.806713 + 0.806713i −0.0425767 + 0.0425767i −0.728075 0.685498i \(-0.759585\pi\)
0.685498 + 0.728075i \(0.259585\pi\)
\(360\) 0 0
\(361\) 44.6361i 2.34927i
\(362\) 5.83696 + 5.83696i 0.306784 + 0.306784i
\(363\) 0 0
\(364\) −8.43775 + 5.40920i −0.442258 + 0.283519i
\(365\) −16.9375 + 14.9766i −0.886549 + 0.783909i
\(366\) 0 0
\(367\) 30.3706i 1.58533i −0.609658 0.792665i \(-0.708693\pi\)
0.609658 0.792665i \(-0.291307\pi\)
\(368\) 6.48642i 0.338128i
\(369\) 0 0
\(370\) −1.18343 + 19.2604i −0.0615238 + 1.00130i
\(371\) −24.5720 + 24.5720i −1.27571 + 1.27571i
\(372\) 0 0
\(373\) 14.3157i 0.741237i −0.928785 0.370619i \(-0.879146\pi\)
0.928785 0.370619i \(-0.120854\pi\)
\(374\) −20.4329 −1.05656
\(375\) 0 0
\(376\) 0.153554i 0.00791895i
\(377\) −9.65956 2.11270i −0.497493 0.108810i
\(378\) 0 0
\(379\) −24.9955 + 24.9955i −1.28393 + 1.28393i −0.345519 + 0.938412i \(0.612297\pi\)
−0.938412 + 0.345519i \(0.887703\pi\)
\(380\) −11.8158 13.3629i −0.606139 0.685502i
\(381\) 0 0
\(382\) −0.410212 0.410212i −0.0209883 0.0209883i
\(383\) −0.385931 + 0.385931i −0.0197201 + 0.0197201i −0.716898 0.697178i \(-0.754439\pi\)
0.697178 + 0.716898i \(0.254439\pi\)
\(384\) 0 0
\(385\) 1.42599 23.2080i 0.0726752 1.18279i
\(386\) 22.7696i 1.15894i
\(387\) 0 0
\(388\) 0.837007 0.837007i 0.0424926 0.0424926i
\(389\) −13.6949 −0.694360 −0.347180 0.937798i \(-0.612861\pi\)
−0.347180 + 0.937798i \(0.612861\pi\)
\(390\) 0 0
\(391\) 35.4305 1.79180
\(392\) 0.514288 0.514288i 0.0259755 0.0259755i
\(393\) 0 0
\(394\) 23.9916i 1.20868i
\(395\) 39.6104 + 2.43381i 1.99301 + 0.122458i
\(396\) 0 0
\(397\) 7.91126 7.91126i 0.397055 0.397055i −0.480138 0.877193i \(-0.659414\pi\)
0.877193 + 0.480138i \(0.159414\pi\)
\(398\) −10.0102 10.0102i −0.501767 0.501767i
\(399\) 0 0
\(400\) −4.96239 0.612127i −0.248119 0.0306063i
\(401\) −16.8138 + 16.8138i −0.839642 + 0.839642i −0.988812 0.149169i \(-0.952340\pi\)
0.149169 + 0.988812i \(0.452340\pi\)
\(402\) 0 0
\(403\) −2.60288 4.06020i −0.129659 0.202253i
\(404\) 12.7572i 0.634694i
\(405\) 0 0
\(406\) 7.62336 0.378341
\(407\) 32.2817i 1.60015i
\(408\) 0 0
\(409\) −6.83881 + 6.83881i −0.338157 + 0.338157i −0.855673 0.517516i \(-0.826857\pi\)
0.517516 + 0.855673i \(0.326857\pi\)
\(410\) 16.4106 + 1.00833i 0.810460 + 0.0497977i
\(411\) 0 0
\(412\) 3.99740i 0.196938i
\(413\) 38.0175i 1.87072i
\(414\) 0 0
\(415\) 4.32347 3.82293i 0.212231 0.187660i
\(416\) −1.94589 3.03537i −0.0954052 0.148822i
\(417\) 0 0
\(418\) 21.1006 + 21.1006i 1.03206 + 1.03206i
\(419\) 14.3477i 0.700932i −0.936576 0.350466i \(-0.886023\pi\)
0.936576 0.350466i \(-0.113977\pi\)
\(420\) 0 0
\(421\) −17.4452 + 17.4452i −0.850228 + 0.850228i −0.990161 0.139933i \(-0.955311\pi\)
0.139933 + 0.990161i \(0.455311\pi\)
\(422\) −5.35959 + 5.35959i −0.260901 + 0.260901i
\(423\) 0 0
\(424\) −8.83947 8.83947i −0.429283 0.429283i
\(425\) 3.34359 27.1058i 0.162188 1.31483i
\(426\) 0 0
\(427\) −22.8024 + 22.8024i −1.10348 + 1.10348i
\(428\) 4.67233i 0.225846i
\(429\) 0 0
\(430\) 1.81590 1.60567i 0.0875705 0.0774321i
\(431\) 5.54989 + 5.54989i 0.267329 + 0.267329i 0.828023 0.560694i \(-0.189466\pi\)
−0.560694 + 0.828023i \(0.689466\pi\)
\(432\) 0 0
\(433\) −4.13768 −0.198844 −0.0994220 0.995045i \(-0.531699\pi\)
−0.0994220 + 0.995045i \(0.531699\pi\)
\(434\) 2.62926 + 2.62926i 0.126209 + 0.126209i
\(435\) 0 0
\(436\) 10.2433 + 10.2433i 0.490565 + 0.490565i
\(437\) −36.5883 36.5883i −1.75026 1.75026i
\(438\) 0 0
\(439\) 33.0671i 1.57821i −0.614262 0.789103i \(-0.710546\pi\)
0.614262 0.789103i \(-0.289454\pi\)
\(440\) 8.34880 + 0.512982i 0.398013 + 0.0244555i
\(441\) 0 0
\(442\) 16.5800 10.6290i 0.788630 0.505568i
\(443\) −23.9819 −1.13941 −0.569707 0.821848i \(-0.692943\pi\)
−0.569707 + 0.821848i \(0.692943\pi\)
\(444\) 0 0
\(445\) 5.92042 5.23499i 0.280655 0.248162i
\(446\) 27.2141 1.28862
\(447\) 0 0
\(448\) 1.96562 + 1.96562i 0.0928668 + 0.0928668i
\(449\) 0.714936 0.714936i 0.0337399 0.0337399i −0.690036 0.723775i \(-0.742405\pi\)
0.723775 + 0.690036i \(0.242405\pi\)
\(450\) 0 0
\(451\) −27.5051 −1.29517
\(452\) 2.65269i 0.124772i
\(453\) 0 0
\(454\) 17.5214i 0.822322i
\(455\) 10.9155 + 19.5737i 0.511725 + 0.917627i
\(456\) 0 0
\(457\) −16.5043 16.5043i −0.772038 0.772038i 0.206425 0.978462i \(-0.433817\pi\)
−0.978462 + 0.206425i \(0.933817\pi\)
\(458\) −9.59672 −0.448425
\(459\) 0 0
\(460\) −14.4768 0.889508i −0.674983 0.0414735i
\(461\) 5.07529 + 5.07529i 0.236380 + 0.236380i 0.815349 0.578969i \(-0.196545\pi\)
−0.578969 + 0.815349i \(0.696545\pi\)
\(462\) 0 0
\(463\) −10.7995 + 10.7995i −0.501895 + 0.501895i −0.912026 0.410132i \(-0.865483\pi\)
0.410132 + 0.912026i \(0.365483\pi\)
\(464\) 2.74241i 0.127313i
\(465\) 0 0
\(466\) 6.38795 + 6.38795i 0.295916 + 0.295916i
\(467\) 9.77705i 0.452428i 0.974078 + 0.226214i \(0.0726349\pi\)
−0.974078 + 0.226214i \(0.927365\pi\)
\(468\) 0 0
\(469\) 17.5290 0.809412
\(470\) 0.342711 + 0.0210575i 0.0158081 + 0.000971309i
\(471\) 0 0
\(472\) −13.6763 −0.629504
\(473\) −2.86738 + 2.86738i −0.131842 + 0.131842i
\(474\) 0 0
\(475\) −31.4444 + 24.5387i −1.44277 + 1.12591i
\(476\) −10.7367 + 10.7367i −0.492117 + 0.492117i
\(477\) 0 0
\(478\) 3.57216 0.163387
\(479\) −7.77169 + 7.77169i −0.355098 + 0.355098i −0.862002 0.506904i \(-0.830790\pi\)
0.506904 + 0.862002i \(0.330790\pi\)
\(480\) 0 0
\(481\) 16.7926 + 26.1946i 0.765677 + 1.19437i
\(482\) −11.5550 −0.526314
\(483\) 0 0
\(484\) −2.99312 −0.136051
\(485\) −1.75330 1.98286i −0.0796132 0.0900372i
\(486\) 0 0
\(487\) −15.3878 15.3878i −0.697288 0.697288i 0.266537 0.963825i \(-0.414121\pi\)
−0.963825 + 0.266537i \(0.914121\pi\)
\(488\) −8.20287 8.20287i −0.371326 0.371326i
\(489\) 0 0
\(490\) −1.07729 1.21835i −0.0486671 0.0550392i
\(491\) −11.3600 −0.512669 −0.256334 0.966588i \(-0.582515\pi\)
−0.256334 + 0.966588i \(0.582515\pi\)
\(492\) 0 0
\(493\) −14.9798 −0.674654
\(494\) −28.0981 6.14550i −1.26419 0.276499i
\(495\) 0 0
\(496\) −0.945844 + 0.945844i −0.0424697 + 0.0424697i
\(497\) −35.2679 −1.58198
\(498\) 0 0
\(499\) 5.53890 5.53890i 0.247955 0.247955i −0.572176 0.820131i \(-0.693901\pi\)
0.820131 + 0.572176i \(0.193901\pi\)
\(500\) −2.04669 + 10.9914i −0.0915309 + 0.491551i
\(501\) 0 0
\(502\) 5.82323 5.82323i 0.259904 0.259904i
\(503\) −8.56557 −0.381920 −0.190960 0.981598i \(-0.561160\pi\)
−0.190960 + 0.981598i \(0.561160\pi\)
\(504\) 0 0
\(505\) −28.4723 1.74944i −1.26700 0.0778492i
\(506\) 24.2640 1.07867
\(507\) 0 0
\(508\) 0.680223i 0.0301800i
\(509\) 9.27756 + 9.27756i 0.411221 + 0.411221i 0.882164 0.470943i \(-0.156086\pi\)
−0.470943 + 0.882164i \(0.656086\pi\)
\(510\) 0 0
\(511\) 28.1070i 1.24338i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −16.1527 16.1527i −0.712466 0.712466i
\(515\) 8.92162 + 0.548178i 0.393134 + 0.0241556i
\(516\) 0 0
\(517\) −0.574406 −0.0252623
\(518\) −16.9628 16.9628i −0.745304 0.745304i
\(519\) 0 0
\(520\) −7.04138 + 3.92671i −0.308785 + 0.172197i
\(521\) 0.281155i 0.0123176i 0.999981 + 0.00615880i \(0.00196042\pi\)
−0.999981 + 0.00615880i \(0.998040\pi\)
\(522\) 0 0
\(523\) 29.1354i 1.27400i −0.770863 0.637001i \(-0.780175\pi\)
0.770863 0.637001i \(-0.219825\pi\)
\(524\) −5.94995 −0.259925
\(525\) 0 0
\(526\) 4.72412 4.72412i 0.205981 0.205981i
\(527\) −5.16645 5.16645i −0.225054 0.225054i
\(528\) 0 0
\(529\) −19.0737 −0.829291
\(530\) −20.9406 + 18.5163i −0.909603 + 0.804295i
\(531\) 0 0
\(532\) 22.1751 0.961414
\(533\) 22.3187 14.3079i 0.966730 0.619743i
\(534\) 0 0
\(535\) −10.4280 0.640735i −0.450841 0.0277014i
\(536\) 6.30582i 0.272370i
\(537\) 0 0
\(538\) 19.4938 + 19.4938i 0.840436 + 0.840436i
\(539\) 1.92382 + 1.92382i 0.0828647 + 0.0828647i
\(540\) 0 0
\(541\) −19.7024 19.7024i −0.847074 0.847074i 0.142693 0.989767i \(-0.454424\pi\)
−0.989767 + 0.142693i \(0.954424\pi\)
\(542\) −22.8420 −0.981146
\(543\) 0 0
\(544\) −3.86240 3.86240i −0.165599 0.165599i
\(545\) 24.2663 21.4569i 1.03945 0.919112i
\(546\) 0 0
\(547\) 23.1700i 0.990679i −0.868699 0.495340i \(-0.835044\pi\)
0.868699 0.495340i \(-0.164956\pi\)
\(548\) −6.79720 + 6.79720i −0.290362 + 0.290362i
\(549\) 0 0
\(550\) 2.28981 18.5630i 0.0976377 0.791529i
\(551\) 15.4692 + 15.4692i 0.659012 + 0.659012i
\(552\) 0 0
\(553\) −34.8852 + 34.8852i −1.48347 + 1.48347i
\(554\) 4.00304 4.00304i 0.170073 0.170073i
\(555\) 0 0
\(556\) 9.52103i 0.403781i
\(557\) −21.7682 21.7682i −0.922349 0.922349i 0.0748464 0.997195i \(-0.476153\pi\)
−0.997195 + 0.0748464i \(0.976153\pi\)
\(558\) 0 0
\(559\) 0.835119 3.81828i 0.0353218 0.161496i
\(560\) 4.65654 4.11743i 0.196775 0.173993i
\(561\) 0 0
\(562\) 28.5711i 1.20520i
\(563\) 19.8520i 0.836660i −0.908295 0.418330i \(-0.862616\pi\)
0.908295 0.418330i \(-0.137384\pi\)
\(564\) 0 0
\(565\) 5.92043 + 0.363774i 0.249074 + 0.0153041i
\(566\) −7.98577 + 7.98577i −0.335667 + 0.335667i
\(567\) 0 0
\(568\) 12.6872i 0.532343i
\(569\) −29.6118 −1.24139 −0.620696 0.784052i \(-0.713150\pi\)
−0.620696 + 0.784052i \(0.713150\pi\)
\(570\) 0 0
\(571\) 2.28081i 0.0954491i 0.998861 + 0.0477246i \(0.0151970\pi\)
−0.998861 + 0.0477246i \(0.984803\pi\)
\(572\) 11.3545 7.27908i 0.474757 0.304353i
\(573\) 0 0
\(574\) −14.4529 + 14.4529i −0.603254 + 0.603254i
\(575\) −3.97051 + 32.1882i −0.165582 + 1.34234i
\(576\) 0 0
\(577\) −14.7512 14.7512i −0.614100 0.614100i 0.329912 0.944012i \(-0.392981\pi\)
−0.944012 + 0.329912i \(0.892981\pi\)
\(578\) 9.07661 9.07661i 0.377537 0.377537i
\(579\) 0 0
\(580\) 6.12067 + 0.376077i 0.254147 + 0.0156158i
\(581\) 7.17461i 0.297653i
\(582\) 0 0
\(583\) 33.0661 33.0661i 1.36946 1.36946i
\(584\) 10.1111 0.418402
\(585\) 0 0
\(586\) −15.8910 −0.656451
\(587\) −6.03336 + 6.03336i −0.249023 + 0.249023i −0.820570 0.571546i \(-0.806344\pi\)
0.571546 + 0.820570i \(0.306344\pi\)
\(588\) 0 0
\(589\) 10.6705i 0.439672i
\(590\) −1.87549 + 30.5237i −0.0772127 + 1.25664i
\(591\) 0 0
\(592\) 6.10217 6.10217i 0.250798 0.250798i
\(593\) 3.28068 + 3.28068i 0.134721 + 0.134721i 0.771252 0.636530i \(-0.219631\pi\)
−0.636530 + 0.771252i \(0.719631\pi\)
\(594\) 0 0
\(595\) 22.4905 + 25.4352i 0.922019 + 1.04274i
\(596\) −6.89267 + 6.89267i −0.282335 + 0.282335i
\(597\) 0 0
\(598\) −19.6887 + 12.6219i −0.805132 + 0.516147i
\(599\) 5.00194i 0.204374i −0.994765 0.102187i \(-0.967416\pi\)
0.994765 0.102187i \(-0.0325840\pi\)
\(600\) 0 0
\(601\) −15.7393 −0.642021 −0.321010 0.947076i \(-0.604022\pi\)
−0.321010 + 0.947076i \(0.604022\pi\)
\(602\) 3.01341i 0.122817i
\(603\) 0 0
\(604\) 13.8330 13.8330i 0.562857 0.562857i
\(605\) −0.410459 + 6.68023i −0.0166875 + 0.271590i
\(606\) 0 0
\(607\) 0.932239i 0.0378384i −0.999821 0.0189192i \(-0.993977\pi\)
0.999821 0.0189192i \(-0.00602253\pi\)
\(608\) 7.97722i 0.323519i
\(609\) 0 0
\(610\) −19.4325 + 17.1828i −0.786801 + 0.695709i
\(611\) 0.466094 0.298800i 0.0188562 0.0120881i
\(612\) 0 0
\(613\) −13.2136 13.2136i −0.533691 0.533691i 0.387978 0.921669i \(-0.373174\pi\)
−0.921669 + 0.387978i \(0.873174\pi\)
\(614\) 8.65137i 0.349141i
\(615\) 0 0
\(616\) −7.35287 + 7.35287i −0.296255 + 0.296255i
\(617\) −22.6516 + 22.6516i −0.911920 + 0.911920i −0.996423 0.0845030i \(-0.973070\pi\)
0.0845030 + 0.996423i \(0.473070\pi\)
\(618\) 0 0
\(619\) 11.9427 + 11.9427i 0.480016 + 0.480016i 0.905137 0.425120i \(-0.139768\pi\)
−0.425120 + 0.905137i \(0.639768\pi\)
\(620\) 1.98128 + 2.24070i 0.0795703 + 0.0899886i
\(621\) 0 0
\(622\) −11.4351 + 11.4351i −0.458504 + 0.458504i
\(623\) 9.82466i 0.393617i
\(624\) 0 0
\(625\) 24.2506 + 6.07522i 0.970024 + 0.243009i
\(626\) −10.2274 10.2274i −0.408768 0.408768i
\(627\) 0 0
\(628\) −0.454032 −0.0181179
\(629\) 33.3316 + 33.3316i 1.32902 + 1.32902i
\(630\) 0 0
\(631\) −1.54916 1.54916i −0.0616710 0.0616710i 0.675599 0.737270i \(-0.263885\pi\)
−0.737270 + 0.675599i \(0.763885\pi\)
\(632\) −12.5495 12.5495i −0.499193 0.499193i
\(633\) 0 0
\(634\) 29.5391i 1.17315i
\(635\) −1.51816 0.0932816i −0.0602464 0.00370177i
\(636\) 0 0
\(637\) −2.56181 0.560308i −0.101503 0.0222002i
\(638\) −10.2586 −0.406143
\(639\) 0 0
\(640\) 1.48119 + 1.67513i 0.0585493 + 0.0662154i
\(641\) 14.2386 0.562389 0.281195 0.959651i \(-0.409269\pi\)
0.281195 + 0.959651i \(0.409269\pi\)
\(642\) 0 0
\(643\) −3.35321 3.35321i −0.132238 0.132238i 0.637890 0.770128i \(-0.279808\pi\)
−0.770128 + 0.637890i \(0.779808\pi\)
\(644\) 12.7498 12.7498i 0.502414 0.502414i
\(645\) 0 0
\(646\) −43.5737 −1.71438
\(647\) 14.8434i 0.583553i 0.956487 + 0.291777i \(0.0942464\pi\)
−0.956487 + 0.291777i \(0.905754\pi\)
\(648\) 0 0
\(649\) 51.1596i 2.00819i
\(650\) 7.79824 + 16.2538i 0.305872 + 0.637528i
\(651\) 0 0
\(652\) −1.75837 1.75837i −0.0688630 0.0688630i
\(653\) 17.0479 0.667134 0.333567 0.942726i \(-0.391748\pi\)
0.333567 + 0.942726i \(0.391748\pi\)
\(654\) 0 0
\(655\) −0.815940 + 13.2795i −0.0318814 + 0.518871i
\(656\) −5.19926 5.19926i −0.202997 0.202997i
\(657\) 0 0
\(658\) −0.301829 + 0.301829i −0.0117665 + 0.0117665i
\(659\) 24.7994i 0.966047i 0.875607 + 0.483023i \(0.160461\pi\)
−0.875607 + 0.483023i \(0.839539\pi\)
\(660\) 0 0
\(661\) −18.8061 18.8061i −0.731474 0.731474i 0.239437 0.970912i \(-0.423037\pi\)
−0.970912 + 0.239437i \(0.923037\pi\)
\(662\) 15.5661i 0.604993i
\(663\) 0 0
\(664\) −2.58098 −0.100161
\(665\) 3.04096 49.4918i 0.117923 1.91921i
\(666\) 0 0
\(667\) 17.7884 0.688771
\(668\) 7.24838 7.24838i 0.280448 0.280448i
\(669\) 0 0
\(670\) 14.0737 + 0.864742i 0.543715 + 0.0334079i
\(671\) 30.6848 30.6848i 1.18457 1.18457i
\(672\) 0 0
\(673\) −11.7856 −0.454302 −0.227151 0.973860i \(-0.572941\pi\)
−0.227151 + 0.973860i \(0.572941\pi\)
\(674\) 4.44614 4.44614i 0.171259 0.171259i
\(675\) 0 0
\(676\) −5.42700 + 11.8130i −0.208731 + 0.454347i
\(677\) −29.8845 −1.14856 −0.574278 0.818661i \(-0.694717\pi\)
−0.574278 + 0.818661i \(0.694717\pi\)
\(678\) 0 0
\(679\) 3.29047 0.126277
\(680\) −9.15000 + 8.09067i −0.350886 + 0.310263i
\(681\) 0 0
\(682\) −3.53816 3.53816i −0.135483 0.135483i
\(683\) −5.38081 5.38081i −0.205891 0.205891i 0.596627 0.802518i \(-0.296507\pi\)
−0.802518 + 0.596627i \(0.796507\pi\)
\(684\) 0 0
\(685\) 14.2383 + 16.1025i 0.544016 + 0.615246i
\(686\) −17.4368 −0.665742
\(687\) 0 0
\(688\) −1.08404 −0.0413285
\(689\) −9.63045 + 44.0318i −0.366891 + 1.67748i
\(690\) 0 0
\(691\) −28.0782 + 28.0782i −1.06814 + 1.06814i −0.0706416 + 0.997502i \(0.522505\pi\)
−0.997502 + 0.0706416i \(0.977495\pi\)
\(692\) −1.44733 −0.0550194
\(693\) 0 0
\(694\) −16.3153 + 16.3153i −0.619322 + 0.619322i
\(695\) −21.2496 1.30565i −0.806043 0.0495263i
\(696\) 0 0
\(697\) 28.3997 28.3997i 1.07572 1.07572i
\(698\) 11.1092 0.420491
\(699\) 0 0
\(700\) −8.55096 10.9574i −0.323196 0.414150i
\(701\) 33.9767 1.28328 0.641641 0.767005i \(-0.278254\pi\)
0.641641 + 0.767005i \(0.278254\pi\)
\(702\) 0 0
\(703\) 68.8416i 2.59641i
\(704\) −2.64510 2.64510i −0.0996910 0.0996910i
\(705\) 0 0
\(706\) 7.59507i 0.285844i
\(707\) 25.0758 25.0758i 0.943072 0.943072i
\(708\) 0 0
\(709\) 14.0038 + 14.0038i 0.525923 + 0.525923i 0.919354 0.393431i \(-0.128712\pi\)
−0.393431 + 0.919354i \(0.628712\pi\)
\(710\) −28.3160 1.73984i −1.06268 0.0652951i
\(711\) 0 0
\(712\) −3.53430 −0.132454
\(713\) 6.13515 + 6.13515i 0.229763 + 0.229763i
\(714\) 0 0
\(715\) −14.6888 26.3399i −0.549329 0.985058i
\(716\) 1.75078i 0.0654296i
\(717\) 0 0
\(718\) 1.14087i 0.0425767i
\(719\) 28.6769 1.06947 0.534734 0.845021i \(-0.320412\pi\)
0.534734 + 0.845021i \(0.320412\pi\)
\(720\) 0 0
\(721\) −7.85736 + 7.85736i −0.292623 + 0.292623i
\(722\) 31.5625 + 31.5625i 1.17463 + 1.17463i
\(723\) 0 0
\(724\) −8.25471 −0.306784
\(725\) 1.67870 13.6089i 0.0623455 0.505422i
\(726\) 0 0
\(727\) 27.5424 1.02149 0.510746 0.859732i \(-0.329369\pi\)
0.510746 + 0.859732i \(0.329369\pi\)
\(728\) 2.14151 9.79127i 0.0793695 0.362889i
\(729\) 0 0
\(730\) 1.38658 22.5666i 0.0513196 0.835229i
\(731\) 5.92128i 0.219006i
\(732\) 0 0
\(733\) 13.4697 + 13.4697i 0.497515 + 0.497515i 0.910664 0.413148i \(-0.135571\pi\)
−0.413148 + 0.910664i \(0.635571\pi\)
\(734\) 21.4752 + 21.4752i 0.792665 + 0.792665i
\(735\) 0 0
\(736\) 4.58659 + 4.58659i 0.169064 + 0.169064i
\(737\) −23.5884 −0.868891
\(738\) 0 0
\(739\) 1.37770 + 1.37770i 0.0506797 + 0.0506797i 0.731992 0.681313i \(-0.238591\pi\)
−0.681313 + 0.731992i \(0.738591\pi\)
\(740\) −12.7824 14.4560i −0.469889 0.531413i
\(741\) 0 0
\(742\) 34.7501i 1.27571i
\(743\) −13.8710 + 13.8710i −0.508876 + 0.508876i −0.914181 0.405305i \(-0.867165\pi\)
0.405305 + 0.914181i \(0.367165\pi\)
\(744\) 0 0
\(745\) 14.4382 + 16.3287i 0.528976 + 0.598237i
\(746\) 10.1227 + 10.1227i 0.370619 + 0.370619i
\(747\) 0 0
\(748\) 14.4482 14.4482i 0.528279 0.528279i
\(749\) 9.18402 9.18402i 0.335577 0.335577i
\(750\) 0 0
\(751\) 38.2290i 1.39500i −0.716586 0.697498i \(-0.754296\pi\)
0.716586 0.697498i \(-0.245704\pi\)
\(752\) −0.108579 0.108579i −0.00395947 0.00395947i
\(753\) 0 0
\(754\) 8.32424 5.33644i 0.303151 0.194342i
\(755\) −28.9764 32.7703i −1.05456 1.19263i
\(756\) 0 0
\(757\) 21.6549i 0.787061i 0.919311 + 0.393531i \(0.128746\pi\)
−0.919311 + 0.393531i \(0.871254\pi\)
\(758\) 35.3489i 1.28393i
\(759\) 0 0
\(760\) 17.8040 + 1.09395i 0.645820 + 0.0396816i
\(761\) −16.0417 + 16.0417i −0.581511 + 0.581511i −0.935318 0.353807i \(-0.884887\pi\)
0.353807 + 0.935318i \(0.384887\pi\)
\(762\) 0 0
\(763\) 40.2688i 1.45783i
\(764\) 0.580127 0.0209883
\(765\) 0 0
\(766\) 0.545789i 0.0197201i
\(767\) 26.6127 + 41.5128i 0.960928 + 1.49894i
\(768\) 0 0
\(769\) 1.04097 1.04097i 0.0375384 0.0375384i −0.688088 0.725627i \(-0.741550\pi\)
0.725627 + 0.688088i \(0.241550\pi\)
\(770\) 15.4022 + 17.4189i 0.555058 + 0.627733i
\(771\) 0 0
\(772\) 16.1005 + 16.1005i 0.579471 + 0.579471i
\(773\) −9.70713 + 9.70713i −0.349141 + 0.349141i −0.859790 0.510648i \(-0.829405\pi\)
0.510648 + 0.859790i \(0.329405\pi\)
\(774\) 0 0
\(775\) 5.27262 4.11467i 0.189398 0.147803i
\(776\) 1.18371i 0.0424926i
\(777\) 0 0
\(778\) 9.68377 9.68377i 0.347180 0.347180i
\(779\) −58.6555 −2.10155
\(780\) 0 0
\(781\) 47.4595 1.69823
\(782\) −25.0532 + 25.0532i −0.895899 + 0.895899i
\(783\) 0 0
\(784\) 0.727313i 0.0259755i
\(785\) −0.0622632 + 1.01334i −0.00222227 + 0.0361675i
\(786\) 0 0
\(787\) 14.1991 14.1991i 0.506144 0.506144i −0.407196 0.913341i \(-0.633494\pi\)
0.913341 + 0.407196i \(0.133494\pi\)
\(788\) −16.9646 16.9646i −0.604339 0.604339i
\(789\) 0 0
\(790\) −29.7297 + 26.2878i −1.05774 + 0.935278i
\(791\) −5.21418 + 5.21418i −0.185395 + 0.185395i
\(792\) 0 0
\(793\) −8.93688 + 40.8607i −0.317358 + 1.45101i
\(794\) 11.1882i 0.397055i
\(795\) 0 0
\(796\) 14.1566 0.501767
\(797\) 0.200056i 0.00708635i −0.999994 0.00354318i \(-0.998872\pi\)
0.999994 0.00354318i \(-0.00112783\pi\)
\(798\) 0 0
\(799\) 0.593087 0.593087i 0.0209819 0.0209819i
\(800\) 3.94178 3.07610i 0.139363 0.108757i
\(801\) 0 0
\(802\) 23.7783i 0.839642i
\(803\) 37.8231i 1.33475i
\(804\) 0 0
\(805\) −26.7074 30.2043i −0.941312 1.06456i
\(806\) 4.71150 + 1.03048i 0.165956 + 0.0362971i
\(807\) 0 0
\(808\) 9.02070 + 9.02070i 0.317347 + 0.317347i
\(809\) 16.7938i 0.590438i 0.955430 + 0.295219i \(0.0953926\pi\)
−0.955430 + 0.295219i \(0.904607\pi\)
\(810\) 0 0
\(811\) −9.73805 + 9.73805i −0.341949 + 0.341949i −0.857100 0.515151i \(-0.827736\pi\)
0.515151 + 0.857100i \(0.327736\pi\)
\(812\) −5.39053 + 5.39053i −0.189171 + 0.189171i
\(813\) 0 0
\(814\) 22.8266 + 22.8266i 0.800073 + 0.800073i
\(815\) −4.16556 + 3.68330i −0.145913 + 0.129020i
\(816\) 0 0
\(817\) −6.11477 + 6.11477i −0.213929 + 0.213929i
\(818\) 9.67153i 0.338157i
\(819\) 0 0
\(820\) −12.3170 + 10.8910i −0.430129 + 0.380331i
\(821\) −5.09187 5.09187i −0.177708 0.177708i 0.612648 0.790356i \(-0.290104\pi\)
−0.790356 + 0.612648i \(0.790104\pi\)
\(822\) 0 0
\(823\) −38.3300 −1.33610 −0.668050 0.744116i \(-0.732871\pi\)
−0.668050 + 0.744116i \(0.732871\pi\)
\(824\) −2.82659 2.82659i −0.0984688 0.0984688i
\(825\) 0 0
\(826\) −26.8825 26.8825i −0.935361 0.935361i
\(827\) 21.1668 + 21.1668i 0.736041 + 0.736041i 0.971809 0.235768i \(-0.0757606\pi\)
−0.235768 + 0.971809i \(0.575761\pi\)
\(828\) 0 0
\(829\) 2.65197i 0.0921068i −0.998939 0.0460534i \(-0.985336\pi\)
0.998939 0.0460534i \(-0.0146644\pi\)
\(830\) −0.353939 + 5.76037i −0.0122854 + 0.199945i
\(831\) 0 0
\(832\) 3.52229 + 0.770380i 0.122113 + 0.0267081i
\(833\) −3.97277 −0.137648
\(834\) 0 0
\(835\) −15.1834 17.1714i −0.525442 0.594240i
\(836\) −29.8407 −1.03206
\(837\) 0 0
\(838\) 10.1454 + 10.1454i 0.350466 + 0.350466i
\(839\) 1.62957 1.62957i 0.0562591 0.0562591i −0.678417 0.734677i \(-0.737334\pi\)
0.734677 + 0.678417i \(0.237334\pi\)
\(840\) 0 0
\(841\) 21.4792 0.740662
\(842\) 24.6713i 0.850228i
\(843\) 0 0
\(844\) 7.57960i 0.260901i
\(845\) 25.6208 + 13.7323i 0.881382 + 0.472404i
\(846\) 0 0
\(847\) −5.88334 5.88334i −0.202154 0.202154i
\(848\) 12.5009 0.429283
\(849\) 0 0
\(850\) 16.8024 + 21.5310i 0.576319 + 0.738507i
\(851\) −39.5813 39.5813i −1.35683 1.35683i
\(852\) 0 0
\(853\) 15.3255 15.3255i 0.524735 0.524735i −0.394263 0.918998i \(-0.629000\pi\)
0.918998 + 0.394263i \(0.129000\pi\)
\(854\) 32.2474i 1.10348i
\(855\) 0 0
\(856\) 3.30384 + 3.30384i 0.112923 + 0.112923i
\(857\) 12.8053i 0.437422i 0.975790 + 0.218711i \(0.0701852\pi\)
−0.975790 + 0.218711i \(0.929815\pi\)
\(858\) 0 0
\(859\) 25.3058 0.863422 0.431711 0.902012i \(-0.357910\pi\)
0.431711 + 0.902012i \(0.357910\pi\)
\(860\) −0.148658 + 2.41941i −0.00506919 + 0.0825013i
\(861\) 0 0
\(862\) −7.84872 −0.267329
\(863\) 38.9537 38.9537i 1.32600 1.32600i 0.417169 0.908829i \(-0.363022\pi\)
0.908829 0.417169i \(-0.136978\pi\)
\(864\) 0 0
\(865\) −0.198478 + 3.23025i −0.00674847 + 0.109832i
\(866\) 2.92578 2.92578i 0.0994220 0.0994220i
\(867\) 0 0
\(868\) −3.71834 −0.126209
\(869\) 46.9445 46.9445i 1.59248 1.59248i
\(870\) 0 0
\(871\) 19.1405 12.2705i 0.648553 0.415769i
\(872\) −14.4862 −0.490565
\(873\) 0 0
\(874\) 51.7437 1.75026
\(875\) −25.6279 + 17.5819i −0.866382 + 0.594377i
\(876\) 0 0
\(877\) 23.8344 + 23.8344i 0.804831 + 0.804831i 0.983846 0.179015i \(-0.0572912\pi\)
−0.179015 + 0.983846i \(0.557291\pi\)
\(878\) 23.3819 + 23.3819i 0.789103 + 0.789103i
\(879\) 0 0
\(880\) −6.26623 + 5.54076i −0.211234 + 0.186779i
\(881\) −30.9019 −1.04111 −0.520555 0.853828i \(-0.674275\pi\)
−0.520555 + 0.853828i \(0.674275\pi\)
\(882\) 0 0
\(883\) 2.78159 0.0936080 0.0468040 0.998904i \(-0.485096\pi\)
0.0468040 + 0.998904i \(0.485096\pi\)
\(884\) −4.20802 + 19.2396i −0.141531 + 0.647099i
\(885\) 0 0
\(886\) 16.9577 16.9577i 0.569707 0.569707i
\(887\) −9.96887 −0.334722 −0.167361 0.985896i \(-0.553524\pi\)
−0.167361 + 0.985896i \(0.553524\pi\)
\(888\) 0 0
\(889\) 1.33706 1.33706i 0.0448435 0.0448435i
\(890\) −0.484672 + 7.88806i −0.0162463 + 0.264408i
\(891\) 0 0
\(892\) −19.2433 + 19.2433i −0.644312 + 0.644312i
\(893\) −1.22494 −0.0409909
\(894\) 0 0
\(895\) 3.90749 + 0.240091i 0.130613 + 0.00802535i
\(896\) −2.77980 −0.0928668
\(897\) 0 0
\(898\) 1.01107i 0.0337399i
\(899\) −2.59389 2.59389i −0.0865112 0.0865112i
\(900\) 0 0
\(901\) 68.2831i 2.27484i
\(902\) 19.4491 19.4491i 0.647583 0.647583i
\(903\) 0 0
\(904\) −1.87574 1.87574i −0.0623860 0.0623860i
\(905\) −1.13200 + 18.4233i −0.0376290 + 0.612413i
\(906\) 0 0
\(907\) 13.0402 0.432994 0.216497 0.976283i \(-0.430537\pi\)
0.216497 + 0.976283i \(0.430537\pi\)
\(908\) 12.3895 + 12.3895i 0.411161 + 0.411161i
\(909\) 0 0
\(910\) −21.5591 6.12226i −0.714676 0.202951i
\(911\) 44.0523i 1.45952i 0.683705 + 0.729759i \(0.260368\pi\)
−0.683705 + 0.729759i \(0.739632\pi\)
\(912\) 0 0
\(913\) 9.65475i 0.319526i
\(914\) 23.3406 0.772038
\(915\) 0 0
\(916\) 6.78591 6.78591i 0.224213 0.224213i
\(917\) −11.6953 11.6953i −0.386214 0.386214i
\(918\) 0 0
\(919\) 28.3309 0.934551 0.467275 0.884112i \(-0.345236\pi\)
0.467275 + 0.884112i \(0.345236\pi\)
\(920\) 10.8656 9.60765i 0.358228 0.316755i
\(921\) 0 0
\(922\) −7.17755 −0.236380
\(923\) −38.5104 + 24.6879i −1.26758 + 0.812612i
\(924\) 0 0
\(925\) −34.0166 + 26.5460i −1.11846 + 0.872828i
\(926\) 15.2728i 0.501895i
\(927\) 0 0
\(928\) −1.93918 1.93918i −0.0636566 0.0636566i
\(929\) 8.70178 + 8.70178i 0.285496 + 0.285496i 0.835296 0.549800i \(-0.185296\pi\)
−0.549800 + 0.835296i \(0.685296\pi\)
\(930\) 0 0
\(931\) 4.10259 + 4.10259i 0.134457 + 0.134457i
\(932\) −9.03392 −0.295916
\(933\) 0 0
\(934\) −6.91342 6.91342i −0.226214 0.226214i
\(935\) −30.2651 34.2277i −0.989773 1.11937i
\(936\) 0 0
\(937\) 45.8610i 1.49821i −0.662449 0.749107i \(-0.730483\pi\)
0.662449 0.749107i \(-0.269517\pi\)
\(938\) −12.3948 + 12.3948i −0.404706 + 0.404706i
\(939\) 0 0
\(940\) −0.257223 + 0.227443i −0.00838970 + 0.00741839i
\(941\) −29.6637 29.6637i −0.967008 0.967008i 0.0324645 0.999473i \(-0.489664\pi\)
−0.999473 + 0.0324645i \(0.989664\pi\)
\(942\) 0 0
\(943\) −33.7246 + 33.7246i −1.09822 + 1.09822i
\(944\) 9.67063 9.67063i 0.314752 0.314752i
\(945\) 0 0
\(946\) 4.05509i 0.131842i
\(947\) −24.8855 24.8855i −0.808669 0.808669i 0.175764 0.984432i \(-0.443761\pi\)
−0.984432 + 0.175764i \(0.943761\pi\)
\(948\) 0 0
\(949\) −19.6752 30.6911i −0.638684 0.996276i
\(950\) 4.88307 39.5861i 0.158428 1.28434i
\(951\) 0 0
\(952\) 15.1840i 0.492117i
\(953\) 30.5350i 0.989127i −0.869142 0.494563i \(-0.835328\pi\)
0.869142 0.494563i \(-0.164672\pi\)
\(954\) 0 0
\(955\) 0.0795551 1.29476i 0.00257434 0.0418975i
\(956\) −2.52590 + 2.52590i −0.0816935 + 0.0816935i
\(957\) 0 0
\(958\) 10.9908i 0.355098i
\(959\) −26.7214 −0.862879
\(960\) 0 0
\(961\) 29.2108i 0.942282i
\(962\) −30.3965 6.64821i −0.980024 0.214347i
\(963\) 0 0
\(964\) 8.17058 8.17058i 0.263157 0.263157i
\(965\) 38.1420 33.7262i 1.22784 1.08568i
\(966\) 0 0
\(967\) −20.6880 20.6880i −0.665281 0.665281i 0.291339 0.956620i \(-0.405899\pi\)
−0.956620 + 0.291339i \(0.905899\pi\)
\(968\) 2.11646 2.11646i 0.0680256 0.0680256i
\(969\) 0 0
\(970\) 2.64187 + 0.162326i 0.0848252 + 0.00521198i
\(971\) 4.98561i 0.159996i −0.996795 0.0799979i \(-0.974509\pi\)
0.996795 0.0799979i \(-0.0254914\pi\)
\(972\) 0 0
\(973\) 18.7147 18.7147i 0.599966 0.599966i
\(974\) 21.7617 0.697288
\(975\) 0 0
\(976\) 11.6006 0.371326
\(977\) 43.1731 43.1731i 1.38123 1.38123i 0.538791 0.842440i \(-0.318881\pi\)
0.842440 0.538791i \(-0.181119\pi\)
\(978\) 0 0
\(979\) 13.2209i 0.422542i
\(980\) 1.62326 + 0.0997393i 0.0518532 + 0.00318605i
\(981\) 0 0
\(982\) 8.03272 8.03272i 0.256334 0.256334i
\(983\) 3.53204 + 3.53204i 0.112655 + 0.112655i 0.761187 0.648532i \(-0.224617\pi\)
−0.648532 + 0.761187i \(0.724617\pi\)
\(984\) 0 0
\(985\) −40.1891 + 35.5362i −1.28053 + 1.13228i
\(986\) 10.5923 10.5923i 0.337327 0.337327i
\(987\) 0 0
\(988\) 24.2139 15.5228i 0.770346 0.493847i
\(989\) 7.03151i 0.223589i
\(990\) 0 0
\(991\) 7.85099 0.249395 0.124697 0.992195i \(-0.460204\pi\)
0.124697 + 0.992195i \(0.460204\pi\)
\(992\) 1.33763i 0.0424697i
\(993\) 0 0
\(994\) 24.9382 24.9382i 0.790991 0.790991i
\(995\) 1.94135 31.5955i 0.0615448 1.00164i
\(996\) 0 0
\(997\) 45.6170i 1.44470i 0.691525 + 0.722352i \(0.256939\pi\)
−0.691525 + 0.722352i \(0.743061\pi\)
\(998\) 7.83319i 0.247955i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.c.629.4 yes 24
3.2 odd 2 inner 1170.2.q.c.629.8 yes 24
5.4 even 2 1170.2.q.d.629.9 yes 24
13.8 odd 4 1170.2.q.d.359.5 yes 24
15.14 odd 2 1170.2.q.d.629.5 yes 24
39.8 even 4 1170.2.q.d.359.9 yes 24
65.34 odd 4 inner 1170.2.q.c.359.8 yes 24
195.164 even 4 inner 1170.2.q.c.359.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.4 24 195.164 even 4 inner
1170.2.q.c.359.8 yes 24 65.34 odd 4 inner
1170.2.q.c.629.4 yes 24 1.1 even 1 trivial
1170.2.q.c.629.8 yes 24 3.2 odd 2 inner
1170.2.q.d.359.5 yes 24 13.8 odd 4
1170.2.q.d.359.9 yes 24 39.8 even 4
1170.2.q.d.629.5 yes 24 15.14 odd 2
1170.2.q.d.629.9 yes 24 5.4 even 2