Properties

Label 1170.2.bp.h.919.5
Level $1170$
Weight $2$
Character 1170.919
Analytic conductor $9.342$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(289,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,-2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 919.5
Root \(-1.16746 - 0.312819i\) of defining polynomial
Character \(\chi\) \(=\) 1170.919
Dual form 1170.2.bp.h.289.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(0.539189 + 2.17009i) q^{5} +(0.614250 - 0.354638i) q^{7} +1.00000i q^{8} +(-0.618092 + 2.14894i) q^{10} +(-2.25513 + 3.90600i) q^{11} +(-3.35963 + 1.30878i) q^{13} +0.709275 q^{14} +(-0.500000 + 0.866025i) q^{16} +(-2.74538 + 1.58504i) q^{17} +(-0.0603191 - 0.104476i) q^{19} +(-1.60976 + 1.55199i) q^{20} +(-3.90600 + 2.25513i) q^{22} +(-4.30507 - 2.48554i) q^{23} +(-4.41855 + 2.34017i) q^{25} +(-3.56391 - 0.546373i) q^{26} +(0.614250 + 0.354638i) q^{28} +(3.63090 - 6.28890i) q^{29} +9.66701 q^{31} +(-0.866025 + 0.500000i) q^{32} -3.17009 q^{34} +(1.10079 + 1.14176i) q^{35} +(6.02558 + 3.47887i) q^{37} -0.120638i q^{38} +(-2.17009 + 0.539189i) q^{40} +(0.223740 - 0.387529i) q^{41} +(-1.73205 + 1.00000i) q^{43} -4.51026 q^{44} +(-2.48554 - 4.30507i) q^{46} +4.70928i q^{47} +(-3.24846 + 5.62651i) q^{49} +(-4.99666 - 0.182626i) q^{50} +(-2.81325 - 2.25513i) q^{52} +9.58864i q^{53} +(-9.69230 - 2.78776i) q^{55} +(0.354638 + 0.614250i) q^{56} +(6.28890 - 3.63090i) q^{58} +(2.87936 + 4.98720i) q^{59} +(-3.53139 - 6.11655i) q^{61} +(8.37188 + 4.83351i) q^{62} -1.00000 q^{64} +(-4.65165 - 6.58500i) q^{65} +(2.53020 + 1.46081i) q^{67} +(-2.74538 - 1.58504i) q^{68} +(0.382433 + 1.53919i) q^{70} +(-4.09171 - 7.08705i) q^{71} -6.74539i q^{73} +(3.47887 + 6.02558i) q^{74} +(0.0603191 - 0.104476i) q^{76} +3.19902i q^{77} +16.0072 q^{79} +(-2.14894 - 0.618092i) q^{80} +(0.387529 - 0.223740i) q^{82} -0.355771i q^{83} +(-4.91996 - 5.10306i) q^{85} -2.00000 q^{86} +(-3.90600 - 2.25513i) q^{88} +(-1.81545 + 3.14445i) q^{89} +(-1.59951 + 1.99537i) q^{91} -4.97107i q^{92} +(-2.35464 + 4.07835i) q^{94} +(0.194198 - 0.187230i) q^{95} +(-6.84878 + 3.95415i) q^{97} +(-5.62651 + 3.24846i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 2 q^{10} + 6 q^{11} - 20 q^{14} - 6 q^{16} - 26 q^{19} + 4 q^{25} + 28 q^{29} + 24 q^{31} - 16 q^{34} + 6 q^{35} - 4 q^{40} + 4 q^{41} + 12 q^{44} - 4 q^{49} + 8 q^{50} + 12 q^{55} - 10 q^{56}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.539189 + 2.17009i 0.241133 + 0.970492i
\(6\) 0 0
\(7\) 0.614250 0.354638i 0.232165 0.134040i −0.379406 0.925230i \(-0.623871\pi\)
0.611570 + 0.791190i \(0.290538\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.618092 + 2.14894i −0.195458 + 0.679556i
\(11\) −2.25513 + 3.90600i −0.679947 + 1.17770i 0.295049 + 0.955482i \(0.404664\pi\)
−0.974996 + 0.222221i \(0.928669\pi\)
\(12\) 0 0
\(13\) −3.35963 + 1.30878i −0.931793 + 0.362991i
\(14\) 0.709275 0.189562
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.74538 + 1.58504i −0.665851 + 0.384429i −0.794503 0.607260i \(-0.792268\pi\)
0.128652 + 0.991690i \(0.458935\pi\)
\(18\) 0 0
\(19\) −0.0603191 0.104476i −0.0138381 0.0239684i 0.859023 0.511936i \(-0.171072\pi\)
−0.872862 + 0.487968i \(0.837738\pi\)
\(20\) −1.60976 + 1.55199i −0.359952 + 0.347037i
\(21\) 0 0
\(22\) −3.90600 + 2.25513i −0.832762 + 0.480795i
\(23\) −4.30507 2.48554i −0.897670 0.518270i −0.0212264 0.999775i \(-0.506757\pi\)
−0.876443 + 0.481505i \(0.840090\pi\)
\(24\) 0 0
\(25\) −4.41855 + 2.34017i −0.883710 + 0.468035i
\(26\) −3.56391 0.546373i −0.698941 0.107153i
\(27\) 0 0
\(28\) 0.614250 + 0.354638i 0.116082 + 0.0670202i
\(29\) 3.63090 6.28890i 0.674241 1.16782i −0.302449 0.953165i \(-0.597804\pi\)
0.976690 0.214654i \(-0.0688623\pi\)
\(30\) 0 0
\(31\) 9.66701 1.73625 0.868124 0.496348i \(-0.165326\pi\)
0.868124 + 0.496348i \(0.165326\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −3.17009 −0.543665
\(35\) 1.10079 + 1.14176i 0.186068 + 0.192993i
\(36\) 0 0
\(37\) 6.02558 + 3.47887i 0.990599 + 0.571923i 0.905453 0.424446i \(-0.139531\pi\)
0.0851458 + 0.996369i \(0.472864\pi\)
\(38\) 0.120638i 0.0195701i
\(39\) 0 0
\(40\) −2.17009 + 0.539189i −0.343121 + 0.0852532i
\(41\) 0.223740 0.387529i 0.0349423 0.0605219i −0.848025 0.529956i \(-0.822209\pi\)
0.882968 + 0.469434i \(0.155542\pi\)
\(42\) 0 0
\(43\) −1.73205 + 1.00000i −0.264135 + 0.152499i −0.626219 0.779647i \(-0.715399\pi\)
0.362084 + 0.932145i \(0.382065\pi\)
\(44\) −4.51026 −0.679947
\(45\) 0 0
\(46\) −2.48554 4.30507i −0.366472 0.634748i
\(47\) 4.70928i 0.686918i 0.939168 + 0.343459i \(0.111599\pi\)
−0.939168 + 0.343459i \(0.888401\pi\)
\(48\) 0 0
\(49\) −3.24846 + 5.62651i −0.464066 + 0.803786i
\(50\) −4.99666 0.182626i −0.706635 0.0258272i
\(51\) 0 0
\(52\) −2.81325 2.25513i −0.390128 0.312730i
\(53\) 9.58864i 1.31710i 0.752537 + 0.658550i \(0.228830\pi\)
−0.752537 + 0.658550i \(0.771170\pi\)
\(54\) 0 0
\(55\) −9.69230 2.78776i −1.30691 0.375901i
\(56\) 0.354638 + 0.614250i 0.0473905 + 0.0820827i
\(57\) 0 0
\(58\) 6.28890 3.63090i 0.825773 0.476760i
\(59\) 2.87936 + 4.98720i 0.374861 + 0.649278i 0.990306 0.138901i \(-0.0443571\pi\)
−0.615445 + 0.788180i \(0.711024\pi\)
\(60\) 0 0
\(61\) −3.53139 6.11655i −0.452148 0.783144i 0.546371 0.837543i \(-0.316009\pi\)
−0.998519 + 0.0543997i \(0.982675\pi\)
\(62\) 8.37188 + 4.83351i 1.06323 + 0.613856i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.65165 6.58500i −0.576966 0.816768i
\(66\) 0 0
\(67\) 2.53020 + 1.46081i 0.309113 + 0.178466i 0.646530 0.762889i \(-0.276220\pi\)
−0.337416 + 0.941355i \(0.609553\pi\)
\(68\) −2.74538 1.58504i −0.332926 0.192215i
\(69\) 0 0
\(70\) 0.382433 + 1.53919i 0.0457095 + 0.183968i
\(71\) −4.09171 7.08705i −0.485596 0.841078i 0.514267 0.857630i \(-0.328064\pi\)
−0.999863 + 0.0165526i \(0.994731\pi\)
\(72\) 0 0
\(73\) 6.74539i 0.789488i −0.918791 0.394744i \(-0.870833\pi\)
0.918791 0.394744i \(-0.129167\pi\)
\(74\) 3.47887 + 6.02558i 0.404410 + 0.700459i
\(75\) 0 0
\(76\) 0.0603191 0.104476i 0.00691907 0.0119842i
\(77\) 3.19902i 0.364562i
\(78\) 0 0
\(79\) 16.0072 1.80095 0.900475 0.434908i \(-0.143219\pi\)
0.900475 + 0.434908i \(0.143219\pi\)
\(80\) −2.14894 0.618092i −0.240259 0.0691048i
\(81\) 0 0
\(82\) 0.387529 0.223740i 0.0427954 0.0247080i
\(83\) 0.355771i 0.0390510i −0.999809 0.0195255i \(-0.993784\pi\)
0.999809 0.0195255i \(-0.00621555\pi\)
\(84\) 0 0
\(85\) −4.91996 5.10306i −0.533644 0.553505i
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) −3.90600 2.25513i −0.416381 0.240398i
\(89\) −1.81545 + 3.14445i −0.192437 + 0.333311i −0.946057 0.323999i \(-0.894973\pi\)
0.753620 + 0.657310i \(0.228306\pi\)
\(90\) 0 0
\(91\) −1.59951 + 1.99537i −0.167674 + 0.209172i
\(92\) 4.97107i 0.518270i
\(93\) 0 0
\(94\) −2.35464 + 4.07835i −0.242862 + 0.420650i
\(95\) 0.194198 0.187230i 0.0199243 0.0192094i
\(96\) 0 0
\(97\) −6.84878 + 3.95415i −0.695388 + 0.401483i −0.805627 0.592422i \(-0.798172\pi\)
0.110239 + 0.993905i \(0.464838\pi\)
\(98\) −5.62651 + 3.24846i −0.568363 + 0.328144i
\(99\) 0 0
\(100\) −4.23592 2.65649i −0.423592 0.265649i
\(101\) 3.07058 5.31840i 0.305534 0.529200i −0.671846 0.740691i \(-0.734498\pi\)
0.977380 + 0.211490i \(0.0678317\pi\)
\(102\) 0 0
\(103\) 17.6803i 1.74210i 0.491198 + 0.871048i \(0.336559\pi\)
−0.491198 + 0.871048i \(0.663441\pi\)
\(104\) −1.30878 3.35963i −0.128337 0.329438i
\(105\) 0 0
\(106\) −4.79432 + 8.30400i −0.465665 + 0.806556i
\(107\) 0.466951 + 0.269594i 0.0451419 + 0.0260627i 0.522401 0.852700i \(-0.325036\pi\)
−0.477259 + 0.878763i \(0.658370\pi\)
\(108\) 0 0
\(109\) 11.0205 1.05557 0.527787 0.849377i \(-0.323022\pi\)
0.527787 + 0.849377i \(0.323022\pi\)
\(110\) −6.99990 7.26042i −0.667414 0.692253i
\(111\) 0 0
\(112\) 0.709275i 0.0670202i
\(113\) −12.1244 + 7.00000i −1.14056 + 0.658505i −0.946570 0.322498i \(-0.895477\pi\)
−0.193993 + 0.981003i \(0.562144\pi\)
\(114\) 0 0
\(115\) 3.07258 10.6826i 0.286519 0.996153i
\(116\) 7.26180 0.674241
\(117\) 0 0
\(118\) 5.75872i 0.530133i
\(119\) −1.12423 + 1.94723i −0.103058 + 0.178502i
\(120\) 0 0
\(121\) −4.67122 8.09079i −0.424656 0.735526i
\(122\) 7.06278i 0.639434i
\(123\) 0 0
\(124\) 4.83351 + 8.37188i 0.434062 + 0.751817i
\(125\) −7.46081 8.32684i −0.667315 0.744775i
\(126\) 0 0
\(127\) 10.5458 + 6.08864i 0.935791 + 0.540279i 0.888638 0.458609i \(-0.151652\pi\)
0.0471526 + 0.998888i \(0.484985\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −0.735945 8.02860i −0.0645466 0.704155i
\(131\) 17.4547 1.52502 0.762511 0.646976i \(-0.223966\pi\)
0.762511 + 0.646976i \(0.223966\pi\)
\(132\) 0 0
\(133\) −0.0741020 0.0427828i −0.00642546 0.00370974i
\(134\) 1.46081 + 2.53020i 0.126195 + 0.218576i
\(135\) 0 0
\(136\) −1.58504 2.74538i −0.135916 0.235414i
\(137\) 8.10037 4.67675i 0.692061 0.399562i −0.112322 0.993672i \(-0.535829\pi\)
0.804384 + 0.594110i \(0.202496\pi\)
\(138\) 0 0
\(139\) −1.32211 2.28997i −0.112140 0.194233i 0.804493 0.593963i \(-0.202437\pi\)
−0.916633 + 0.399730i \(0.869104\pi\)
\(140\) −0.438397 + 1.52419i −0.0370513 + 0.128818i
\(141\) 0 0
\(142\) 8.18342i 0.686737i
\(143\) 2.46429 16.0742i 0.206074 1.34419i
\(144\) 0 0
\(145\) 15.6052 + 4.48846i 1.29594 + 0.372746i
\(146\) 3.37270 5.84168i 0.279126 0.483461i
\(147\) 0 0
\(148\) 6.95774i 0.571923i
\(149\) 4.61757 + 7.99786i 0.378286 + 0.655210i 0.990813 0.135239i \(-0.0431803\pi\)
−0.612527 + 0.790450i \(0.709847\pi\)
\(150\) 0 0
\(151\) −9.42574 −0.767056 −0.383528 0.923529i \(-0.625291\pi\)
−0.383528 + 0.923529i \(0.625291\pi\)
\(152\) 0.104476 0.0603191i 0.00847410 0.00489252i
\(153\) 0 0
\(154\) −1.59951 + 2.77043i −0.128892 + 0.223248i
\(155\) 5.21235 + 20.9783i 0.418666 + 1.68501i
\(156\) 0 0
\(157\) 5.77205i 0.460660i −0.973113 0.230330i \(-0.926019\pi\)
0.973113 0.230330i \(-0.0739806\pi\)
\(158\) 13.8626 + 8.00359i 1.10285 + 0.636732i
\(159\) 0 0
\(160\) −1.55199 1.60976i −0.122696 0.127262i
\(161\) −3.52586 −0.277877
\(162\) 0 0
\(163\) 14.5678 8.41075i 1.14104 0.658781i 0.194354 0.980932i \(-0.437739\pi\)
0.946688 + 0.322151i \(0.104406\pi\)
\(164\) 0.447480 0.0349423
\(165\) 0 0
\(166\) 0.177886 0.308107i 0.0138066 0.0239137i
\(167\) 15.6919 + 9.05971i 1.21427 + 0.701061i 0.963687 0.267033i \(-0.0860433\pi\)
0.250586 + 0.968094i \(0.419377\pi\)
\(168\) 0 0
\(169\) 9.57417 8.79404i 0.736475 0.676465i
\(170\) −1.70928 6.87936i −0.131095 0.527623i
\(171\) 0 0
\(172\) −1.73205 1.00000i −0.132068 0.0762493i
\(173\) 8.92357 5.15203i 0.678447 0.391701i −0.120823 0.992674i \(-0.538553\pi\)
0.799270 + 0.600973i \(0.205220\pi\)
\(174\) 0 0
\(175\) −1.88418 + 3.00444i −0.142431 + 0.227114i
\(176\) −2.25513 3.90600i −0.169987 0.294426i
\(177\) 0 0
\(178\) −3.14445 + 1.81545i −0.235686 + 0.136074i
\(179\) −0.630898 + 1.09275i −0.0471555 + 0.0816757i −0.888640 0.458606i \(-0.848349\pi\)
0.841484 + 0.540282i \(0.181682\pi\)
\(180\) 0 0
\(181\) 2.38243 0.177085 0.0885424 0.996072i \(-0.471779\pi\)
0.0885424 + 0.996072i \(0.471779\pi\)
\(182\) −2.38290 + 0.928288i −0.176632 + 0.0688093i
\(183\) 0 0
\(184\) 2.48554 4.30507i 0.183236 0.317374i
\(185\) −4.30052 + 14.9518i −0.316181 + 1.09928i
\(186\) 0 0
\(187\) 14.2979i 1.04557i
\(188\) −4.07835 + 2.35464i −0.297444 + 0.171730i
\(189\) 0 0
\(190\) 0.261795 0.0650468i 0.0189926 0.00471899i
\(191\) −5.54278 9.60038i −0.401062 0.694659i 0.592793 0.805355i \(-0.298025\pi\)
−0.993854 + 0.110696i \(0.964692\pi\)
\(192\) 0 0
\(193\) −12.1244 7.00000i −0.872730 0.503871i −0.00447566 0.999990i \(-0.501425\pi\)
−0.868255 + 0.496119i \(0.834758\pi\)
\(194\) −7.90829 −0.567782
\(195\) 0 0
\(196\) −6.49693 −0.464066
\(197\) −7.52895 4.34684i −0.536415 0.309699i 0.207210 0.978297i \(-0.433562\pi\)
−0.743625 + 0.668597i \(0.766895\pi\)
\(198\) 0 0
\(199\) 10.7587 + 18.6347i 0.762666 + 1.32098i 0.941472 + 0.337091i \(0.109443\pi\)
−0.178806 + 0.983884i \(0.557224\pi\)
\(200\) −2.34017 4.41855i −0.165475 0.312439i
\(201\) 0 0
\(202\) 5.31840 3.07058i 0.374201 0.216045i
\(203\) 5.15061i 0.361502i
\(204\) 0 0
\(205\) 0.961610 + 0.276584i 0.0671618 + 0.0193175i
\(206\) −8.84017 + 15.3116i −0.615924 + 1.06681i
\(207\) 0 0
\(208\) 0.546373 3.56391i 0.0378842 0.247113i
\(209\) 0.544109 0.0376368
\(210\) 0 0
\(211\) 2.79432 4.83990i 0.192369 0.333193i −0.753666 0.657258i \(-0.771716\pi\)
0.946035 + 0.324065i \(0.105050\pi\)
\(212\) −8.30400 + 4.79432i −0.570321 + 0.329275i
\(213\) 0 0
\(214\) 0.269594 + 0.466951i 0.0184291 + 0.0319201i
\(215\) −3.10399 3.21951i −0.211690 0.219569i
\(216\) 0 0
\(217\) 5.93797 3.42829i 0.403096 0.232727i
\(218\) 9.54405 + 5.51026i 0.646405 + 0.373202i
\(219\) 0 0
\(220\) −2.43188 9.78765i −0.163957 0.659883i
\(221\) 7.14896 8.91825i 0.480891 0.599907i
\(222\) 0 0
\(223\) −21.3989 12.3546i −1.43297 0.827328i −0.435627 0.900127i \(-0.643473\pi\)
−0.997347 + 0.0727995i \(0.976807\pi\)
\(224\) −0.354638 + 0.614250i −0.0236952 + 0.0410413i
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 24.8504 14.3474i 1.64938 0.952268i 0.672056 0.740500i \(-0.265411\pi\)
0.977320 0.211768i \(-0.0679220\pi\)
\(228\) 0 0
\(229\) 1.89988 0.125548 0.0627738 0.998028i \(-0.480005\pi\)
0.0627738 + 0.998028i \(0.480005\pi\)
\(230\) 8.00221 7.71507i 0.527650 0.508717i
\(231\) 0 0
\(232\) 6.28890 + 3.63090i 0.412886 + 0.238380i
\(233\) 22.2485i 1.45755i −0.684756 0.728773i \(-0.740091\pi\)
0.684756 0.728773i \(-0.259909\pi\)
\(234\) 0 0
\(235\) −10.2195 + 2.53919i −0.666649 + 0.165638i
\(236\) −2.87936 + 4.98720i −0.187430 + 0.324639i
\(237\) 0 0
\(238\) −1.94723 + 1.12423i −0.126220 + 0.0728731i
\(239\) 24.8710 1.60877 0.804384 0.594110i \(-0.202495\pi\)
0.804384 + 0.594110i \(0.202495\pi\)
\(240\) 0 0
\(241\) 1.47528 + 2.55525i 0.0950309 + 0.164598i 0.909621 0.415438i \(-0.136372\pi\)
−0.814591 + 0.580036i \(0.803038\pi\)
\(242\) 9.34244i 0.600555i
\(243\) 0 0
\(244\) 3.53139 6.11655i 0.226074 0.391572i
\(245\) −13.9615 4.01570i −0.891970 0.256554i
\(246\) 0 0
\(247\) 0.339386 + 0.272055i 0.0215946 + 0.0173104i
\(248\) 9.66701i 0.613856i
\(249\) 0 0
\(250\) −2.29783 10.9417i −0.145328 0.692011i
\(251\) 8.27985 + 14.3411i 0.522620 + 0.905204i 0.999654 + 0.0263190i \(0.00837857\pi\)
−0.477034 + 0.878885i \(0.658288\pi\)
\(252\) 0 0
\(253\) 19.4170 11.2104i 1.22074 0.704792i
\(254\) 6.08864 + 10.5458i 0.382035 + 0.661704i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.453443 + 0.261795i 0.0282850 + 0.0163303i 0.514076 0.857745i \(-0.328135\pi\)
−0.485791 + 0.874075i \(0.661468\pi\)
\(258\) 0 0
\(259\) 4.93495 0.306643
\(260\) 3.37695 7.32094i 0.209430 0.454026i
\(261\) 0 0
\(262\) 15.1162 + 8.72733i 0.933881 + 0.539176i
\(263\) −24.9255 14.3908i −1.53697 0.887372i −0.999014 0.0444013i \(-0.985862\pi\)
−0.537960 0.842971i \(-0.680805\pi\)
\(264\) 0 0
\(265\) −20.8082 + 5.17009i −1.27824 + 0.317596i
\(266\) −0.0427828 0.0741020i −0.00262318 0.00454349i
\(267\) 0 0
\(268\) 2.92162i 0.178466i
\(269\) −5.02832 8.70930i −0.306582 0.531016i 0.671030 0.741430i \(-0.265852\pi\)
−0.977612 + 0.210414i \(0.932519\pi\)
\(270\) 0 0
\(271\) −9.06278 + 15.6972i −0.550525 + 0.953537i 0.447712 + 0.894178i \(0.352239\pi\)
−0.998237 + 0.0593589i \(0.981094\pi\)
\(272\) 3.17009i 0.192215i
\(273\) 0 0
\(274\) 9.35350 0.565066
\(275\) 0.823691 22.5362i 0.0496704 1.35899i
\(276\) 0 0
\(277\) −21.4051 + 12.3582i −1.28611 + 0.742534i −0.977958 0.208804i \(-0.933043\pi\)
−0.308149 + 0.951338i \(0.599710\pi\)
\(278\) 2.64423i 0.158590i
\(279\) 0 0
\(280\) −1.14176 + 1.10079i −0.0682332 + 0.0657849i
\(281\) −22.9854 −1.37120 −0.685598 0.727980i \(-0.740459\pi\)
−0.685598 + 0.727980i \(0.740459\pi\)
\(282\) 0 0
\(283\) 15.6741 + 9.04945i 0.931729 + 0.537934i 0.887358 0.461081i \(-0.152538\pi\)
0.0443709 + 0.999015i \(0.485872\pi\)
\(284\) 4.09171 7.08705i 0.242798 0.420539i
\(285\) 0 0
\(286\) 10.1712 12.6885i 0.601437 0.750287i
\(287\) 0.317387i 0.0187347i
\(288\) 0 0
\(289\) −3.47528 + 6.01935i −0.204428 + 0.354080i
\(290\) 11.2703 + 11.6897i 0.661813 + 0.686444i
\(291\) 0 0
\(292\) 5.84168 3.37270i 0.341859 0.197372i
\(293\) 15.4536 8.92214i 0.902809 0.521237i 0.0246988 0.999695i \(-0.492137\pi\)
0.878111 + 0.478458i \(0.158804\pi\)
\(294\) 0 0
\(295\) −9.27014 + 8.93751i −0.539728 + 0.520362i
\(296\) −3.47887 + 6.02558i −0.202205 + 0.350230i
\(297\) 0 0
\(298\) 9.23513i 0.534977i
\(299\) 17.7165 + 2.71606i 1.02457 + 0.157074i
\(300\) 0 0
\(301\) −0.709275 + 1.22850i −0.0408820 + 0.0708096i
\(302\) −8.16293 4.71287i −0.469724 0.271195i
\(303\) 0 0
\(304\) 0.120638 0.00691907
\(305\) 11.3693 10.9614i 0.651007 0.627648i
\(306\) 0 0
\(307\) 3.44521i 0.196629i 0.995155 + 0.0983143i \(0.0313451\pi\)
−0.995155 + 0.0983143i \(0.968655\pi\)
\(308\) −2.77043 + 1.59951i −0.157860 + 0.0911404i
\(309\) 0 0
\(310\) −5.97510 + 20.7739i −0.339363 + 1.17988i
\(311\) −17.8238 −1.01069 −0.505347 0.862916i \(-0.668635\pi\)
−0.505347 + 0.862916i \(0.668635\pi\)
\(312\) 0 0
\(313\) 32.2245i 1.82143i −0.413031 0.910717i \(-0.635530\pi\)
0.413031 0.910717i \(-0.364470\pi\)
\(314\) 2.88603 4.99875i 0.162868 0.282096i
\(315\) 0 0
\(316\) 8.00359 + 13.8626i 0.450237 + 0.779834i
\(317\) 1.90602i 0.107053i −0.998566 0.0535265i \(-0.982954\pi\)
0.998566 0.0535265i \(-0.0170462\pi\)
\(318\) 0 0
\(319\) 16.3763 + 28.3646i 0.916896 + 1.58811i
\(320\) −0.539189 2.17009i −0.0301416 0.121312i
\(321\) 0 0
\(322\) −3.05348 1.76293i −0.170164 0.0982442i
\(323\) 0.331197 + 0.191217i 0.0184283 + 0.0106396i
\(324\) 0 0
\(325\) 11.7819 13.6450i 0.653542 0.756890i
\(326\) 16.8215 0.931657
\(327\) 0 0
\(328\) 0.387529 + 0.223740i 0.0213977 + 0.0123540i
\(329\) 1.67009 + 2.89267i 0.0920748 + 0.159478i
\(330\) 0 0
\(331\) 0.355771 + 0.616214i 0.0195550 + 0.0338702i 0.875637 0.482969i \(-0.160442\pi\)
−0.856082 + 0.516839i \(0.827108\pi\)
\(332\) 0.308107 0.177886i 0.0169096 0.00976275i
\(333\) 0 0
\(334\) 9.05971 + 15.6919i 0.495725 + 0.858621i
\(335\) −1.80583 + 6.27840i −0.0986631 + 0.343026i
\(336\) 0 0
\(337\) 9.85043i 0.536587i 0.963337 + 0.268294i \(0.0864597\pi\)
−0.963337 + 0.268294i \(0.913540\pi\)
\(338\) 12.6885 2.82878i 0.690163 0.153865i
\(339\) 0 0
\(340\) 1.95941 6.81234i 0.106264 0.369451i
\(341\) −21.8004 + 37.7594i −1.18056 + 2.04478i
\(342\) 0 0
\(343\) 9.57304i 0.516896i
\(344\) −1.00000 1.73205i −0.0539164 0.0933859i
\(345\) 0 0
\(346\) 10.3041 0.553949
\(347\) 22.1123 12.7665i 1.18705 0.685343i 0.229414 0.973329i \(-0.426319\pi\)
0.957635 + 0.287986i \(0.0929857\pi\)
\(348\) 0 0
\(349\) −9.02832 + 15.6375i −0.483275 + 0.837056i −0.999816 0.0192061i \(-0.993886\pi\)
0.516541 + 0.856263i \(0.327219\pi\)
\(350\) −3.13397 + 1.65983i −0.167518 + 0.0887215i
\(351\) 0 0
\(352\) 4.51026i 0.240398i
\(353\) 12.6842 + 7.32325i 0.675114 + 0.389777i 0.798012 0.602642i \(-0.205885\pi\)
−0.122898 + 0.992419i \(0.539219\pi\)
\(354\) 0 0
\(355\) 13.1733 12.7006i 0.699166 0.674079i
\(356\) −3.63090 −0.192437
\(357\) 0 0
\(358\) −1.09275 + 0.630898i −0.0577535 + 0.0333440i
\(359\) −13.4186 −0.708204 −0.354102 0.935207i \(-0.615213\pi\)
−0.354102 + 0.935207i \(0.615213\pi\)
\(360\) 0 0
\(361\) 9.49272 16.4419i 0.499617 0.865362i
\(362\) 2.06325 + 1.19122i 0.108442 + 0.0626090i
\(363\) 0 0
\(364\) −2.52780 0.387529i −0.132492 0.0203120i
\(365\) 14.6381 3.63704i 0.766192 0.190371i
\(366\) 0 0
\(367\) −18.6577 10.7721i −0.973926 0.562297i −0.0734954 0.997296i \(-0.523415\pi\)
−0.900431 + 0.434999i \(0.856749\pi\)
\(368\) 4.30507 2.48554i 0.224417 0.129567i
\(369\) 0 0
\(370\) −11.2003 + 10.7984i −0.582274 + 0.561381i
\(371\) 3.40049 + 5.88983i 0.176545 + 0.305784i
\(372\) 0 0
\(373\) 18.4758 10.6670i 0.956641 0.552317i 0.0615036 0.998107i \(-0.480410\pi\)
0.895138 + 0.445790i \(0.147077\pi\)
\(374\) 7.14896 12.3824i 0.369664 0.640276i
\(375\) 0 0
\(376\) −4.70928 −0.242862
\(377\) −3.96765 + 25.8804i −0.204344 + 1.33291i
\(378\) 0 0
\(379\) 4.05611 7.02540i 0.208349 0.360870i −0.742846 0.669462i \(-0.766524\pi\)
0.951194 + 0.308592i \(0.0998578\pi\)
\(380\) 0.259245 + 0.0745655i 0.0132990 + 0.00382513i
\(381\) 0 0
\(382\) 11.0856i 0.567187i
\(383\) −21.5986 + 12.4699i −1.10364 + 0.637184i −0.937173 0.348864i \(-0.886568\pi\)
−0.166462 + 0.986048i \(0.553234\pi\)
\(384\) 0 0
\(385\) −6.94214 + 1.72487i −0.353804 + 0.0879077i
\(386\) −7.00000 12.1244i −0.356291 0.617113i
\(387\) 0 0
\(388\) −6.84878 3.95415i −0.347694 0.200741i
\(389\) 13.5330 0.686153 0.343076 0.939308i \(-0.388531\pi\)
0.343076 + 0.939308i \(0.388531\pi\)
\(390\) 0 0
\(391\) 15.7587 0.796953
\(392\) −5.62651 3.24846i −0.284181 0.164072i
\(393\) 0 0
\(394\) −4.34684 7.52895i −0.218991 0.379303i
\(395\) 8.63090 + 34.7370i 0.434268 + 1.74781i
\(396\) 0 0
\(397\) 3.97920 2.29739i 0.199710 0.115303i −0.396810 0.917901i \(-0.629883\pi\)
0.596520 + 0.802598i \(0.296550\pi\)
\(398\) 21.5174i 1.07857i
\(399\) 0 0
\(400\) 0.182626 4.99666i 0.00913131 0.249833i
\(401\) 14.8516 25.7237i 0.741652 1.28458i −0.210091 0.977682i \(-0.567376\pi\)
0.951743 0.306897i \(-0.0992906\pi\)
\(402\) 0 0
\(403\) −32.4776 + 12.6520i −1.61782 + 0.630242i
\(404\) 6.14116 0.305534
\(405\) 0 0
\(406\) 2.57531 4.46056i 0.127810 0.221374i
\(407\) −27.1769 + 15.6906i −1.34711 + 0.777754i
\(408\) 0 0
\(409\) −5.15562 8.92980i −0.254929 0.441550i 0.709947 0.704255i \(-0.248719\pi\)
−0.964876 + 0.262705i \(0.915385\pi\)
\(410\) 0.694487 + 0.720334i 0.0342983 + 0.0355747i
\(411\) 0 0
\(412\) −15.3116 + 8.84017i −0.754350 + 0.435524i
\(413\) 3.53730 + 2.04226i 0.174059 + 0.100493i
\(414\) 0 0
\(415\) 0.772055 0.191828i 0.0378987 0.00941646i
\(416\) 2.25513 2.81325i 0.110567 0.137931i
\(417\) 0 0
\(418\) 0.471213 + 0.272055i 0.0230478 + 0.0133066i
\(419\) −19.0452 + 32.9873i −0.930421 + 1.61154i −0.147819 + 0.989014i \(0.547225\pi\)
−0.782602 + 0.622522i \(0.786108\pi\)
\(420\) 0 0
\(421\) −26.7103 −1.30178 −0.650891 0.759171i \(-0.725604\pi\)
−0.650891 + 0.759171i \(0.725604\pi\)
\(422\) 4.83990 2.79432i 0.235603 0.136025i
\(423\) 0 0
\(424\) −9.58864 −0.465665
\(425\) 8.42131 13.4282i 0.408493 0.651366i
\(426\) 0 0
\(427\) −4.33832 2.50473i −0.209946 0.121212i
\(428\) 0.539189i 0.0260627i
\(429\) 0 0
\(430\) −1.07838 4.34017i −0.0520040 0.209302i
\(431\) −10.3594 + 17.9429i −0.498993 + 0.864281i −0.999999 0.00116231i \(-0.999630\pi\)
0.501006 + 0.865444i \(0.332963\pi\)
\(432\) 0 0
\(433\) −13.7331 + 7.92881i −0.659971 + 0.381034i −0.792266 0.610176i \(-0.791099\pi\)
0.132295 + 0.991210i \(0.457765\pi\)
\(434\) 6.85658 0.329126
\(435\) 0 0
\(436\) 5.51026 + 9.54405i 0.263894 + 0.457077i
\(437\) 0.599701i 0.0286876i
\(438\) 0 0
\(439\) −4.86962 + 8.43444i −0.232415 + 0.402554i −0.958518 0.285032i \(-0.907996\pi\)
0.726104 + 0.687585i \(0.241329\pi\)
\(440\) 2.78776 9.69230i 0.132901 0.462062i
\(441\) 0 0
\(442\) 10.6503 4.14896i 0.506583 0.197346i
\(443\) 9.23060i 0.438559i −0.975662 0.219279i \(-0.929629\pi\)
0.975662 0.219279i \(-0.0703707\pi\)
\(444\) 0 0
\(445\) −7.80260 2.24423i −0.369879 0.106387i
\(446\) −12.3546 21.3989i −0.585009 1.01327i
\(447\) 0 0
\(448\) −0.614250 + 0.354638i −0.0290206 + 0.0167551i
\(449\) 1.46194 + 2.53216i 0.0689934 + 0.119500i 0.898458 0.439058i \(-0.144688\pi\)
−0.829465 + 0.558559i \(0.811355\pi\)
\(450\) 0 0
\(451\) 1.00913 + 1.74786i 0.0475179 + 0.0823034i
\(452\) −12.1244 7.00000i −0.570282 0.329252i
\(453\) 0 0
\(454\) 28.6947 1.34671
\(455\) −5.19256 2.39519i −0.243431 0.112288i
\(456\) 0 0
\(457\) 10.0915 + 5.82632i 0.472060 + 0.272544i 0.717101 0.696969i \(-0.245468\pi\)
−0.245042 + 0.969512i \(0.578802\pi\)
\(458\) 1.64535 + 0.949940i 0.0768819 + 0.0443878i
\(459\) 0 0
\(460\) 10.7877 2.68035i 0.502977 0.124972i
\(461\) −15.1490 26.2388i −0.705557 1.22206i −0.966490 0.256704i \(-0.917363\pi\)
0.260933 0.965357i \(-0.415970\pi\)
\(462\) 0 0
\(463\) 7.04331i 0.327330i 0.986516 + 0.163665i \(0.0523316\pi\)
−0.986516 + 0.163665i \(0.947668\pi\)
\(464\) 3.63090 + 6.28890i 0.168560 + 0.291955i
\(465\) 0 0
\(466\) 11.1242 19.2677i 0.515320 0.892561i
\(467\) 3.90110i 0.180522i 0.995918 + 0.0902608i \(0.0287700\pi\)
−0.995918 + 0.0902608i \(0.971230\pi\)
\(468\) 0 0
\(469\) 2.07223 0.0956869
\(470\) −10.1200 2.91077i −0.466799 0.134264i
\(471\) 0 0
\(472\) −4.98720 + 2.87936i −0.229555 + 0.132533i
\(473\) 9.02052i 0.414764i
\(474\) 0 0
\(475\) 0.511014 + 0.320474i 0.0234469 + 0.0147044i
\(476\) −2.24846 −0.103058
\(477\) 0 0
\(478\) 21.5389 + 12.4355i 0.985165 + 0.568785i
\(479\) −8.75513 + 15.1643i −0.400032 + 0.692876i −0.993729 0.111813i \(-0.964334\pi\)
0.593697 + 0.804689i \(0.297668\pi\)
\(480\) 0 0
\(481\) −24.7968 3.80152i −1.13064 0.173335i
\(482\) 2.95055i 0.134394i
\(483\) 0 0
\(484\) 4.67122 8.09079i 0.212328 0.367763i
\(485\) −12.2736 12.7304i −0.557317 0.578058i
\(486\) 0 0
\(487\) 33.3695 19.2659i 1.51212 0.873022i 0.512218 0.858855i \(-0.328824\pi\)
0.999900 0.0141666i \(-0.00450951\pi\)
\(488\) 6.11655 3.53139i 0.276883 0.159858i
\(489\) 0 0
\(490\) −10.0832 10.4585i −0.455512 0.472465i
\(491\) 3.41189 5.90956i 0.153976 0.266695i −0.778710 0.627385i \(-0.784125\pi\)
0.932686 + 0.360690i \(0.117459\pi\)
\(492\) 0 0
\(493\) 23.0205i 1.03679i
\(494\) 0.157889 + 0.405299i 0.00710377 + 0.0182353i
\(495\) 0 0
\(496\) −4.83351 + 8.37188i −0.217031 + 0.375909i
\(497\) −5.02667 2.90215i −0.225477 0.130179i
\(498\) 0 0
\(499\) −9.57918 −0.428823 −0.214412 0.976743i \(-0.568783\pi\)
−0.214412 + 0.976743i \(0.568783\pi\)
\(500\) 3.48085 10.6247i 0.155668 0.475150i
\(501\) 0 0
\(502\) 16.5597i 0.739096i
\(503\) 14.4403 8.33710i 0.643860 0.371733i −0.142240 0.989832i \(-0.545430\pi\)
0.786100 + 0.618099i \(0.212097\pi\)
\(504\) 0 0
\(505\) 13.1970 + 3.79580i 0.587259 + 0.168911i
\(506\) 22.4208 0.996727
\(507\) 0 0
\(508\) 12.1773i 0.540279i
\(509\) 11.8299 20.4900i 0.524352 0.908204i −0.475246 0.879853i \(-0.657641\pi\)
0.999598 0.0283510i \(-0.00902561\pi\)
\(510\) 0 0
\(511\) −2.39217 4.14336i −0.105823 0.183291i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 0.261795 + 0.453443i 0.0115473 + 0.0200005i
\(515\) −38.3679 + 9.53305i −1.69069 + 0.420076i
\(516\) 0 0
\(517\) −18.3944 10.6200i −0.808986 0.467068i
\(518\) 4.27379 + 2.46748i 0.187780 + 0.108415i
\(519\) 0 0
\(520\) 6.58500 4.65165i 0.288771 0.203988i
\(521\) 24.0472 1.05353 0.526763 0.850012i \(-0.323406\pi\)
0.526763 + 0.850012i \(0.323406\pi\)
\(522\) 0 0
\(523\) 20.2079 + 11.6670i 0.883628 + 0.510163i 0.871853 0.489768i \(-0.162918\pi\)
0.0117752 + 0.999931i \(0.496252\pi\)
\(524\) 8.72733 + 15.1162i 0.381255 + 0.660354i
\(525\) 0 0
\(526\) −14.3908 24.9255i −0.627467 1.08680i
\(527\) −26.5396 + 15.3226i −1.15608 + 0.667465i
\(528\) 0 0
\(529\) 0.855771 + 1.48224i 0.0372075 + 0.0644452i
\(530\) −20.6054 5.92666i −0.895044 0.257438i
\(531\) 0 0
\(532\) 0.0855657i 0.00370974i
\(533\) −0.244491 + 1.59478i −0.0105901 + 0.0690776i
\(534\) 0 0
\(535\) −0.333268 + 1.15869i −0.0144084 + 0.0500944i
\(536\) −1.46081 + 2.53020i −0.0630974 + 0.109288i
\(537\) 0 0
\(538\) 10.0566i 0.433572i
\(539\) −14.6514 25.3770i −0.631081 1.09306i
\(540\) 0 0
\(541\) −33.1494 −1.42520 −0.712602 0.701569i \(-0.752483\pi\)
−0.712602 + 0.701569i \(0.752483\pi\)
\(542\) −15.6972 + 9.06278i −0.674252 + 0.389280i
\(543\) 0 0
\(544\) 1.58504 2.74538i 0.0679582 0.117707i
\(545\) 5.94214 + 23.9155i 0.254533 + 1.02443i
\(546\) 0 0
\(547\) 43.6742i 1.86737i 0.358090 + 0.933687i \(0.383428\pi\)
−0.358090 + 0.933687i \(0.616572\pi\)
\(548\) 8.10037 + 4.67675i 0.346031 + 0.199781i
\(549\) 0 0
\(550\) 11.9815 19.1051i 0.510891 0.814645i
\(551\) −0.876050 −0.0373210
\(552\) 0 0
\(553\) 9.83242 5.67675i 0.418117 0.241400i
\(554\) −24.7165 −1.05010
\(555\) 0 0
\(556\) 1.32211 2.28997i 0.0560701 0.0971163i
\(557\) −19.3982 11.1995i −0.821927 0.474540i 0.0291537 0.999575i \(-0.490719\pi\)
−0.851080 + 0.525035i \(0.824052\pi\)
\(558\) 0 0
\(559\) 4.51026 5.62651i 0.190764 0.237976i
\(560\) −1.53919 + 0.382433i −0.0650426 + 0.0161608i
\(561\) 0 0
\(562\) −19.9060 11.4927i −0.839683 0.484791i
\(563\) 0.208951 0.120638i 0.00880625 0.00508429i −0.495590 0.868556i \(-0.665048\pi\)
0.504397 + 0.863472i \(0.331715\pi\)
\(564\) 0 0
\(565\) −21.7279 22.5366i −0.914101 0.948121i
\(566\) 9.04945 + 15.6741i 0.380377 + 0.658832i
\(567\) 0 0
\(568\) 7.08705 4.09171i 0.297366 0.171684i
\(569\) −13.5856 + 23.5309i −0.569537 + 0.986466i 0.427075 + 0.904216i \(0.359544\pi\)
−0.996612 + 0.0822501i \(0.973789\pi\)
\(570\) 0 0
\(571\) 2.25461 0.0943524 0.0471762 0.998887i \(-0.484978\pi\)
0.0471762 + 0.998887i \(0.484978\pi\)
\(572\) 15.1528 5.90295i 0.633570 0.246815i
\(573\) 0 0
\(574\) 0.158693 0.274865i 0.00662373 0.0114726i
\(575\) 24.8388 + 0.907847i 1.03585 + 0.0378598i
\(576\) 0 0
\(577\) 7.86481i 0.327416i 0.986509 + 0.163708i \(0.0523455\pi\)
−0.986509 + 0.163708i \(0.947654\pi\)
\(578\) −6.01935 + 3.47528i −0.250372 + 0.144552i
\(579\) 0 0
\(580\) 3.91548 + 15.7587i 0.162581 + 0.654345i
\(581\) −0.126170 0.218533i −0.00523441 0.00906627i
\(582\) 0 0
\(583\) −37.4532 21.6236i −1.55115 0.895559i
\(584\) 6.74539 0.279126
\(585\) 0 0
\(586\) 17.8443 0.737141
\(587\) −9.70289 5.60197i −0.400481 0.231218i 0.286210 0.958167i \(-0.407604\pi\)
−0.686692 + 0.726949i \(0.740938\pi\)
\(588\) 0 0
\(589\) −0.583105 1.00997i −0.0240264 0.0416150i
\(590\) −12.4969 + 3.10504i −0.514490 + 0.127832i
\(591\) 0 0
\(592\) −6.02558 + 3.47887i −0.247650 + 0.142981i
\(593\) 13.4186i 0.551034i 0.961296 + 0.275517i \(0.0888490\pi\)
−0.961296 + 0.275517i \(0.911151\pi\)
\(594\) 0 0
\(595\) −4.83182 1.38976i −0.198086 0.0569745i
\(596\) −4.61757 + 7.99786i −0.189143 + 0.327605i
\(597\) 0 0
\(598\) 13.9849 + 11.2104i 0.571884 + 0.458428i
\(599\) 29.5753 1.20841 0.604207 0.796827i \(-0.293490\pi\)
0.604207 + 0.796827i \(0.293490\pi\)
\(600\) 0 0
\(601\) −12.4916 + 21.6361i −0.509543 + 0.882554i 0.490396 + 0.871500i \(0.336852\pi\)
−0.999939 + 0.0110541i \(0.996481\pi\)
\(602\) −1.22850 + 0.709275i −0.0500700 + 0.0289079i
\(603\) 0 0
\(604\) −4.71287 8.16293i −0.191764 0.332145i
\(605\) 15.0390 14.4994i 0.611424 0.589485i
\(606\) 0 0
\(607\) 8.99964 5.19594i 0.365284 0.210897i −0.306112 0.951995i \(-0.599028\pi\)
0.671396 + 0.741099i \(0.265695\pi\)
\(608\) 0.104476 + 0.0603191i 0.00423705 + 0.00244626i
\(609\) 0 0
\(610\) 15.3268 3.80817i 0.620566 0.154188i
\(611\) −6.16342 15.8214i −0.249345 0.640065i
\(612\) 0 0
\(613\) −26.4385 15.2643i −1.06784 0.616517i −0.140249 0.990116i \(-0.544790\pi\)
−0.927590 + 0.373599i \(0.878124\pi\)
\(614\) −1.72261 + 2.98364i −0.0695187 + 0.120410i
\(615\) 0 0
\(616\) −3.19902 −0.128892
\(617\) −6.32444 + 3.65142i −0.254612 + 0.147000i −0.621874 0.783117i \(-0.713629\pi\)
0.367262 + 0.930118i \(0.380295\pi\)
\(618\) 0 0
\(619\) 24.5103 0.985151 0.492575 0.870270i \(-0.336056\pi\)
0.492575 + 0.870270i \(0.336056\pi\)
\(620\) −15.5615 + 15.0032i −0.624966 + 0.602541i
\(621\) 0 0
\(622\) −15.4358 8.91189i −0.618921 0.357334i
\(623\) 2.57531i 0.103177i
\(624\) 0 0
\(625\) 14.0472 20.6803i 0.561887 0.827214i
\(626\) 16.1122 27.9072i 0.643974 1.11540i
\(627\) 0 0
\(628\) 4.99875 2.88603i 0.199472 0.115165i
\(629\) −22.0566 −0.879456
\(630\) 0 0
\(631\) 1.53919 + 2.66595i 0.0612741 + 0.106130i 0.895035 0.445996i \(-0.147150\pi\)
−0.833761 + 0.552125i \(0.813817\pi\)
\(632\) 16.0072i 0.636732i
\(633\) 0 0
\(634\) 0.953012 1.65067i 0.0378489 0.0655563i
\(635\) −7.52668 + 26.1683i −0.298687 + 1.03846i
\(636\) 0 0
\(637\) 3.54975 23.1545i 0.140646 0.917414i
\(638\) 32.7526i 1.29669i
\(639\) 0 0
\(640\) 0.618092 2.14894i 0.0244322 0.0849445i
\(641\) −1.23400 2.13735i −0.0487401 0.0844202i 0.840626 0.541616i \(-0.182187\pi\)
−0.889366 + 0.457196i \(0.848854\pi\)
\(642\) 0 0
\(643\) 16.2999 9.41075i 0.642805 0.371124i −0.142889 0.989739i \(-0.545639\pi\)
0.785694 + 0.618615i \(0.212306\pi\)
\(644\) −1.76293 3.05348i −0.0694691 0.120324i
\(645\) 0 0
\(646\) 0.191217 + 0.331197i 0.00752332 + 0.0130308i
\(647\) −10.1352 5.85157i −0.398456 0.230049i 0.287361 0.957822i \(-0.407222\pi\)
−0.685818 + 0.727773i \(0.740555\pi\)
\(648\) 0 0
\(649\) −25.9733 −1.01954
\(650\) 17.0259 5.92599i 0.667812 0.232437i
\(651\) 0 0
\(652\) 14.5678 + 8.41075i 0.570521 + 0.329390i
\(653\) −12.7251 7.34684i −0.497972 0.287504i 0.229904 0.973213i \(-0.426159\pi\)
−0.727875 + 0.685709i \(0.759492\pi\)
\(654\) 0 0
\(655\) 9.41136 + 37.8781i 0.367732 + 1.48002i
\(656\) 0.223740 + 0.387529i 0.00873558 + 0.0151305i
\(657\) 0 0
\(658\) 3.34017i 0.130213i
\(659\) −9.39383 16.2706i −0.365932 0.633812i 0.622994 0.782227i \(-0.285916\pi\)
−0.988925 + 0.148415i \(0.952583\pi\)
\(660\) 0 0
\(661\) 2.92101 5.05934i 0.113614 0.196785i −0.803611 0.595155i \(-0.797091\pi\)
0.917225 + 0.398370i \(0.130424\pi\)
\(662\) 0.711543i 0.0276549i
\(663\) 0 0
\(664\) 0.355771 0.0138066
\(665\) 0.0528875 0.183876i 0.00205089 0.00713040i
\(666\) 0 0
\(667\) −31.2626 + 18.0494i −1.21049 + 0.698877i
\(668\) 18.1194i 0.701061i
\(669\) 0 0
\(670\) −4.70310 + 4.53434i −0.181697 + 0.175177i
\(671\) 31.8550 1.22975
\(672\) 0 0
\(673\) −35.4140 20.4463i −1.36511 0.788145i −0.374809 0.927102i \(-0.622292\pi\)
−0.990298 + 0.138957i \(0.955625\pi\)
\(674\) −4.92522 + 8.53072i −0.189712 + 0.328591i
\(675\) 0 0
\(676\) 12.4030 + 3.89445i 0.477037 + 0.149787i
\(677\) 28.2700i 1.08651i 0.839569 + 0.543253i \(0.182807\pi\)
−0.839569 + 0.543253i \(0.817193\pi\)
\(678\) 0 0
\(679\) −2.80458 + 4.85767i −0.107630 + 0.186420i
\(680\) 5.10306 4.91996i 0.195694 0.188672i
\(681\) 0 0
\(682\) −37.7594 + 21.8004i −1.44588 + 0.834779i
\(683\) −35.9445 + 20.7526i −1.37538 + 0.794075i −0.991599 0.129349i \(-0.958711\pi\)
−0.383780 + 0.923425i \(0.625378\pi\)
\(684\) 0 0
\(685\) 14.5166 + 15.0569i 0.554650 + 0.575293i
\(686\) −4.78652 + 8.29049i −0.182750 + 0.316533i
\(687\) 0 0
\(688\) 2.00000i 0.0762493i
\(689\) −12.5494 32.2142i −0.478096 1.22726i
\(690\) 0 0
\(691\) 12.0542 20.8784i 0.458562 0.794253i −0.540323 0.841458i \(-0.681698\pi\)
0.998885 + 0.0472043i \(0.0150312\pi\)
\(692\) 8.92357 + 5.15203i 0.339223 + 0.195851i
\(693\) 0 0
\(694\) 25.5330 0.969221
\(695\) 4.25656 4.10383i 0.161461 0.155667i
\(696\) 0 0
\(697\) 1.41855i 0.0537314i
\(698\) −15.6375 + 9.02832i −0.591888 + 0.341727i
\(699\) 0 0
\(700\) −3.54401 0.129532i −0.133951 0.00489586i
\(701\) 14.1822 0.535654 0.267827 0.963467i \(-0.413694\pi\)
0.267827 + 0.963467i \(0.413694\pi\)
\(702\) 0 0
\(703\) 0.839369i 0.0316574i
\(704\) 2.25513 3.90600i 0.0849934 0.147213i
\(705\) 0 0
\(706\) 7.32325 + 12.6842i 0.275614 + 0.477378i
\(707\) 4.35577i 0.163816i
\(708\) 0 0
\(709\) −23.2479 40.2665i −0.873091 1.51224i −0.858782 0.512341i \(-0.828778\pi\)
−0.0143094 0.999898i \(-0.504555\pi\)
\(710\) 17.7587 4.41241i 0.666473 0.165595i
\(711\) 0 0
\(712\) −3.14445 1.81545i −0.117843 0.0680368i
\(713\) −41.6172 24.0277i −1.55858 0.899845i
\(714\) 0 0
\(715\) 36.2111 3.31930i 1.35422 0.124135i
\(716\) −1.26180 −0.0471555
\(717\) 0 0
\(718\) −11.6208 6.70928i −0.433685 0.250388i
\(719\) 6.36069 + 11.0170i 0.237214 + 0.410866i 0.959914 0.280296i \(-0.0904325\pi\)
−0.722700 + 0.691162i \(0.757099\pi\)
\(720\) 0 0
\(721\) 6.27012 + 10.8602i 0.233511 + 0.404454i
\(722\) 16.4419 9.49272i 0.611903 0.353283i
\(723\) 0 0
\(724\) 1.19122 + 2.06325i 0.0442712 + 0.0766800i
\(725\) −1.32619 + 36.2847i −0.0492536 + 1.34758i
\(726\) 0 0
\(727\) 13.2595i 0.491769i −0.969299 0.245884i \(-0.920922\pi\)
0.969299 0.245884i \(-0.0790783\pi\)
\(728\) −1.99537 1.59951i −0.0739534 0.0592817i
\(729\) 0 0
\(730\) 14.4955 + 4.16927i 0.536502 + 0.154312i
\(731\) 3.17009 5.49075i 0.117250 0.203083i
\(732\) 0 0
\(733\) 31.5848i 1.16661i 0.812253 + 0.583305i \(0.198241\pi\)
−0.812253 + 0.583305i \(0.801759\pi\)
\(734\) −10.7721 18.6577i −0.397604 0.688670i
\(735\) 0 0
\(736\) 4.97107 0.183236
\(737\) −11.4119 + 6.58864i −0.420361 + 0.242696i
\(738\) 0 0
\(739\) 1.41609 2.45274i 0.0520917 0.0902255i −0.838804 0.544434i \(-0.816745\pi\)
0.890895 + 0.454208i \(0.150078\pi\)
\(740\) −15.0989 + 3.75154i −0.555046 + 0.137909i
\(741\) 0 0
\(742\) 6.80098i 0.249672i
\(743\) 18.0151 + 10.4010i 0.660909 + 0.381576i 0.792623 0.609712i \(-0.208715\pi\)
−0.131714 + 0.991288i \(0.542048\pi\)
\(744\) 0 0
\(745\) −14.8663 + 14.3329i −0.544659 + 0.525116i
\(746\) 21.3340 0.781094
\(747\) 0 0
\(748\) 12.3824 7.14896i 0.452744 0.261392i
\(749\) 0.382433 0.0139738
\(750\) 0 0
\(751\) −18.1412 + 31.4214i −0.661980 + 1.14658i 0.318114 + 0.948052i \(0.396950\pi\)
−0.980095 + 0.198531i \(0.936383\pi\)
\(752\) −4.07835 2.35464i −0.148722 0.0858648i
\(753\) 0 0
\(754\) −16.3763 + 20.4293i −0.596389 + 0.743990i
\(755\) −5.08225 20.4547i −0.184962 0.744422i
\(756\) 0 0
\(757\) 35.3933 + 20.4343i 1.28639 + 0.742699i 0.978009 0.208563i \(-0.0668788\pi\)
0.308383 + 0.951262i \(0.400212\pi\)
\(758\) 7.02540 4.05611i 0.255174 0.147325i
\(759\) 0 0
\(760\) 0.187230 + 0.194198i 0.00679154 + 0.00704430i
\(761\) 17.8112 + 30.8500i 0.645657 + 1.11831i 0.984149 + 0.177342i \(0.0567498\pi\)
−0.338492 + 0.940969i \(0.609917\pi\)
\(762\) 0 0
\(763\) 6.76936 3.90829i 0.245067 0.141490i
\(764\) 5.54278 9.60038i 0.200531 0.347330i
\(765\) 0 0
\(766\) −24.9399 −0.901114
\(767\) −16.2007 12.9867i −0.584975 0.468921i
\(768\) 0 0
\(769\) 1.68455 2.91773i 0.0607465 0.105216i −0.834053 0.551685i \(-0.813985\pi\)
0.894799 + 0.446469i \(0.147319\pi\)
\(770\) −6.87451 1.97729i −0.247740 0.0712564i
\(771\) 0 0
\(772\) 14.0000i 0.503871i
\(773\) 9.59506 5.53971i 0.345110 0.199250i −0.317419 0.948285i \(-0.602816\pi\)
0.662530 + 0.749036i \(0.269483\pi\)
\(774\) 0 0
\(775\) −42.7142 + 22.6225i −1.53434 + 0.812624i
\(776\) −3.95415 6.84878i −0.141946 0.245857i
\(777\) 0 0
\(778\) 11.7200 + 6.76652i 0.420181 + 0.242592i
\(779\) −0.0539832 −0.00193415
\(780\) 0 0
\(781\) 36.9093 1.32072
\(782\) 13.6475 + 7.87936i 0.488032 + 0.281765i
\(783\) 0 0
\(784\) −3.24846 5.62651i −0.116017 0.200947i
\(785\) 12.5259 3.11223i 0.447067 0.111080i
\(786\) 0 0
\(787\) 4.91114 2.83545i 0.175063 0.101073i −0.409908 0.912127i \(-0.634439\pi\)
0.584971 + 0.811054i \(0.301106\pi\)
\(788\) 8.69368i 0.309699i
\(789\) 0 0
\(790\) −9.89391 + 34.3986i −0.352010 + 1.22385i
\(791\) −4.96493 + 8.59951i −0.176532 + 0.305763i
\(792\) 0 0
\(793\) 19.8694 + 15.9275i 0.705582 + 0.565602i
\(794\) 4.59478 0.163063
\(795\) 0 0
\(796\) −10.7587 + 18.6347i −0.381333 + 0.660488i
\(797\) −23.6792 + 13.6712i −0.838762 + 0.484259i −0.856843 0.515577i \(-0.827578\pi\)
0.0180812 + 0.999837i \(0.494244\pi\)
\(798\) 0 0
\(799\) −7.46441 12.9287i −0.264072 0.457386i
\(800\) 2.65649 4.23592i 0.0939211 0.149763i
\(801\) 0 0
\(802\) 25.7237 14.8516i 0.908334 0.524427i
\(803\) 26.3475 + 15.2117i 0.929783 + 0.536810i
\(804\) 0 0
\(805\) −1.90110 7.65142i −0.0670051 0.269677i
\(806\) −34.4524 5.28180i −1.21353 0.186043i
\(807\) 0 0
\(808\) 5.31840 + 3.07058i 0.187101 + 0.108023i
\(809\) 2.51446 4.35518i 0.0884039 0.153120i −0.818433 0.574602i \(-0.805157\pi\)
0.906837 + 0.421482i \(0.138490\pi\)
\(810\) 0 0
\(811\) 47.3390 1.66230 0.831148 0.556052i \(-0.187684\pi\)
0.831148 + 0.556052i \(0.187684\pi\)
\(812\) 4.46056 2.57531i 0.156535 0.0903755i
\(813\) 0 0
\(814\) −31.3812 −1.09991
\(815\) 26.1069 + 27.0785i 0.914484 + 0.948519i
\(816\) 0 0
\(817\) 0.208951 + 0.120638i 0.00731028 + 0.00422059i
\(818\) 10.3112i 0.360524i
\(819\) 0 0
\(820\) 0.241276 + 0.971071i 0.00842573 + 0.0339113i
\(821\) −10.3408 + 17.9108i −0.360896 + 0.625090i −0.988109 0.153758i \(-0.950862\pi\)
0.627213 + 0.778848i \(0.284196\pi\)
\(822\) 0 0
\(823\) 17.1794 9.91855i 0.598837 0.345739i −0.169747 0.985488i \(-0.554295\pi\)
0.768584 + 0.639749i \(0.220962\pi\)
\(824\) −17.6803 −0.615924
\(825\) 0 0
\(826\) 2.04226 + 3.53730i 0.0710593 + 0.123078i
\(827\) 39.6730i 1.37956i −0.724017 0.689782i \(-0.757706\pi\)
0.724017 0.689782i \(-0.242294\pi\)
\(828\) 0 0
\(829\) −12.6937 + 21.9861i −0.440870 + 0.763609i −0.997754 0.0669813i \(-0.978663\pi\)
0.556885 + 0.830590i \(0.311997\pi\)
\(830\) 0.764533 + 0.219899i 0.0265373 + 0.00763282i
\(831\) 0 0
\(832\) 3.35963 1.30878i 0.116474 0.0453739i
\(833\) 20.5958i 0.713603i
\(834\) 0 0
\(835\) −11.1995 + 38.9376i −0.387573 + 1.34749i
\(836\) 0.272055 + 0.471213i 0.00940921 + 0.0162972i
\(837\) 0 0
\(838\) −32.9873 + 19.0452i −1.13953 + 0.657907i
\(839\) 11.5139 + 19.9426i 0.397502 + 0.688494i 0.993417 0.114553i \(-0.0365437\pi\)
−0.595915 + 0.803048i \(0.703210\pi\)
\(840\) 0 0
\(841\) −11.8668 20.5540i −0.409201 0.708757i
\(842\) −23.1318 13.3552i −0.797175 0.460249i
\(843\) 0 0
\(844\) 5.58864 0.192369
\(845\) 24.2461 + 16.0351i 0.834092 + 0.551625i
\(846\) 0 0
\(847\) −5.73860 3.31318i −0.197181 0.113842i
\(848\) −8.30400 4.79432i −0.285161 0.164638i
\(849\) 0 0
\(850\) 14.0072 7.41855i 0.480443 0.254454i
\(851\) −17.2937 29.9536i −0.592821 1.02680i
\(852\) 0 0
\(853\) 13.7047i 0.469241i 0.972087 + 0.234621i \(0.0753848\pi\)
−0.972087 + 0.234621i \(0.924615\pi\)
\(854\) −2.50473 4.33832i −0.0857100 0.148454i
\(855\) 0 0
\(856\) −0.269594 + 0.466951i −0.00921455 + 0.0159601i
\(857\) 17.8648i 0.610250i 0.952312 + 0.305125i \(0.0986983\pi\)
−0.952312 + 0.305125i \(0.901302\pi\)
\(858\) 0 0
\(859\) −13.7187 −0.468077 −0.234039 0.972227i \(-0.575194\pi\)
−0.234039 + 0.972227i \(0.575194\pi\)
\(860\) 1.23618 4.29789i 0.0421535 0.146557i
\(861\) 0 0
\(862\) −17.9429 + 10.3594i −0.611139 + 0.352841i
\(863\) 19.9383i 0.678706i −0.940659 0.339353i \(-0.889792\pi\)
0.940659 0.339353i \(-0.110208\pi\)
\(864\) 0 0
\(865\) 15.9918 + 16.5870i 0.543739 + 0.563975i
\(866\) −15.8576 −0.538864
\(867\) 0 0
\(868\) 5.93797 + 3.42829i 0.201548 + 0.116364i
\(869\) −36.0983 + 62.5241i −1.22455 + 2.12098i
\(870\) 0 0
\(871\) −10.4124 1.59630i −0.352811 0.0540884i
\(872\) 11.0205i 0.373202i
\(873\) 0 0
\(874\) −0.299850 + 0.519356i −0.0101426 + 0.0175675i
\(875\) −7.53582 2.46888i −0.254757 0.0834634i
\(876\) 0 0
\(877\) −18.7203 + 10.8082i −0.632140 + 0.364966i −0.781580 0.623805i \(-0.785586\pi\)
0.149441 + 0.988771i \(0.452253\pi\)
\(878\) −8.43444 + 4.86962i −0.284648 + 0.164342i
\(879\) 0 0
\(880\) 7.26042 6.99990i 0.244749 0.235967i
\(881\) −3.99693 + 6.92288i −0.134660 + 0.233238i −0.925468 0.378827i \(-0.876328\pi\)
0.790808 + 0.612065i \(0.209661\pi\)
\(882\) 0 0
\(883\) 26.2713i 0.884098i −0.896991 0.442049i \(-0.854252\pi\)
0.896991 0.442049i \(-0.145748\pi\)
\(884\) 11.2979 + 1.73205i 0.379990 + 0.0582552i
\(885\) 0 0
\(886\) 4.61530 7.99393i 0.155054 0.268561i
\(887\) 14.8634 + 8.58136i 0.499063 + 0.288134i 0.728326 0.685230i \(-0.240299\pi\)
−0.229264 + 0.973364i \(0.573632\pi\)
\(888\) 0 0
\(889\) 8.63704 0.289677
\(890\) −5.63513 5.84486i −0.188890 0.195920i
\(891\) 0 0
\(892\) 24.7093i 0.827328i
\(893\) 0.492005 0.284059i 0.0164643 0.00950568i
\(894\) 0 0
\(895\) −2.71153 0.779906i −0.0906364 0.0260694i
\(896\) −0.709275 −0.0236952
\(897\) 0 0
\(898\) 2.92389i 0.0975715i
\(899\) 35.0999 60.7949i 1.17065 2.02762i
\(900\) 0 0
\(901\) −15.1984 26.3244i −0.506332 0.876993i
\(902\) 2.01825i 0.0672004i
\(903\) 0 0
\(904\) −7.00000 12.1244i −0.232817 0.403250i
\(905\) 1.28458 + 5.17009i 0.0427009 + 0.171859i
\(906\) 0 0
\(907\) −14.2146 8.20682i −0.471989 0.272503i 0.245083 0.969502i \(-0.421185\pi\)
−0.717072 + 0.696999i \(0.754518\pi\)
\(908\) 24.8504 + 14.3474i 0.824688 + 0.476134i
\(909\) 0 0
\(910\) −3.29930 4.67058i −0.109371 0.154828i
\(911\) 4.52359 0.149873 0.0749366 0.997188i \(-0.476125\pi\)
0.0749366 + 0.997188i \(0.476125\pi\)
\(912\) 0 0
\(913\) 1.38964 + 0.802311i 0.0459905 + 0.0265526i
\(914\) 5.82632 + 10.0915i 0.192718 + 0.333797i
\(915\) 0 0
\(916\) 0.949940 + 1.64535i 0.0313869 + 0.0543637i
\(917\) 10.7215 6.19008i 0.354056 0.204415i
\(918\) 0 0
\(919\) −3.82150 6.61904i −0.126060 0.218342i 0.796087 0.605182i \(-0.206900\pi\)
−0.922147 + 0.386840i \(0.873566\pi\)
\(920\) 10.6826 + 3.07258i 0.352193 + 0.101300i
\(921\) 0 0
\(922\) 30.2979i 0.997809i
\(923\) 23.0220 + 18.4547i 0.757779 + 0.607443i
\(924\) 0 0
\(925\) −34.7655 1.27066i −1.14308 0.0417792i
\(926\) −3.52165 + 6.09968i −0.115729 + 0.200448i
\(927\) 0 0
\(928\) 7.26180i 0.238380i
\(929\) −29.6647 51.3808i −0.973269 1.68575i −0.685534 0.728041i \(-0.740431\pi\)
−0.287735 0.957710i \(-0.592902\pi\)
\(930\) 0 0
\(931\) 0.783777 0.0256873
\(932\) 19.2677 11.1242i 0.631136 0.364386i
\(933\) 0 0
\(934\) −1.95055 + 3.37845i −0.0638240 + 0.110546i
\(935\) 31.0277 7.70928i 1.01471 0.252120i
\(936\) 0 0
\(937\) 1.75872i 0.0574550i 0.999587 + 0.0287275i \(0.00914551\pi\)
−0.999587 + 0.0287275i \(0.990854\pi\)
\(938\) 1.79461 + 1.03612i 0.0585960 + 0.0338304i
\(939\) 0 0
\(940\) −7.30877 7.58078i −0.238386 0.247258i
\(941\) −42.2967 −1.37883 −0.689416 0.724365i \(-0.742133\pi\)
−0.689416 + 0.724365i \(0.742133\pi\)
\(942\) 0 0
\(943\) −1.92643 + 1.11223i −0.0627333 + 0.0362191i
\(944\) −5.75872 −0.187430
\(945\) 0 0
\(946\) 4.51026 7.81200i 0.146641 0.253990i
\(947\) 4.19011 + 2.41916i 0.136160 + 0.0786122i 0.566533 0.824039i \(-0.308284\pi\)
−0.430372 + 0.902651i \(0.641618\pi\)
\(948\) 0 0
\(949\) 8.82826 + 22.6620i 0.286577 + 0.735640i
\(950\) 0.282314 + 0.533046i 0.00915948 + 0.0172943i
\(951\) 0 0
\(952\) −1.94723 1.12423i −0.0631100 0.0364366i
\(953\) 22.4767 12.9769i 0.728092 0.420364i −0.0896318 0.995975i \(-0.528569\pi\)
0.817724 + 0.575611i \(0.195236\pi\)
\(954\) 0 0
\(955\) 17.8451 17.2047i 0.577452 0.556732i
\(956\) 12.4355 + 21.5389i 0.402192 + 0.696617i
\(957\) 0 0
\(958\) −15.1643 + 8.75513i −0.489937 + 0.282865i
\(959\) 3.31710 5.74539i 0.107115 0.185528i
\(960\) 0 0
\(961\) 62.4512 2.01455
\(962\) −19.5739 15.6906i −0.631087 0.505885i
\(963\) 0 0
\(964\) −1.47528 + 2.55525i −0.0475154 + 0.0822991i
\(965\) 8.65329 30.0852i 0.278559 0.968478i
\(966\) 0 0
\(967\) 29.9939i 0.964537i −0.876023 0.482269i \(-0.839813\pi\)
0.876023 0.482269i \(-0.160187\pi\)
\(968\) 8.09079 4.67122i 0.260048 0.150139i
\(969\) 0 0
\(970\) −4.26406 17.1617i −0.136911 0.551028i
\(971\) 7.86429 + 13.6213i 0.252377 + 0.437130i 0.964180 0.265250i \(-0.0854544\pi\)
−0.711803 + 0.702379i \(0.752121\pi\)
\(972\) 0 0
\(973\) −1.62422 0.937743i −0.0520701 0.0300627i
\(974\) 38.5318 1.23464
\(975\) 0 0
\(976\) 7.06278 0.226074
\(977\) 23.8539 + 13.7721i 0.763154 + 0.440607i 0.830427 0.557128i \(-0.188097\pi\)
−0.0672731 + 0.997735i \(0.521430\pi\)
\(978\) 0 0
\(979\) −8.18815 14.1823i −0.261694 0.453268i
\(980\) −3.50307 14.0989i −0.111902 0.450373i
\(981\) 0 0
\(982\) 5.90956 3.41189i 0.188582 0.108878i
\(983\) 18.0289i 0.575034i −0.957776 0.287517i \(-0.907170\pi\)
0.957776 0.287517i \(-0.0928297\pi\)
\(984\) 0 0
\(985\) 5.37349 18.6822i 0.171214 0.595265i
\(986\) −11.5103 + 19.9364i −0.366561 + 0.634903i
\(987\) 0 0
\(988\) −0.0659135 + 0.429944i −0.00209699 + 0.0136783i
\(989\) 9.94214 0.316142
\(990\) 0 0
\(991\) −5.81658 + 10.0746i −0.184770 + 0.320031i −0.943499 0.331376i \(-0.892487\pi\)
0.758729 + 0.651406i \(0.225821\pi\)
\(992\) −8.37188 + 4.83351i −0.265807 + 0.153464i
\(993\) 0 0
\(994\) −2.90215 5.02667i −0.0920506 0.159436i
\(995\) −34.6378 + 33.3950i −1.09809 + 1.05869i
\(996\) 0 0
\(997\) 24.9977 14.4324i 0.791684 0.457079i −0.0488712 0.998805i \(-0.515562\pi\)
0.840555 + 0.541726i \(0.182229\pi\)
\(998\) −8.29581 4.78959i −0.262599 0.151612i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bp.h.919.5 12
3.2 odd 2 130.2.n.a.9.2 12
5.4 even 2 inner 1170.2.bp.h.919.2 12
12.11 even 2 1040.2.dh.b.529.4 12
13.3 even 3 inner 1170.2.bp.h.289.2 12
15.2 even 4 650.2.e.k.451.2 6
15.8 even 4 650.2.e.j.451.2 6
15.14 odd 2 130.2.n.a.9.5 yes 12
39.17 odd 6 1690.2.b.b.339.2 6
39.20 even 12 1690.2.c.b.1689.4 6
39.29 odd 6 130.2.n.a.29.5 yes 12
39.32 even 12 1690.2.c.c.1689.4 6
39.35 odd 6 1690.2.b.c.339.5 6
60.59 even 2 1040.2.dh.b.529.3 12
65.29 even 6 inner 1170.2.bp.h.289.5 12
156.107 even 6 1040.2.dh.b.289.3 12
195.17 even 12 8450.2.a.ca.1.2 3
195.29 odd 6 130.2.n.a.29.2 yes 12
195.59 even 12 1690.2.c.c.1689.3 6
195.68 even 12 650.2.e.j.601.2 6
195.74 odd 6 1690.2.b.c.339.2 6
195.107 even 12 650.2.e.k.601.2 6
195.113 even 12 8450.2.a.cb.1.2 3
195.134 odd 6 1690.2.b.b.339.5 6
195.149 even 12 1690.2.c.b.1689.3 6
195.152 even 12 8450.2.a.bu.1.2 3
195.173 even 12 8450.2.a.bt.1.2 3
780.419 even 6 1040.2.dh.b.289.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.2 12 3.2 odd 2
130.2.n.a.9.5 yes 12 15.14 odd 2
130.2.n.a.29.2 yes 12 195.29 odd 6
130.2.n.a.29.5 yes 12 39.29 odd 6
650.2.e.j.451.2 6 15.8 even 4
650.2.e.j.601.2 6 195.68 even 12
650.2.e.k.451.2 6 15.2 even 4
650.2.e.k.601.2 6 195.107 even 12
1040.2.dh.b.289.3 12 156.107 even 6
1040.2.dh.b.289.4 12 780.419 even 6
1040.2.dh.b.529.3 12 60.59 even 2
1040.2.dh.b.529.4 12 12.11 even 2
1170.2.bp.h.289.2 12 13.3 even 3 inner
1170.2.bp.h.289.5 12 65.29 even 6 inner
1170.2.bp.h.919.2 12 5.4 even 2 inner
1170.2.bp.h.919.5 12 1.1 even 1 trivial
1690.2.b.b.339.2 6 39.17 odd 6
1690.2.b.b.339.5 6 195.134 odd 6
1690.2.b.c.339.2 6 195.74 odd 6
1690.2.b.c.339.5 6 39.35 odd 6
1690.2.c.b.1689.3 6 195.149 even 12
1690.2.c.b.1689.4 6 39.20 even 12
1690.2.c.c.1689.3 6 195.59 even 12
1690.2.c.c.1689.4 6 39.32 even 12
8450.2.a.bt.1.2 3 195.173 even 12
8450.2.a.bu.1.2 3 195.152 even 12
8450.2.a.ca.1.2 3 195.17 even 12
8450.2.a.cb.1.2 3 195.113 even 12