L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (0.539 + 2.17i)5-s + (0.614 − 0.354i)7-s + 0.999i·8-s + (−0.618 + 2.14i)10-s + (−2.25 + 3.90i)11-s + (−3.35 + 1.30i)13-s + 0.709·14-s + (−0.5 + 0.866i)16-s + (−2.74 + 1.58i)17-s + (−0.0603 − 0.104i)19-s + (−1.60 + 1.55i)20-s + (−3.90 + 2.25i)22-s + (−4.30 − 2.48i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (0.241 + 0.970i)5-s + (0.232 − 0.134i)7-s + 0.353i·8-s + (−0.195 + 0.679i)10-s + (−0.679 + 1.17i)11-s + (−0.931 + 0.362i)13-s + 0.189·14-s + (−0.125 + 0.216i)16-s + (−0.665 + 0.384i)17-s + (−0.0138 − 0.0239i)19-s + (−0.359 + 0.347i)20-s + (−0.832 + 0.480i)22-s + (−0.897 − 0.518i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.764 - 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.873208414\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.873208414\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.539 - 2.17i)T \) |
| 13 | \( 1 + (3.35 - 1.30i)T \) |
good | 7 | \( 1 + (-0.614 + 0.354i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.25 - 3.90i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.74 - 1.58i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.0603 + 0.104i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.30 + 2.48i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.63 + 6.28i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 9.66T + 31T^{2} \) |
| 37 | \( 1 + (-6.02 - 3.47i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.223 + 0.387i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.73 - i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.70iT - 47T^{2} \) |
| 53 | \( 1 - 9.58iT - 53T^{2} \) |
| 59 | \( 1 + (-2.87 - 4.98i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.53 + 6.11i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.53 - 1.46i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.09 + 7.08i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 6.74iT - 73T^{2} \) |
| 79 | \( 1 - 16.0T + 79T^{2} \) |
| 83 | \( 1 + 0.355iT - 83T^{2} \) |
| 89 | \( 1 + (1.81 - 3.14i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.84 - 3.95i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13197629052358333545414496478, −9.490122967161491386411764922753, −8.034747915882018028922277550447, −7.61050848993973962290559057178, −6.59934655904060940361063650280, −6.12847850284352550756474964617, −4.73969891587132951234438348916, −4.31791173441951472181148459969, −2.78265838366730912576291209285, −2.16349248698896427236167823311,
0.61950168314985686670500324058, 2.11501578969457314615871916018, 3.12252371769163381144893109110, 4.38448356493505889017441137322, 5.15198126247419089605080876046, 5.74875834605989715297870264915, 6.80468586270953271130045424013, 8.051334328387407018102254679997, 8.538155710825457364244140350363, 9.630513608891252992089805124029