Properties

Label 1040.2.dh.b.529.4
Level $1040$
Weight $2$
Character 1040.529
Analytic conductor $8.304$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(289,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.dh (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.4
Root \(-1.16746 + 0.312819i\) of defining polynomial
Character \(\chi\) \(=\) 1040.529
Dual form 1040.2.dh.b.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.466951 + 0.269594i) q^{3} +(-0.539189 - 2.17009i) q^{5} +(-0.614250 + 0.354638i) q^{7} +(-1.35464 - 2.34630i) q^{9} +(-2.25513 + 3.90600i) q^{11} +(-3.35963 + 1.30878i) q^{13} +(0.333268 - 1.15869i) q^{15} +(2.74538 - 1.58504i) q^{17} +(0.0603191 + 0.104476i) q^{19} -0.382433 q^{21} +(-4.30507 - 2.48554i) q^{23} +(-4.41855 + 2.34017i) q^{25} -3.07838i q^{27} +(-3.63090 + 6.28890i) q^{29} -9.66701 q^{31} +(-2.10607 + 1.21594i) q^{33} +(1.10079 + 1.14176i) q^{35} +(6.02558 + 3.47887i) q^{37} +(-1.92162 - 0.294598i) q^{39} +(-0.223740 + 0.387529i) q^{41} +(1.73205 - 1.00000i) q^{43} +(-4.36127 + 4.20478i) q^{45} +4.70928i q^{47} +(-3.24846 + 5.62651i) q^{49} +1.70928 q^{51} -9.58864i q^{53} +(9.69230 + 2.78776i) q^{55} +0.0650468i q^{57} +(2.87936 + 4.98720i) q^{59} +(-3.53139 - 6.11655i) q^{61} +(1.66417 + 0.960811i) q^{63} +(4.65165 + 6.58500i) q^{65} +(-2.53020 - 1.46081i) q^{67} +(-1.34017 - 2.32125i) q^{69} +(-4.09171 - 7.08705i) q^{71} -6.74539i q^{73} +(-2.69415 - 0.0984700i) q^{75} -3.19902i q^{77} -16.0072 q^{79} +(-3.23400 + 5.60145i) q^{81} -0.355771i q^{83} +(-4.91996 - 5.10306i) q^{85} +(-3.39090 + 1.95774i) q^{87} +(1.81545 - 3.14445i) q^{89} +(1.59951 - 1.99537i) q^{91} +(-4.51402 - 2.60617i) q^{93} +(0.194198 - 0.187230i) q^{95} +(-6.84878 + 3.95415i) q^{97} +12.2195 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{9} + 6 q^{11} - 4 q^{15} + 26 q^{19} - 24 q^{21} + 4 q^{25} - 28 q^{29} - 24 q^{31} + 6 q^{35} - 36 q^{39} - 4 q^{41} + 12 q^{45} - 4 q^{49} - 8 q^{51} - 12 q^{55} - 16 q^{59} - 8 q^{61} - 10 q^{65}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.466951 + 0.269594i 0.269594 + 0.155650i 0.628703 0.777645i \(-0.283586\pi\)
−0.359109 + 0.933296i \(0.616919\pi\)
\(4\) 0 0
\(5\) −0.539189 2.17009i −0.241133 0.970492i
\(6\) 0 0
\(7\) −0.614250 + 0.354638i −0.232165 + 0.134040i −0.611570 0.791190i \(-0.709462\pi\)
0.379406 + 0.925230i \(0.376129\pi\)
\(8\) 0 0
\(9\) −1.35464 2.34630i −0.451546 0.782100i
\(10\) 0 0
\(11\) −2.25513 + 3.90600i −0.679947 + 1.17770i 0.295049 + 0.955482i \(0.404664\pi\)
−0.974996 + 0.222221i \(0.928669\pi\)
\(12\) 0 0
\(13\) −3.35963 + 1.30878i −0.931793 + 0.362991i
\(14\) 0 0
\(15\) 0.333268 1.15869i 0.0860495 0.299172i
\(16\) 0 0
\(17\) 2.74538 1.58504i 0.665851 0.384429i −0.128652 0.991690i \(-0.541065\pi\)
0.794503 + 0.607260i \(0.207732\pi\)
\(18\) 0 0
\(19\) 0.0603191 + 0.104476i 0.0138381 + 0.0239684i 0.872862 0.487968i \(-0.162262\pi\)
−0.859023 + 0.511936i \(0.828928\pi\)
\(20\) 0 0
\(21\) −0.382433 −0.0834538
\(22\) 0 0
\(23\) −4.30507 2.48554i −0.897670 0.518270i −0.0212264 0.999775i \(-0.506757\pi\)
−0.876443 + 0.481505i \(0.840090\pi\)
\(24\) 0 0
\(25\) −4.41855 + 2.34017i −0.883710 + 0.468035i
\(26\) 0 0
\(27\) 3.07838i 0.592434i
\(28\) 0 0
\(29\) −3.63090 + 6.28890i −0.674241 + 1.16782i 0.302449 + 0.953165i \(0.402196\pi\)
−0.976690 + 0.214654i \(0.931138\pi\)
\(30\) 0 0
\(31\) −9.66701 −1.73625 −0.868124 0.496348i \(-0.834674\pi\)
−0.868124 + 0.496348i \(0.834674\pi\)
\(32\) 0 0
\(33\) −2.10607 + 1.21594i −0.366620 + 0.211668i
\(34\) 0 0
\(35\) 1.10079 + 1.14176i 0.186068 + 0.192993i
\(36\) 0 0
\(37\) 6.02558 + 3.47887i 0.990599 + 0.571923i 0.905453 0.424446i \(-0.139531\pi\)
0.0851458 + 0.996369i \(0.472864\pi\)
\(38\) 0 0
\(39\) −1.92162 0.294598i −0.307706 0.0471735i
\(40\) 0 0
\(41\) −0.223740 + 0.387529i −0.0349423 + 0.0605219i −0.882968 0.469434i \(-0.844458\pi\)
0.848025 + 0.529956i \(0.177791\pi\)
\(42\) 0 0
\(43\) 1.73205 1.00000i 0.264135 0.152499i −0.362084 0.932145i \(-0.617935\pi\)
0.626219 + 0.779647i \(0.284601\pi\)
\(44\) 0 0
\(45\) −4.36127 + 4.20478i −0.650140 + 0.626812i
\(46\) 0 0
\(47\) 4.70928i 0.686918i 0.939168 + 0.343459i \(0.111599\pi\)
−0.939168 + 0.343459i \(0.888401\pi\)
\(48\) 0 0
\(49\) −3.24846 + 5.62651i −0.464066 + 0.803786i
\(50\) 0 0
\(51\) 1.70928 0.239346
\(52\) 0 0
\(53\) 9.58864i 1.31710i −0.752537 0.658550i \(-0.771170\pi\)
0.752537 0.658550i \(-0.228830\pi\)
\(54\) 0 0
\(55\) 9.69230 + 2.78776i 1.30691 + 0.375901i
\(56\) 0 0
\(57\) 0.0650468i 0.00861565i
\(58\) 0 0
\(59\) 2.87936 + 4.98720i 0.374861 + 0.649278i 0.990306 0.138901i \(-0.0443571\pi\)
−0.615445 + 0.788180i \(0.711024\pi\)
\(60\) 0 0
\(61\) −3.53139 6.11655i −0.452148 0.783144i 0.546371 0.837543i \(-0.316009\pi\)
−0.998519 + 0.0543997i \(0.982675\pi\)
\(62\) 0 0
\(63\) 1.66417 + 0.960811i 0.209666 + 0.121051i
\(64\) 0 0
\(65\) 4.65165 + 6.58500i 0.576966 + 0.816768i
\(66\) 0 0
\(67\) −2.53020 1.46081i −0.309113 0.178466i 0.337416 0.941355i \(-0.390447\pi\)
−0.646530 + 0.762889i \(0.723780\pi\)
\(68\) 0 0
\(69\) −1.34017 2.32125i −0.161338 0.279445i
\(70\) 0 0
\(71\) −4.09171 7.08705i −0.485596 0.841078i 0.514267 0.857630i \(-0.328064\pi\)
−0.999863 + 0.0165526i \(0.994731\pi\)
\(72\) 0 0
\(73\) 6.74539i 0.789488i −0.918791 0.394744i \(-0.870833\pi\)
0.918791 0.394744i \(-0.129167\pi\)
\(74\) 0 0
\(75\) −2.69415 0.0984700i −0.311093 0.0113703i
\(76\) 0 0
\(77\) 3.19902i 0.364562i
\(78\) 0 0
\(79\) −16.0072 −1.80095 −0.900475 0.434908i \(-0.856781\pi\)
−0.900475 + 0.434908i \(0.856781\pi\)
\(80\) 0 0
\(81\) −3.23400 + 5.60145i −0.359333 + 0.622383i
\(82\) 0 0
\(83\) 0.355771i 0.0390510i −0.999809 0.0195255i \(-0.993784\pi\)
0.999809 0.0195255i \(-0.00621555\pi\)
\(84\) 0 0
\(85\) −4.91996 5.10306i −0.533644 0.553505i
\(86\) 0 0
\(87\) −3.39090 + 1.95774i −0.363543 + 0.209892i
\(88\) 0 0
\(89\) 1.81545 3.14445i 0.192437 0.333311i −0.753620 0.657310i \(-0.771694\pi\)
0.946057 + 0.323999i \(0.105027\pi\)
\(90\) 0 0
\(91\) 1.59951 1.99537i 0.167674 0.209172i
\(92\) 0 0
\(93\) −4.51402 2.60617i −0.468083 0.270248i
\(94\) 0 0
\(95\) 0.194198 0.187230i 0.0199243 0.0192094i
\(96\) 0 0
\(97\) −6.84878 + 3.95415i −0.695388 + 0.401483i −0.805627 0.592422i \(-0.798172\pi\)
0.110239 + 0.993905i \(0.464838\pi\)
\(98\) 0 0
\(99\) 12.2195 1.22811
\(100\) 0 0
\(101\) −3.07058 + 5.31840i −0.305534 + 0.529200i −0.977380 0.211490i \(-0.932168\pi\)
0.671846 + 0.740691i \(0.265502\pi\)
\(102\) 0 0
\(103\) 17.6803i 1.74210i −0.491198 0.871048i \(-0.663441\pi\)
0.491198 0.871048i \(-0.336559\pi\)
\(104\) 0 0
\(105\) 0.206204 + 0.829914i 0.0201234 + 0.0809913i
\(106\) 0 0
\(107\) 0.466951 + 0.269594i 0.0451419 + 0.0260627i 0.522401 0.852700i \(-0.325036\pi\)
−0.477259 + 0.878763i \(0.658370\pi\)
\(108\) 0 0
\(109\) 11.0205 1.05557 0.527787 0.849377i \(-0.323022\pi\)
0.527787 + 0.849377i \(0.323022\pi\)
\(110\) 0 0
\(111\) 1.87577 + 3.24893i 0.178040 + 0.308374i
\(112\) 0 0
\(113\) 12.1244 7.00000i 1.14056 0.658505i 0.193993 0.981003i \(-0.437856\pi\)
0.946570 + 0.322498i \(0.104523\pi\)
\(114\) 0 0
\(115\) −3.07258 + 10.6826i −0.286519 + 0.996153i
\(116\) 0 0
\(117\) 7.62188 + 6.10977i 0.704643 + 0.564848i
\(118\) 0 0
\(119\) −1.12423 + 1.94723i −0.103058 + 0.178502i
\(120\) 0 0
\(121\) −4.67122 8.09079i −0.424656 0.735526i
\(122\) 0 0
\(123\) −0.208951 + 0.120638i −0.0188405 + 0.0108776i
\(124\) 0 0
\(125\) 7.46081 + 8.32684i 0.667315 + 0.744775i
\(126\) 0 0
\(127\) −10.5458 6.08864i −0.935791 0.540279i −0.0471526 0.998888i \(-0.515015\pi\)
−0.888638 + 0.458609i \(0.848348\pi\)
\(128\) 0 0
\(129\) 1.07838 0.0949459
\(130\) 0 0
\(131\) 17.4547 1.52502 0.762511 0.646976i \(-0.223966\pi\)
0.762511 + 0.646976i \(0.223966\pi\)
\(132\) 0 0
\(133\) −0.0741020 0.0427828i −0.00642546 0.00370974i
\(134\) 0 0
\(135\) −6.68035 + 1.65983i −0.574953 + 0.142855i
\(136\) 0 0
\(137\) −8.10037 + 4.67675i −0.692061 + 0.399562i −0.804384 0.594110i \(-0.797504\pi\)
0.112322 + 0.993672i \(0.464171\pi\)
\(138\) 0 0
\(139\) 1.32211 + 2.28997i 0.112140 + 0.194233i 0.916633 0.399730i \(-0.130896\pi\)
−0.804493 + 0.593963i \(0.797563\pi\)
\(140\) 0 0
\(141\) −1.26959 + 2.19900i −0.106919 + 0.185189i
\(142\) 0 0
\(143\) 2.46429 16.0742i 0.206074 1.34419i
\(144\) 0 0
\(145\) 15.6052 + 4.48846i 1.29594 + 0.372746i
\(146\) 0 0
\(147\) −3.03375 + 1.75154i −0.250219 + 0.144464i
\(148\) 0 0
\(149\) −4.61757 7.99786i −0.378286 0.655210i 0.612527 0.790450i \(-0.290153\pi\)
−0.990813 + 0.135239i \(0.956820\pi\)
\(150\) 0 0
\(151\) 9.42574 0.767056 0.383528 0.923529i \(-0.374709\pi\)
0.383528 + 0.923529i \(0.374709\pi\)
\(152\) 0 0
\(153\) −7.43798 4.29432i −0.601325 0.347175i
\(154\) 0 0
\(155\) 5.21235 + 20.9783i 0.418666 + 1.68501i
\(156\) 0 0
\(157\) 5.77205i 0.460660i −0.973113 0.230330i \(-0.926019\pi\)
0.973113 0.230330i \(-0.0739806\pi\)
\(158\) 0 0
\(159\) 2.58504 4.47743i 0.205007 0.355083i
\(160\) 0 0
\(161\) 3.52586 0.277877
\(162\) 0 0
\(163\) −14.5678 + 8.41075i −1.14104 + 0.658781i −0.946688 0.322151i \(-0.895594\pi\)
−0.194354 + 0.980932i \(0.562261\pi\)
\(164\) 0 0
\(165\) 3.77427 + 3.91474i 0.293826 + 0.304762i
\(166\) 0 0
\(167\) 15.6919 + 9.05971i 1.21427 + 0.701061i 0.963687 0.267033i \(-0.0860433\pi\)
0.250586 + 0.968094i \(0.419377\pi\)
\(168\) 0 0
\(169\) 9.57417 8.79404i 0.736475 0.676465i
\(170\) 0 0
\(171\) 0.163421 0.283053i 0.0124971 0.0216456i
\(172\) 0 0
\(173\) −8.92357 + 5.15203i −0.678447 + 0.391701i −0.799270 0.600973i \(-0.794780\pi\)
0.120823 + 0.992674i \(0.461447\pi\)
\(174\) 0 0
\(175\) 1.88418 3.00444i 0.142431 0.227114i
\(176\) 0 0
\(177\) 3.10504i 0.233389i
\(178\) 0 0
\(179\) −0.630898 + 1.09275i −0.0471555 + 0.0816757i −0.888640 0.458606i \(-0.848349\pi\)
0.841484 + 0.540282i \(0.181682\pi\)
\(180\) 0 0
\(181\) 2.38243 0.177085 0.0885424 0.996072i \(-0.471779\pi\)
0.0885424 + 0.996072i \(0.471779\pi\)
\(182\) 0 0
\(183\) 3.80817i 0.281508i
\(184\) 0 0
\(185\) 4.30052 14.9518i 0.316181 1.09928i
\(186\) 0 0
\(187\) 14.2979i 1.04557i
\(188\) 0 0
\(189\) 1.09171 + 1.89090i 0.0794101 + 0.137542i
\(190\) 0 0
\(191\) −5.54278 9.60038i −0.401062 0.694659i 0.592793 0.805355i \(-0.298025\pi\)
−0.993854 + 0.110696i \(0.964692\pi\)
\(192\) 0 0
\(193\) −12.1244 7.00000i −0.872730 0.503871i −0.00447566 0.999990i \(-0.501425\pi\)
−0.868255 + 0.496119i \(0.834758\pi\)
\(194\) 0 0
\(195\) 0.396813 + 4.32893i 0.0284164 + 0.310001i
\(196\) 0 0
\(197\) 7.52895 + 4.34684i 0.536415 + 0.309699i 0.743625 0.668597i \(-0.233105\pi\)
−0.207210 + 0.978297i \(0.566438\pi\)
\(198\) 0 0
\(199\) −10.7587 18.6347i −0.762666 1.32098i −0.941472 0.337091i \(-0.890557\pi\)
0.178806 0.983884i \(-0.442776\pi\)
\(200\) 0 0
\(201\) −0.787653 1.36426i −0.0555568 0.0962271i
\(202\) 0 0
\(203\) 5.15061i 0.361502i
\(204\) 0 0
\(205\) 0.961610 + 0.276584i 0.0671618 + 0.0193175i
\(206\) 0 0
\(207\) 13.4680i 0.936091i
\(208\) 0 0
\(209\) −0.544109 −0.0376368
\(210\) 0 0
\(211\) −2.79432 + 4.83990i −0.192369 + 0.333193i −0.946035 0.324065i \(-0.894950\pi\)
0.753666 + 0.657258i \(0.228284\pi\)
\(212\) 0 0
\(213\) 4.41241i 0.302333i
\(214\) 0 0
\(215\) −3.10399 3.21951i −0.211690 0.219569i
\(216\) 0 0
\(217\) 5.93797 3.42829i 0.403096 0.232727i
\(218\) 0 0
\(219\) 1.81852 3.14977i 0.122884 0.212842i
\(220\) 0 0
\(221\) −7.14896 + 8.91825i −0.480891 + 0.599907i
\(222\) 0 0
\(223\) 21.3989 + 12.3546i 1.43297 + 0.827328i 0.997347 0.0727995i \(-0.0231933\pi\)
0.435627 + 0.900127i \(0.356527\pi\)
\(224\) 0 0
\(225\) 11.4763 + 7.19716i 0.765086 + 0.479811i
\(226\) 0 0
\(227\) 24.8504 14.3474i 1.64938 0.952268i 0.672056 0.740500i \(-0.265411\pi\)
0.977320 0.211768i \(-0.0679220\pi\)
\(228\) 0 0
\(229\) 1.89988 0.125548 0.0627738 0.998028i \(-0.480005\pi\)
0.0627738 + 0.998028i \(0.480005\pi\)
\(230\) 0 0
\(231\) 0.862437 1.49378i 0.0567442 0.0982838i
\(232\) 0 0
\(233\) 22.2485i 1.45755i 0.684756 + 0.728773i \(0.259909\pi\)
−0.684756 + 0.728773i \(0.740091\pi\)
\(234\) 0 0
\(235\) 10.2195 2.53919i 0.666649 0.165638i
\(236\) 0 0
\(237\) −7.47458 4.31545i −0.485526 0.280319i
\(238\) 0 0
\(239\) 24.8710 1.60877 0.804384 0.594110i \(-0.202495\pi\)
0.804384 + 0.594110i \(0.202495\pi\)
\(240\) 0 0
\(241\) 1.47528 + 2.55525i 0.0950309 + 0.164598i 0.909621 0.415438i \(-0.136372\pi\)
−0.814591 + 0.580036i \(0.803038\pi\)
\(242\) 0 0
\(243\) −11.0181 + 6.36130i −0.706811 + 0.408078i
\(244\) 0 0
\(245\) 13.9615 + 4.01570i 0.891970 + 0.256554i
\(246\) 0 0
\(247\) −0.339386 0.272055i −0.0215946 0.0173104i
\(248\) 0 0
\(249\) 0.0959140 0.166128i 0.00607830 0.0105279i
\(250\) 0 0
\(251\) 8.27985 + 14.3411i 0.522620 + 0.905204i 0.999654 + 0.0263190i \(0.00837857\pi\)
−0.477034 + 0.878885i \(0.658288\pi\)
\(252\) 0 0
\(253\) 19.4170 11.2104i 1.22074 0.704792i
\(254\) 0 0
\(255\) −0.921622 3.70928i −0.0577142 0.232284i
\(256\) 0 0
\(257\) −0.453443 0.261795i −0.0282850 0.0163303i 0.485791 0.874075i \(-0.338532\pi\)
−0.514076 + 0.857745i \(0.671865\pi\)
\(258\) 0 0
\(259\) −4.93495 −0.306643
\(260\) 0 0
\(261\) 19.6742 1.21780
\(262\) 0 0
\(263\) −24.9255 14.3908i −1.53697 0.887372i −0.999014 0.0444013i \(-0.985862\pi\)
−0.537960 0.842971i \(-0.680805\pi\)
\(264\) 0 0
\(265\) −20.8082 + 5.17009i −1.27824 + 0.317596i
\(266\) 0 0
\(267\) 1.69545 0.978870i 0.103760 0.0599059i
\(268\) 0 0
\(269\) 5.02832 + 8.70930i 0.306582 + 0.531016i 0.977612 0.210414i \(-0.0674813\pi\)
−0.671030 + 0.741430i \(0.734148\pi\)
\(270\) 0 0
\(271\) 9.06278 15.6972i 0.550525 0.953537i −0.447712 0.894178i \(-0.647761\pi\)
0.998237 0.0593589i \(-0.0189056\pi\)
\(272\) 0 0
\(273\) 1.28483 0.500522i 0.0777616 0.0302930i
\(274\) 0 0
\(275\) 0.823691 22.5362i 0.0496704 1.35899i
\(276\) 0 0
\(277\) −21.4051 + 12.3582i −1.28611 + 0.742534i −0.977958 0.208804i \(-0.933043\pi\)
−0.308149 + 0.951338i \(0.599710\pi\)
\(278\) 0 0
\(279\) 13.0953 + 22.6817i 0.783995 + 1.35792i
\(280\) 0 0
\(281\) 22.9854 1.37120 0.685598 0.727980i \(-0.259541\pi\)
0.685598 + 0.727980i \(0.259541\pi\)
\(282\) 0 0
\(283\) −15.6741 9.04945i −0.931729 0.537934i −0.0443709 0.999015i \(-0.514128\pi\)
−0.887358 + 0.461081i \(0.847462\pi\)
\(284\) 0 0
\(285\) 0.141157 0.0350725i 0.00836142 0.00207751i
\(286\) 0 0
\(287\) 0.317387i 0.0187347i
\(288\) 0 0
\(289\) −3.47528 + 6.01935i −0.204428 + 0.354080i
\(290\) 0 0
\(291\) −4.26406 −0.249964
\(292\) 0 0
\(293\) −15.4536 + 8.92214i −0.902809 + 0.521237i −0.878111 0.478458i \(-0.841196\pi\)
−0.0246988 + 0.999695i \(0.507863\pi\)
\(294\) 0 0
\(295\) 9.27014 8.93751i 0.539728 0.520362i
\(296\) 0 0
\(297\) 12.0241 + 6.94214i 0.697711 + 0.402824i
\(298\) 0 0
\(299\) 17.7165 + 2.71606i 1.02457 + 0.157074i
\(300\) 0 0
\(301\) −0.709275 + 1.22850i −0.0408820 + 0.0708096i
\(302\) 0 0
\(303\) −2.86762 + 1.65562i −0.164741 + 0.0951130i
\(304\) 0 0
\(305\) −11.3693 + 10.9614i −0.651007 + 0.627648i
\(306\) 0 0
\(307\) 3.44521i 0.196629i −0.995155 0.0983143i \(-0.968655\pi\)
0.995155 0.0983143i \(-0.0313451\pi\)
\(308\) 0 0
\(309\) 4.76652 8.25586i 0.271158 0.469659i
\(310\) 0 0
\(311\) −17.8238 −1.01069 −0.505347 0.862916i \(-0.668635\pi\)
−0.505347 + 0.862916i \(0.668635\pi\)
\(312\) 0 0
\(313\) 32.2245i 1.82143i −0.413031 0.910717i \(-0.635530\pi\)
0.413031 0.910717i \(-0.364470\pi\)
\(314\) 0 0
\(315\) 1.18774 4.12946i 0.0669215 0.232669i
\(316\) 0 0
\(317\) 1.90602i 0.107053i 0.998566 + 0.0535265i \(0.0170462\pi\)
−0.998566 + 0.0535265i \(0.982954\pi\)
\(318\) 0 0
\(319\) −16.3763 28.3646i −0.916896 1.58811i
\(320\) 0 0
\(321\) 0.145362 + 0.251775i 0.00811333 + 0.0140527i
\(322\) 0 0
\(323\) 0.331197 + 0.191217i 0.0184283 + 0.0106396i
\(324\) 0 0
\(325\) 11.7819 13.6450i 0.653542 0.756890i
\(326\) 0 0
\(327\) 5.14605 + 2.97107i 0.284577 + 0.164301i
\(328\) 0 0
\(329\) −1.67009 2.89267i −0.0920748 0.159478i
\(330\) 0 0
\(331\) −0.355771 0.616214i −0.0195550 0.0338702i 0.856082 0.516839i \(-0.172892\pi\)
−0.875637 + 0.482969i \(0.839558\pi\)
\(332\) 0 0
\(333\) 18.8504i 1.03300i
\(334\) 0 0
\(335\) −1.80583 + 6.27840i −0.0986631 + 0.343026i
\(336\) 0 0
\(337\) 9.85043i 0.536587i 0.963337 + 0.268294i \(0.0864597\pi\)
−0.963337 + 0.268294i \(0.913540\pi\)
\(338\) 0 0
\(339\) 7.54864 0.409986
\(340\) 0 0
\(341\) 21.8004 37.7594i 1.18056 2.04478i
\(342\) 0 0
\(343\) 9.57304i 0.516896i
\(344\) 0 0
\(345\) −4.31470 + 4.15988i −0.232296 + 0.223961i
\(346\) 0 0
\(347\) 22.1123 12.7665i 1.18705 0.685343i 0.229414 0.973329i \(-0.426319\pi\)
0.957635 + 0.287986i \(0.0929857\pi\)
\(348\) 0 0
\(349\) −9.02832 + 15.6375i −0.483275 + 0.837056i −0.999816 0.0192061i \(-0.993886\pi\)
0.516541 + 0.856263i \(0.327219\pi\)
\(350\) 0 0
\(351\) 4.02893 + 10.3422i 0.215048 + 0.552026i
\(352\) 0 0
\(353\) −12.6842 7.32325i −0.675114 0.389777i 0.122898 0.992419i \(-0.460781\pi\)
−0.798012 + 0.602642i \(0.794115\pi\)
\(354\) 0 0
\(355\) −13.1733 + 12.7006i −0.699166 + 0.674079i
\(356\) 0 0
\(357\) −1.04992 + 0.606173i −0.0555678 + 0.0320821i
\(358\) 0 0
\(359\) −13.4186 −0.708204 −0.354102 0.935207i \(-0.615213\pi\)
−0.354102 + 0.935207i \(0.615213\pi\)
\(360\) 0 0
\(361\) 9.49272 16.4419i 0.499617 0.865362i
\(362\) 0 0
\(363\) 5.03734i 0.264392i
\(364\) 0 0
\(365\) −14.6381 + 3.63704i −0.766192 + 0.190371i
\(366\) 0 0
\(367\) 18.6577 + 10.7721i 0.973926 + 0.562297i 0.900431 0.434999i \(-0.143251\pi\)
0.0734954 + 0.997296i \(0.476585\pi\)
\(368\) 0 0
\(369\) 1.21235 0.0631123
\(370\) 0 0
\(371\) 3.40049 + 5.88983i 0.176545 + 0.305784i
\(372\) 0 0
\(373\) 18.4758 10.6670i 0.956641 0.552317i 0.0615036 0.998107i \(-0.480410\pi\)
0.895138 + 0.445790i \(0.147077\pi\)
\(374\) 0 0
\(375\) 1.23896 + 5.89962i 0.0639799 + 0.304655i
\(376\) 0 0
\(377\) 3.96765 25.8804i 0.204344 1.33291i
\(378\) 0 0
\(379\) −4.05611 + 7.02540i −0.208349 + 0.360870i −0.951194 0.308592i \(-0.900142\pi\)
0.742846 + 0.669462i \(0.233476\pi\)
\(380\) 0 0
\(381\) −3.28293 5.68619i −0.168189 0.291313i
\(382\) 0 0
\(383\) −21.5986 + 12.4699i −1.10364 + 0.637184i −0.937173 0.348864i \(-0.886568\pi\)
−0.166462 + 0.986048i \(0.553234\pi\)
\(384\) 0 0
\(385\) −6.94214 + 1.72487i −0.353804 + 0.0879077i
\(386\) 0 0
\(387\) −4.69260 2.70928i −0.238538 0.137720i
\(388\) 0 0
\(389\) −13.5330 −0.686153 −0.343076 0.939308i \(-0.611469\pi\)
−0.343076 + 0.939308i \(0.611469\pi\)
\(390\) 0 0
\(391\) −15.7587 −0.796953
\(392\) 0 0
\(393\) 8.15048 + 4.70568i 0.411137 + 0.237370i
\(394\) 0 0
\(395\) 8.63090 + 34.7370i 0.434268 + 1.74781i
\(396\) 0 0
\(397\) 3.97920 2.29739i 0.199710 0.115303i −0.396810 0.917901i \(-0.629883\pi\)
0.596520 + 0.802598i \(0.296550\pi\)
\(398\) 0 0
\(399\) −0.0230680 0.0399550i −0.00115485 0.00200025i
\(400\) 0 0
\(401\) −14.8516 + 25.7237i −0.741652 + 1.28458i 0.210091 + 0.977682i \(0.432624\pi\)
−0.951743 + 0.306897i \(0.900709\pi\)
\(402\) 0 0
\(403\) 32.4776 12.6520i 1.61782 0.630242i
\(404\) 0 0
\(405\) 13.8994 + 3.99782i 0.690665 + 0.198653i
\(406\) 0 0
\(407\) −27.1769 + 15.6906i −1.34711 + 0.777754i
\(408\) 0 0
\(409\) −5.15562 8.92980i −0.254929 0.441550i 0.709947 0.704255i \(-0.248719\pi\)
−0.964876 + 0.262705i \(0.915385\pi\)
\(410\) 0 0
\(411\) −5.04331 −0.248768
\(412\) 0 0
\(413\) −3.53730 2.04226i −0.174059 0.100493i
\(414\) 0 0
\(415\) −0.772055 + 0.191828i −0.0378987 + 0.00941646i
\(416\) 0 0
\(417\) 1.42574i 0.0698187i
\(418\) 0 0
\(419\) −19.0452 + 32.9873i −0.930421 + 1.61154i −0.147819 + 0.989014i \(0.547225\pi\)
−0.782602 + 0.622522i \(0.786108\pi\)
\(420\) 0 0
\(421\) −26.7103 −1.30178 −0.650891 0.759171i \(-0.725604\pi\)
−0.650891 + 0.759171i \(0.725604\pi\)
\(422\) 0 0
\(423\) 11.0494 6.37936i 0.537239 0.310175i
\(424\) 0 0
\(425\) −8.42131 + 13.4282i −0.408493 + 0.651366i
\(426\) 0 0
\(427\) 4.33832 + 2.50473i 0.209946 + 0.121212i
\(428\) 0 0
\(429\) 5.48421 6.84150i 0.264780 0.330311i
\(430\) 0 0
\(431\) −10.3594 + 17.9429i −0.498993 + 0.864281i −0.999999 0.00116231i \(-0.999630\pi\)
0.501006 + 0.865444i \(0.332963\pi\)
\(432\) 0 0
\(433\) −13.7331 + 7.92881i −0.659971 + 0.381034i −0.792266 0.610176i \(-0.791099\pi\)
0.132295 + 0.991210i \(0.457765\pi\)
\(434\) 0 0
\(435\) 6.07680 + 6.30296i 0.291360 + 0.302204i
\(436\) 0 0
\(437\) 0.599701i 0.0286876i
\(438\) 0 0
\(439\) 4.86962 8.43444i 0.232415 0.402554i −0.726104 0.687585i \(-0.758671\pi\)
0.958518 + 0.285032i \(0.0920041\pi\)
\(440\) 0 0
\(441\) 17.6020 0.838189
\(442\) 0 0
\(443\) 9.23060i 0.438559i −0.975662 0.219279i \(-0.929629\pi\)
0.975662 0.219279i \(-0.0703707\pi\)
\(444\) 0 0
\(445\) −7.80260 2.24423i −0.369879 0.106387i
\(446\) 0 0
\(447\) 4.97948i 0.235521i
\(448\) 0 0
\(449\) −1.46194 2.53216i −0.0689934 0.119500i 0.829465 0.558559i \(-0.188645\pi\)
−0.898458 + 0.439058i \(0.855312\pi\)
\(450\) 0 0
\(451\) −1.00913 1.74786i −0.0475179 0.0823034i
\(452\) 0 0
\(453\) 4.40136 + 2.54113i 0.206794 + 0.119393i
\(454\) 0 0
\(455\) −5.19256 2.39519i −0.243431 0.112288i
\(456\) 0 0
\(457\) 10.0915 + 5.82632i 0.472060 + 0.272544i 0.717101 0.696969i \(-0.245468\pi\)
−0.245042 + 0.969512i \(0.578802\pi\)
\(458\) 0 0
\(459\) −4.87936 8.45130i −0.227749 0.394473i
\(460\) 0 0
\(461\) 15.1490 + 26.2388i 0.705557 + 1.22206i 0.966490 + 0.256704i \(0.0826366\pi\)
−0.260933 + 0.965357i \(0.584030\pi\)
\(462\) 0 0
\(463\) 7.04331i 0.327330i −0.986516 0.163665i \(-0.947668\pi\)
0.986516 0.163665i \(-0.0523316\pi\)
\(464\) 0 0
\(465\) −3.22171 + 11.2010i −0.149403 + 0.519436i
\(466\) 0 0
\(467\) 3.90110i 0.180522i 0.995918 + 0.0902608i \(0.0287700\pi\)
−0.995918 + 0.0902608i \(0.971230\pi\)
\(468\) 0 0
\(469\) 2.07223 0.0956869
\(470\) 0 0
\(471\) 1.55611 2.69527i 0.0717019 0.124191i
\(472\) 0 0
\(473\) 9.02052i 0.414764i
\(474\) 0 0
\(475\) −0.511014 0.320474i −0.0234469 0.0147044i
\(476\) 0 0
\(477\) −22.4978 + 12.9891i −1.03010 + 0.594731i
\(478\) 0 0
\(479\) −8.75513 + 15.1643i −0.400032 + 0.692876i −0.993729 0.111813i \(-0.964334\pi\)
0.593697 + 0.804689i \(0.297668\pi\)
\(480\) 0 0
\(481\) −24.7968 3.80152i −1.13064 0.173335i
\(482\) 0 0
\(483\) 1.64640 + 0.950552i 0.0749140 + 0.0432516i
\(484\) 0 0
\(485\) 12.2736 + 12.7304i 0.557317 + 0.578058i
\(486\) 0 0
\(487\) −33.3695 + 19.2659i −1.51212 + 0.873022i −0.512218 + 0.858855i \(0.671176\pi\)
−0.999900 + 0.0141666i \(0.995490\pi\)
\(488\) 0 0
\(489\) −9.06997 −0.410158
\(490\) 0 0
\(491\) 3.41189 5.90956i 0.153976 0.266695i −0.778710 0.627385i \(-0.784125\pi\)
0.932686 + 0.360690i \(0.117459\pi\)
\(492\) 0 0
\(493\) 23.0205i 1.03679i
\(494\) 0 0
\(495\) −6.58864 26.5174i −0.296137 1.19187i
\(496\) 0 0
\(497\) 5.02667 + 2.90215i 0.225477 + 0.130179i
\(498\) 0 0
\(499\) 9.57918 0.428823 0.214412 0.976743i \(-0.431217\pi\)
0.214412 + 0.976743i \(0.431217\pi\)
\(500\) 0 0
\(501\) 4.88489 + 8.46088i 0.218241 + 0.378004i
\(502\) 0 0
\(503\) 14.4403 8.33710i 0.643860 0.371733i −0.142240 0.989832i \(-0.545430\pi\)
0.786100 + 0.618099i \(0.212097\pi\)
\(504\) 0 0
\(505\) 13.1970 + 3.79580i 0.587259 + 0.168911i
\(506\) 0 0
\(507\) 6.84150 1.52525i 0.303842 0.0677386i
\(508\) 0 0
\(509\) −11.8299 + 20.4900i −0.524352 + 0.908204i 0.475246 + 0.879853i \(0.342359\pi\)
−0.999598 + 0.0283510i \(0.990974\pi\)
\(510\) 0 0
\(511\) 2.39217 + 4.14336i 0.105823 + 0.183291i
\(512\) 0 0
\(513\) 0.321616 0.185685i 0.0141997 0.00819819i
\(514\) 0 0
\(515\) −38.3679 + 9.53305i −1.69069 + 0.420076i
\(516\) 0 0
\(517\) −18.3944 10.6200i −0.808986 0.467068i
\(518\) 0 0
\(519\) −5.55583 −0.243874
\(520\) 0 0
\(521\) −24.0472 −1.05353 −0.526763 0.850012i \(-0.676594\pi\)
−0.526763 + 0.850012i \(0.676594\pi\)
\(522\) 0 0
\(523\) −20.2079 11.6670i −0.883628 0.510163i −0.0117752 0.999931i \(-0.503748\pi\)
−0.871853 + 0.489768i \(0.837082\pi\)
\(524\) 0 0
\(525\) 1.68980 0.894960i 0.0737490 0.0390593i
\(526\) 0 0
\(527\) −26.5396 + 15.3226i −1.15608 + 0.667465i
\(528\) 0 0
\(529\) 0.855771 + 1.48224i 0.0372075 + 0.0644452i
\(530\) 0 0
\(531\) 7.80098 13.5117i 0.338534 0.586358i
\(532\) 0 0
\(533\) 0.244491 1.59478i 0.0105901 0.0690776i
\(534\) 0 0
\(535\) 0.333268 1.15869i 0.0144084 0.0500944i
\(536\) 0 0
\(537\) −0.589197 + 0.340173i −0.0254257 + 0.0146795i
\(538\) 0 0
\(539\) −14.6514 25.3770i −0.631081 1.09306i
\(540\) 0 0
\(541\) −33.1494 −1.42520 −0.712602 0.701569i \(-0.752483\pi\)
−0.712602 + 0.701569i \(0.752483\pi\)
\(542\) 0 0
\(543\) 1.11248 + 0.642291i 0.0477411 + 0.0275633i
\(544\) 0 0
\(545\) −5.94214 23.9155i −0.254533 1.02443i
\(546\) 0 0
\(547\) 43.6742i 1.86737i −0.358090 0.933687i \(-0.616572\pi\)
0.358090 0.933687i \(-0.383428\pi\)
\(548\) 0 0
\(549\) −9.56751 + 16.5714i −0.408331 + 0.707250i
\(550\) 0 0
\(551\) −0.876050 −0.0373210
\(552\) 0 0
\(553\) 9.83242 5.67675i 0.418117 0.241400i
\(554\) 0 0
\(555\) 6.03906 5.82236i 0.256344 0.247146i
\(556\) 0 0
\(557\) 19.3982 + 11.1995i 0.821927 + 0.474540i 0.851080 0.525035i \(-0.175948\pi\)
−0.0291537 + 0.999575i \(0.509281\pi\)
\(558\) 0 0
\(559\) −4.51026 + 5.62651i −0.190764 + 0.237976i
\(560\) 0 0
\(561\) −3.85464 + 6.67643i −0.162743 + 0.281879i
\(562\) 0 0
\(563\) 0.208951 0.120638i 0.00880625 0.00508429i −0.495590 0.868556i \(-0.665048\pi\)
0.504397 + 0.863472i \(0.331715\pi\)
\(564\) 0 0
\(565\) −21.7279 22.5366i −0.914101 0.948121i
\(566\) 0 0
\(567\) 4.58759i 0.192661i
\(568\) 0 0
\(569\) 13.5856 23.5309i 0.569537 0.986466i −0.427075 0.904216i \(-0.640456\pi\)
0.996612 0.0822501i \(-0.0262106\pi\)
\(570\) 0 0
\(571\) −2.25461 −0.0943524 −0.0471762 0.998887i \(-0.515022\pi\)
−0.0471762 + 0.998887i \(0.515022\pi\)
\(572\) 0 0
\(573\) 5.97721i 0.249702i
\(574\) 0 0
\(575\) 24.8388 + 0.907847i 1.03585 + 0.0378598i
\(576\) 0 0
\(577\) 7.86481i 0.327416i 0.986509 + 0.163708i \(0.0523455\pi\)
−0.986509 + 0.163708i \(0.947654\pi\)
\(578\) 0 0
\(579\) −3.77432 6.53732i −0.156855 0.271682i
\(580\) 0 0
\(581\) 0.126170 + 0.218533i 0.00523441 + 0.00906627i
\(582\) 0 0
\(583\) 37.4532 + 21.6236i 1.55115 + 0.895559i
\(584\) 0 0
\(585\) 9.14909 19.8344i 0.378268 0.820054i
\(586\) 0 0
\(587\) −9.70289 5.60197i −0.400481 0.231218i 0.286210 0.958167i \(-0.407604\pi\)
−0.686692 + 0.726949i \(0.740938\pi\)
\(588\) 0 0
\(589\) −0.583105 1.00997i −0.0240264 0.0416150i
\(590\) 0 0
\(591\) 2.34377 + 4.05952i 0.0964097 + 0.166986i
\(592\) 0 0
\(593\) 13.4186i 0.551034i −0.961296 0.275517i \(-0.911151\pi\)
0.961296 0.275517i \(-0.0888490\pi\)
\(594\) 0 0
\(595\) 4.83182 + 1.38976i 0.198086 + 0.0569745i
\(596\) 0 0
\(597\) 11.6020i 0.474837i
\(598\) 0 0
\(599\) 29.5753 1.20841 0.604207 0.796827i \(-0.293490\pi\)
0.604207 + 0.796827i \(0.293490\pi\)
\(600\) 0 0
\(601\) −12.4916 + 21.6361i −0.509543 + 0.882554i 0.490396 + 0.871500i \(0.336852\pi\)
−0.999939 + 0.0110541i \(0.996481\pi\)
\(602\) 0 0
\(603\) 7.91548i 0.322343i
\(604\) 0 0
\(605\) −15.0390 + 14.4994i −0.611424 + 0.589485i
\(606\) 0 0
\(607\) −8.99964 + 5.19594i −0.365284 + 0.210897i −0.671396 0.741099i \(-0.734305\pi\)
0.306112 + 0.951995i \(0.400972\pi\)
\(608\) 0 0
\(609\) 1.38858 2.40508i 0.0562680 0.0974590i
\(610\) 0 0
\(611\) −6.16342 15.8214i −0.249345 0.640065i
\(612\) 0 0
\(613\) −26.4385 15.2643i −1.06784 0.616517i −0.140249 0.990116i \(-0.544790\pi\)
−0.927590 + 0.373599i \(0.878124\pi\)
\(614\) 0 0
\(615\) 0.374460 + 0.388396i 0.0150997 + 0.0156616i
\(616\) 0 0
\(617\) 6.32444 3.65142i 0.254612 0.147000i −0.367262 0.930118i \(-0.619705\pi\)
0.621874 + 0.783117i \(0.286371\pi\)
\(618\) 0 0
\(619\) −24.5103 −0.985151 −0.492575 0.870270i \(-0.663944\pi\)
−0.492575 + 0.870270i \(0.663944\pi\)
\(620\) 0 0
\(621\) −7.65142 + 13.2526i −0.307041 + 0.531810i
\(622\) 0 0
\(623\) 2.57531i 0.103177i
\(624\) 0 0
\(625\) 14.0472 20.6803i 0.561887 0.827214i
\(626\) 0 0
\(627\) −0.254073 0.146689i −0.0101467 0.00585819i
\(628\) 0 0
\(629\) 22.0566 0.879456
\(630\) 0 0
\(631\) −1.53919 2.66595i −0.0612741 0.106130i 0.833761 0.552125i \(-0.186183\pi\)
−0.895035 + 0.445996i \(0.852850\pi\)
\(632\) 0 0
\(633\) −2.60962 + 1.50667i −0.103723 + 0.0598846i
\(634\) 0 0
\(635\) −7.52668 + 26.1683i −0.298687 + 1.03846i
\(636\) 0 0
\(637\) 3.54975 23.1545i 0.140646 0.917414i
\(638\) 0 0
\(639\) −11.0856 + 19.2008i −0.438538 + 0.759570i
\(640\) 0 0
\(641\) 1.23400 + 2.13735i 0.0487401 + 0.0844202i 0.889366 0.457196i \(-0.151146\pi\)
−0.840626 + 0.541616i \(0.817813\pi\)
\(642\) 0 0
\(643\) −16.2999 + 9.41075i −0.642805 + 0.371124i −0.785694 0.618615i \(-0.787694\pi\)
0.142889 + 0.989739i \(0.454361\pi\)
\(644\) 0 0
\(645\) −0.581449 2.34017i −0.0228945 0.0921442i
\(646\) 0 0
\(647\) −10.1352 5.85157i −0.398456 0.230049i 0.287361 0.957822i \(-0.407222\pi\)
−0.685818 + 0.727773i \(0.740555\pi\)
\(648\) 0 0
\(649\) −25.9733 −1.01954
\(650\) 0 0
\(651\) 3.69699 0.144896
\(652\) 0 0
\(653\) 12.7251 + 7.34684i 0.497972 + 0.287504i 0.727875 0.685709i \(-0.240508\pi\)
−0.229904 + 0.973213i \(0.573841\pi\)
\(654\) 0 0
\(655\) −9.41136 37.8781i −0.367732 1.48002i
\(656\) 0 0
\(657\) −15.8267 + 9.13756i −0.617459 + 0.356490i
\(658\) 0 0
\(659\) −9.39383 16.2706i −0.365932 0.633812i 0.622994 0.782227i \(-0.285916\pi\)
−0.988925 + 0.148415i \(0.952583\pi\)
\(660\) 0 0
\(661\) 2.92101 5.05934i 0.113614 0.196785i −0.803611 0.595155i \(-0.797091\pi\)
0.917225 + 0.398370i \(0.130424\pi\)
\(662\) 0 0
\(663\) −5.74253 + 2.23707i −0.223021 + 0.0868806i
\(664\) 0 0
\(665\) −0.0528875 + 0.183876i −0.00205089 + 0.00713040i
\(666\) 0 0
\(667\) 31.2626 18.0494i 1.21049 0.698877i
\(668\) 0 0
\(669\) 6.66148 + 11.5380i 0.257548 + 0.446086i
\(670\) 0 0
\(671\) 31.8550 1.22975
\(672\) 0 0
\(673\) −35.4140 20.4463i −1.36511 0.788145i −0.374809 0.927102i \(-0.622292\pi\)
−0.990298 + 0.138957i \(0.955625\pi\)
\(674\) 0 0
\(675\) 7.20394 + 13.6020i 0.277280 + 0.523540i
\(676\) 0 0
\(677\) 28.2700i 1.08651i −0.839569 0.543253i \(-0.817193\pi\)
0.839569 0.543253i \(-0.182807\pi\)
\(678\) 0 0
\(679\) 2.80458 4.85767i 0.107630 0.186420i
\(680\) 0 0
\(681\) 15.4719 0.592884
\(682\) 0 0
\(683\) −35.9445 + 20.7526i −1.37538 + 0.794075i −0.991599 0.129349i \(-0.958711\pi\)
−0.383780 + 0.923425i \(0.625378\pi\)
\(684\) 0 0
\(685\) 14.5166 + 15.0569i 0.554650 + 0.575293i
\(686\) 0 0
\(687\) 0.887152 + 0.512197i 0.0338469 + 0.0195415i
\(688\) 0 0
\(689\) 12.5494 + 32.2142i 0.478096 + 1.22726i
\(690\) 0 0
\(691\) −12.0542 + 20.8784i −0.458562 + 0.794253i −0.998885 0.0472043i \(-0.984969\pi\)
0.540323 + 0.841458i \(0.318302\pi\)
\(692\) 0 0
\(693\) −7.50586 + 4.33351i −0.285124 + 0.164616i
\(694\) 0 0
\(695\) 4.25656 4.10383i 0.161461 0.155667i
\(696\) 0 0
\(697\) 1.41855i 0.0537314i
\(698\) 0 0
\(699\) −5.99806 + 10.3889i −0.226868 + 0.392946i
\(700\) 0 0
\(701\) −14.1822 −0.535654 −0.267827 0.963467i \(-0.586306\pi\)
−0.267827 + 0.963467i \(0.586306\pi\)
\(702\) 0 0
\(703\) 0.839369i 0.0316574i
\(704\) 0 0
\(705\) 5.45658 + 1.56945i 0.205507 + 0.0591090i
\(706\) 0 0
\(707\) 4.35577i 0.163816i
\(708\) 0 0
\(709\) −23.2479 40.2665i −0.873091 1.51224i −0.858782 0.512341i \(-0.828778\pi\)
−0.0143094 0.999898i \(-0.504555\pi\)
\(710\) 0 0
\(711\) 21.6839 + 37.5577i 0.813211 + 1.40852i
\(712\) 0 0
\(713\) 41.6172 + 24.0277i 1.55858 + 0.899845i
\(714\) 0 0
\(715\) −36.2111 + 3.31930i −1.35422 + 0.124135i
\(716\) 0 0
\(717\) 11.6135 + 6.70507i 0.433715 + 0.250405i
\(718\) 0 0
\(719\) 6.36069 + 11.0170i 0.237214 + 0.410866i 0.959914 0.280296i \(-0.0904325\pi\)
−0.722700 + 0.691162i \(0.757099\pi\)
\(720\) 0 0
\(721\) 6.27012 + 10.8602i 0.233511 + 0.404454i
\(722\) 0 0
\(723\) 1.59090i 0.0591664i
\(724\) 0 0
\(725\) 1.32619 36.2847i 0.0492536 1.34758i
\(726\) 0 0
\(727\) 13.2595i 0.491769i 0.969299 + 0.245884i \(0.0790783\pi\)
−0.969299 + 0.245884i \(0.920922\pi\)
\(728\) 0 0
\(729\) 12.5441 0.464597
\(730\) 0 0
\(731\) 3.17009 5.49075i 0.117250 0.203083i
\(732\) 0 0
\(733\) 31.5848i 1.16661i 0.812253 + 0.583305i \(0.198241\pi\)
−0.812253 + 0.583305i \(0.801759\pi\)
\(734\) 0 0
\(735\) 5.43675 + 5.63909i 0.200537 + 0.208001i
\(736\) 0 0
\(737\) 11.4119 6.58864i 0.420361 0.242696i
\(738\) 0 0
\(739\) −1.41609 + 2.45274i −0.0520917 + 0.0902255i −0.890895 0.454208i \(-0.849922\pi\)
0.838804 + 0.544434i \(0.183255\pi\)
\(740\) 0 0
\(741\) −0.0851321 0.218533i −0.00312741 0.00802800i
\(742\) 0 0
\(743\) 18.0151 + 10.4010i 0.660909 + 0.381576i 0.792623 0.609712i \(-0.208715\pi\)
−0.131714 + 0.991288i \(0.542048\pi\)
\(744\) 0 0
\(745\) −14.8663 + 14.3329i −0.544659 + 0.525116i
\(746\) 0 0
\(747\) −0.834747 + 0.481941i −0.0305418 + 0.0176333i
\(748\) 0 0
\(749\) −0.382433 −0.0139738
\(750\) 0 0
\(751\) 18.1412 31.4214i 0.661980 1.14658i −0.318114 0.948052i \(-0.603050\pi\)
0.980095 0.198531i \(-0.0636171\pi\)
\(752\) 0 0
\(753\) 8.92881i 0.325384i
\(754\) 0 0
\(755\) −5.08225 20.4547i −0.184962 0.744422i
\(756\) 0 0
\(757\) 35.3933 + 20.4343i 1.28639 + 0.742699i 0.978009 0.208563i \(-0.0668788\pi\)
0.308383 + 0.951262i \(0.400212\pi\)
\(758\) 0 0
\(759\) 12.0891 0.438805
\(760\) 0 0
\(761\) −17.8112 30.8500i −0.645657 1.11831i −0.984149 0.177342i \(-0.943250\pi\)
0.338492 0.940969i \(-0.390083\pi\)
\(762\) 0 0
\(763\) −6.76936 + 3.90829i −0.245067 + 0.141490i
\(764\) 0 0
\(765\) −5.30857 + 18.4565i −0.191932 + 0.667296i
\(766\) 0 0
\(767\) −16.2007 12.9867i −0.584975 0.468921i
\(768\) 0 0
\(769\) 1.68455 2.91773i 0.0607465 0.105216i −0.834053 0.551685i \(-0.813985\pi\)
0.894799 + 0.446469i \(0.147319\pi\)
\(770\) 0 0
\(771\) −0.141157 0.244491i −0.00508365 0.00880514i
\(772\) 0 0
\(773\) −9.59506 + 5.53971i −0.345110 + 0.199250i −0.662530 0.749036i \(-0.730517\pi\)
0.317419 + 0.948285i \(0.397184\pi\)
\(774\) 0 0
\(775\) 42.7142 22.6225i 1.53434 0.812624i
\(776\) 0 0
\(777\) −2.30438 1.33044i −0.0826693 0.0477291i
\(778\) 0 0
\(779\) −0.0539832 −0.00193415
\(780\) 0 0
\(781\) 36.9093 1.32072
\(782\) 0 0
\(783\) 19.3596 + 11.1773i 0.691856 + 0.399443i
\(784\) 0 0
\(785\) −12.5259 + 3.11223i −0.447067 + 0.111080i
\(786\) 0 0
\(787\) −4.91114 + 2.83545i −0.175063 + 0.101073i −0.584971 0.811054i \(-0.698894\pi\)
0.409908 + 0.912127i \(0.365561\pi\)
\(788\) 0 0
\(789\) −7.75933 13.4396i −0.276240 0.478461i
\(790\) 0 0
\(791\) −4.96493 + 8.59951i −0.176532 + 0.305763i
\(792\) 0 0
\(793\) 19.8694 + 15.9275i 0.705582 + 0.565602i
\(794\) 0 0
\(795\) −11.1102 3.19559i −0.394039 0.113336i
\(796\) 0 0
\(797\) 23.6792 13.6712i 0.838762 0.484259i −0.0180812 0.999837i \(-0.505756\pi\)
0.856843 + 0.515577i \(0.172422\pi\)
\(798\) 0 0
\(799\) 7.46441 + 12.9287i 0.264072 + 0.457386i
\(800\) 0 0
\(801\) −9.83710 −0.347577
\(802\) 0 0
\(803\) 26.3475 + 15.2117i 0.929783 + 0.536810i
\(804\) 0 0
\(805\) −1.90110 7.65142i −0.0670051 0.269677i
\(806\) 0 0
\(807\) 5.42243i 0.190878i
\(808\) 0 0
\(809\) −2.51446 + 4.35518i −0.0884039 + 0.153120i −0.906837 0.421482i \(-0.861510\pi\)
0.818433 + 0.574602i \(0.194843\pi\)
\(810\) 0 0
\(811\) −47.3390 −1.66230 −0.831148 0.556052i \(-0.812316\pi\)
−0.831148 + 0.556052i \(0.812316\pi\)
\(812\) 0 0
\(813\) 8.46375 4.88655i 0.296837 0.171379i
\(814\) 0 0
\(815\) 26.1069 + 27.0785i 0.914484 + 0.948519i
\(816\) 0 0
\(817\) 0.208951 + 0.120638i 0.00731028 + 0.00422059i
\(818\) 0 0
\(819\) −6.84849 1.04992i −0.239306 0.0366873i
\(820\) 0 0
\(821\) 10.3408 17.9108i 0.360896 0.625090i −0.627213 0.778848i \(-0.715804\pi\)
0.988109 + 0.153758i \(0.0491376\pi\)
\(822\) 0 0
\(823\) −17.1794 + 9.91855i −0.598837 + 0.345739i −0.768584 0.639749i \(-0.779038\pi\)
0.169747 + 0.985488i \(0.445705\pi\)
\(824\) 0 0
\(825\) 6.46027 10.3013i 0.224918 0.358644i
\(826\) 0 0
\(827\) 39.6730i 1.37956i −0.724017 0.689782i \(-0.757706\pi\)
0.724017 0.689782i \(-0.242294\pi\)
\(828\) 0 0
\(829\) −12.6937 + 21.9861i −0.440870 + 0.763609i −0.997754 0.0669813i \(-0.978663\pi\)
0.556885 + 0.830590i \(0.311997\pi\)
\(830\) 0 0
\(831\) −13.3268 −0.462303
\(832\) 0 0
\(833\) 20.5958i 0.713603i
\(834\) 0 0
\(835\) 11.1995 38.9376i 0.387573 1.34749i
\(836\) 0 0
\(837\) 29.7587i 1.02861i
\(838\) 0 0
\(839\) 11.5139 + 19.9426i 0.397502 + 0.688494i 0.993417 0.114553i \(-0.0365437\pi\)
−0.595915 + 0.803048i \(0.703210\pi\)
\(840\) 0 0
\(841\) −11.8668 20.5540i −0.409201 0.708757i
\(842\) 0 0
\(843\) 10.7331 + 6.19675i 0.369667 + 0.213427i
\(844\) 0 0
\(845\) −24.2461 16.0351i −0.834092 0.551625i
\(846\) 0 0
\(847\) 5.73860 + 3.31318i 0.197181 + 0.113842i
\(848\) 0 0
\(849\) −4.87936 8.45130i −0.167459 0.290048i
\(850\) 0 0
\(851\) −17.2937 29.9536i −0.592821 1.02680i
\(852\) 0 0
\(853\) 13.7047i 0.469241i 0.972087 + 0.234621i \(0.0753848\pi\)
−0.972087 + 0.234621i \(0.924615\pi\)
\(854\) 0 0
\(855\) −0.702365 0.202018i −0.0240204 0.00690888i
\(856\) 0 0
\(857\) 17.8648i 0.610250i −0.952312 0.305125i \(-0.901302\pi\)
0.952312 0.305125i \(-0.0986983\pi\)
\(858\) 0 0
\(859\) 13.7187 0.468077 0.234039 0.972227i \(-0.424806\pi\)
0.234039 + 0.972227i \(0.424806\pi\)
\(860\) 0 0
\(861\) 0.0855657 0.148204i 0.00291607 0.00505078i
\(862\) 0 0
\(863\) 19.9383i 0.678706i −0.940659 0.339353i \(-0.889792\pi\)
0.940659 0.339353i \(-0.110208\pi\)
\(864\) 0 0
\(865\) 15.9918 + 16.5870i 0.543739 + 0.563975i
\(866\) 0 0
\(867\) −3.24557 + 1.87383i −0.110225 + 0.0636386i
\(868\) 0 0
\(869\) 36.0983 62.5241i 1.22455 2.12098i
\(870\) 0 0
\(871\) 10.4124 + 1.59630i 0.352811 + 0.0540884i
\(872\) 0 0
\(873\) 18.5552 + 10.7129i 0.628000 + 0.362576i
\(874\) 0 0
\(875\) −7.53582 2.46888i −0.254757 0.0834634i
\(876\) 0 0
\(877\) −18.7203 + 10.8082i −0.632140 + 0.364966i −0.781580 0.623805i \(-0.785586\pi\)
0.149441 + 0.988771i \(0.452253\pi\)
\(878\) 0 0
\(879\) −9.62144 −0.324523
\(880\) 0 0
\(881\) 3.99693 6.92288i 0.134660 0.233238i −0.790808 0.612065i \(-0.790339\pi\)
0.925468 + 0.378827i \(0.123672\pi\)
\(882\) 0 0
\(883\) 26.2713i 0.884098i 0.896991 + 0.442049i \(0.145748\pi\)
−0.896991 + 0.442049i \(0.854252\pi\)
\(884\) 0 0
\(885\) 6.73820 1.67420i 0.226502 0.0562777i
\(886\) 0 0
\(887\) 14.8634 + 8.58136i 0.499063 + 0.288134i 0.728326 0.685230i \(-0.240299\pi\)
−0.229264 + 0.973364i \(0.573632\pi\)
\(888\) 0 0
\(889\) 8.63704 0.289677
\(890\) 0 0
\(891\) −14.5862 25.2640i −0.488655 0.846376i
\(892\) 0 0
\(893\) −0.492005 + 0.284059i −0.0164643 + 0.00950568i
\(894\) 0 0
\(895\) 2.71153 + 0.779906i 0.0906364 + 0.0260694i
\(896\) 0 0
\(897\) 7.54049 + 6.04453i 0.251770 + 0.201821i
\(898\) 0 0
\(899\) 35.0999 60.7949i 1.17065 2.02762i
\(900\) 0 0
\(901\) −15.1984 26.3244i −0.506332 0.876993i
\(902\) 0 0
\(903\) −0.662394 + 0.382433i −0.0220431 + 0.0127266i
\(904\) 0 0
\(905\) −1.28458 5.17009i −0.0427009 0.171859i
\(906\) 0 0
\(907\) 14.2146 + 8.20682i 0.471989 + 0.272503i 0.717072 0.696999i \(-0.245482\pi\)
−0.245083 + 0.969502i \(0.578815\pi\)
\(908\) 0 0
\(909\) 16.6381 0.551850
\(910\) 0 0
\(911\) 4.52359 0.149873 0.0749366 0.997188i \(-0.476125\pi\)
0.0749366 + 0.997188i \(0.476125\pi\)
\(912\) 0 0
\(913\) 1.38964 + 0.802311i 0.0459905 + 0.0265526i
\(914\) 0 0
\(915\) −8.26406 + 2.05332i −0.273201 + 0.0678808i
\(916\) 0 0
\(917\) −10.7215 + 6.19008i −0.354056 + 0.204415i
\(918\) 0 0
\(919\) 3.82150 + 6.61904i 0.126060 + 0.218342i 0.922147 0.386840i \(-0.126434\pi\)
−0.796087 + 0.605182i \(0.793100\pi\)
\(920\) 0 0
\(921\) 0.928810 1.60875i 0.0306053 0.0530100i
\(922\) 0 0
\(923\) 23.0220 + 18.4547i 0.757779 + 0.607443i
\(924\) 0 0
\(925\) −34.7655 1.27066i −1.14308 0.0417792i
\(926\) 0 0
\(927\) −41.4834 + 23.9505i −1.36249 + 0.786636i
\(928\) 0 0
\(929\) 29.6647 + 51.3808i 0.973269 + 1.68575i 0.685534 + 0.728041i \(0.259569\pi\)
0.287735 + 0.957710i \(0.407098\pi\)
\(930\) 0 0
\(931\) −0.783777 −0.0256873
\(932\) 0 0
\(933\) −8.32283 4.80519i −0.272477 0.157315i
\(934\) 0 0
\(935\) 31.0277 7.70928i 1.01471 0.252120i
\(936\) 0 0
\(937\) 1.75872i 0.0574550i 0.999587 + 0.0287275i \(0.00914551\pi\)
−0.999587 + 0.0287275i \(0.990854\pi\)
\(938\) 0 0
\(939\) 8.68753 15.0473i 0.283507 0.491048i
\(940\) 0 0
\(941\) 42.2967 1.37883 0.689416 0.724365i \(-0.257867\pi\)
0.689416 + 0.724365i \(0.257867\pi\)
\(942\) 0 0
\(943\) 1.92643 1.11223i 0.0627333 0.0362191i
\(944\) 0 0
\(945\) 3.51477 3.38865i 0.114335 0.110233i
\(946\) 0 0
\(947\) 4.19011 + 2.41916i 0.136160 + 0.0786122i 0.566533 0.824039i \(-0.308284\pi\)
−0.430372 + 0.902651i \(0.641618\pi\)
\(948\) 0 0
\(949\) 8.82826 + 22.6620i 0.286577 + 0.735640i
\(950\) 0 0
\(951\) −0.513853 + 0.890020i −0.0166628 + 0.0288609i
\(952\) 0 0
\(953\) −22.4767 + 12.9769i −0.728092 + 0.420364i −0.817724 0.575611i \(-0.804764\pi\)
0.0896318 + 0.995975i \(0.471431\pi\)
\(954\) 0 0
\(955\) −17.8451 + 17.2047i −0.577452 + 0.556732i
\(956\) 0 0
\(957\) 17.6598i 0.570861i
\(958\) 0 0
\(959\) 3.31710 5.74539i 0.107115 0.185528i
\(960\) 0 0
\(961\) 62.4512 2.01455
\(962\) 0 0
\(963\) 1.46081i 0.0470740i
\(964\) 0 0
\(965\) −8.65329 + 30.0852i −0.278559 + 0.968478i
\(966\) 0 0
\(967\) 29.9939i 0.964537i 0.876023 + 0.482269i \(0.160187\pi\)
−0.876023 + 0.482269i \(0.839813\pi\)
\(968\) 0 0
\(969\) 0.103102 + 0.178578i 0.00331211 + 0.00573674i
\(970\) 0 0
\(971\) 7.86429 + 13.6213i 0.252377 + 0.437130i 0.964180 0.265250i \(-0.0854544\pi\)
−0.711803 + 0.702379i \(0.752121\pi\)
\(972\) 0 0
\(973\) −1.62422 0.937743i −0.0520701 0.0300627i
\(974\) 0 0
\(975\) 9.18020 3.19523i 0.294002 0.102329i
\(976\) 0 0
\(977\) −23.8539 13.7721i −0.763154 0.440607i 0.0672731 0.997735i \(-0.478570\pi\)
−0.830427 + 0.557128i \(0.811903\pi\)
\(978\) 0 0
\(979\) 8.18815 + 14.1823i 0.261694 + 0.453268i
\(980\) 0 0
\(981\) −14.9288 25.8575i −0.476640 0.825565i
\(982\) 0 0
\(983\) 18.0289i 0.575034i −0.957776 0.287517i \(-0.907170\pi\)
0.957776 0.287517i \(-0.0928297\pi\)
\(984\) 0 0
\(985\) 5.37349 18.6822i 0.171214 0.595265i
\(986\) 0 0
\(987\) 1.80098i 0.0573260i
\(988\) 0 0
\(989\) −9.94214 −0.316142
\(990\) 0 0
\(991\) 5.81658 10.0746i 0.184770 0.320031i −0.758729 0.651406i \(-0.774179\pi\)
0.943499 + 0.331376i \(0.107513\pi\)
\(992\) 0 0
\(993\) 0.383656i 0.0121750i
\(994\) 0 0
\(995\) −34.6378 + 33.3950i −1.09809 + 1.05869i
\(996\) 0 0
\(997\) 24.9977 14.4324i 0.791684 0.457079i −0.0488712 0.998805i \(-0.515562\pi\)
0.840555 + 0.541726i \(0.182229\pi\)
\(998\) 0 0
\(999\) 10.7093 18.5490i 0.338826 0.586865i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.dh.b.529.4 12
4.3 odd 2 130.2.n.a.9.2 12
5.4 even 2 inner 1040.2.dh.b.529.3 12
12.11 even 2 1170.2.bp.h.919.5 12
13.3 even 3 inner 1040.2.dh.b.289.3 12
20.3 even 4 650.2.e.j.451.2 6
20.7 even 4 650.2.e.k.451.2 6
20.19 odd 2 130.2.n.a.9.5 yes 12
52.3 odd 6 130.2.n.a.29.5 yes 12
52.7 even 12 1690.2.c.b.1689.4 6
52.19 even 12 1690.2.c.c.1689.4 6
52.35 odd 6 1690.2.b.c.339.5 6
52.43 odd 6 1690.2.b.b.339.2 6
60.59 even 2 1170.2.bp.h.919.2 12
65.29 even 6 inner 1040.2.dh.b.289.4 12
156.107 even 6 1170.2.bp.h.289.2 12
260.3 even 12 650.2.e.j.601.2 6
260.19 even 12 1690.2.c.b.1689.3 6
260.43 even 12 8450.2.a.bt.1.2 3
260.59 even 12 1690.2.c.c.1689.3 6
260.87 even 12 8450.2.a.bu.1.2 3
260.107 even 12 650.2.e.k.601.2 6
260.139 odd 6 1690.2.b.c.339.2 6
260.147 even 12 8450.2.a.ca.1.2 3
260.159 odd 6 130.2.n.a.29.2 yes 12
260.199 odd 6 1690.2.b.b.339.5 6
260.243 even 12 8450.2.a.cb.1.2 3
780.419 even 6 1170.2.bp.h.289.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.2 12 4.3 odd 2
130.2.n.a.9.5 yes 12 20.19 odd 2
130.2.n.a.29.2 yes 12 260.159 odd 6
130.2.n.a.29.5 yes 12 52.3 odd 6
650.2.e.j.451.2 6 20.3 even 4
650.2.e.j.601.2 6 260.3 even 12
650.2.e.k.451.2 6 20.7 even 4
650.2.e.k.601.2 6 260.107 even 12
1040.2.dh.b.289.3 12 13.3 even 3 inner
1040.2.dh.b.289.4 12 65.29 even 6 inner
1040.2.dh.b.529.3 12 5.4 even 2 inner
1040.2.dh.b.529.4 12 1.1 even 1 trivial
1170.2.bp.h.289.2 12 156.107 even 6
1170.2.bp.h.289.5 12 780.419 even 6
1170.2.bp.h.919.2 12 60.59 even 2
1170.2.bp.h.919.5 12 12.11 even 2
1690.2.b.b.339.2 6 52.43 odd 6
1690.2.b.b.339.5 6 260.199 odd 6
1690.2.b.c.339.2 6 260.139 odd 6
1690.2.b.c.339.5 6 52.35 odd 6
1690.2.c.b.1689.3 6 260.19 even 12
1690.2.c.b.1689.4 6 52.7 even 12
1690.2.c.c.1689.3 6 260.59 even 12
1690.2.c.c.1689.4 6 52.19 even 12
8450.2.a.bt.1.2 3 260.43 even 12
8450.2.a.bu.1.2 3 260.87 even 12
8450.2.a.ca.1.2 3 260.147 even 12
8450.2.a.cb.1.2 3 260.243 even 12