L(s) = 1 | + (0.466 + 0.269i)3-s + (−0.539 − 2.17i)5-s + (−0.614 + 0.354i)7-s + (−1.35 − 2.34i)9-s + (−2.25 + 3.90i)11-s + (−3.35 + 1.30i)13-s + (0.333 − 1.15i)15-s + (2.74 − 1.58i)17-s + (0.0603 + 0.104i)19-s − 0.382·21-s + (−4.30 − 2.48i)23-s + (−4.41 + 2.34i)25-s − 3.07i·27-s + (−3.63 + 6.28i)29-s − 9.66·31-s + ⋯ |
L(s) = 1 | + (0.269 + 0.155i)3-s + (−0.241 − 0.970i)5-s + (−0.232 + 0.134i)7-s + (−0.451 − 0.782i)9-s + (−0.679 + 1.17i)11-s + (−0.931 + 0.362i)13-s + (0.0860 − 0.299i)15-s + (0.665 − 0.384i)17-s + (0.0138 + 0.0239i)19-s − 0.0834·21-s + (−0.897 − 0.518i)23-s + (−0.883 + 0.468i)25-s − 0.592i·27-s + (−0.674 + 1.16i)29-s − 1.73·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 - 0.175i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.984 - 0.175i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.06952409503\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06952409503\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.539 + 2.17i)T \) |
| 13 | \( 1 + (3.35 - 1.30i)T \) |
good | 3 | \( 1 + (-0.466 - 0.269i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (0.614 - 0.354i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.25 - 3.90i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.74 + 1.58i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.0603 - 0.104i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.30 + 2.48i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.63 - 6.28i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 9.66T + 31T^{2} \) |
| 37 | \( 1 + (-6.02 - 3.47i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.223 - 0.387i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.73 + i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.70iT - 47T^{2} \) |
| 53 | \( 1 + 9.58iT - 53T^{2} \) |
| 59 | \( 1 + (-2.87 - 4.98i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.53 + 6.11i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.53 + 1.46i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.09 + 7.08i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 6.74iT - 73T^{2} \) |
| 79 | \( 1 + 16.0T + 79T^{2} \) |
| 83 | \( 1 + 0.355iT - 83T^{2} \) |
| 89 | \( 1 + (-1.81 + 3.14i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.84 - 3.95i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.518885363951399639324136643529, −8.809094132754298725992565132071, −7.80505657077742961181284835255, −7.18505242611990112293670941648, −5.92500185681383866321606757090, −5.04060173537936711270223939350, −4.25196877753748442302538533184, −3.10728947048166516189017070207, −1.84770358027704324316804032008, −0.02770990754544043617470862535,
2.21566571580159108300216176830, 3.04152353778012959434086648151, 3.95292964493205690637204233045, 5.50645821779348248463728792316, 5.93145902610160508270020021363, 7.37310180675698261463549190614, 7.69167762898951520955446091007, 8.511406037860978960232258772691, 9.708050958471778015759113142961, 10.38561909816101775699343230531